Brief Contents

Preface, xiii

1 Introduction, 1

PART I CRYSTAL CHEMISTRY, 7

2 Atomic Structure, 9

3 Chemical Bonding, 23

PART II CHEMICAL REACTIONS, 49

4 Basic Thermodynamic Concepts, 51

5 Thermodynamics of Solutions, 79

6 Geothermometry and Geobarometry, 107

7 Reactions Involving Aqueous Solutions, 134

8 Oxidation–Reduction Reactions, 167

9 Kinetics of Chemical Reactions, 197

PART III ISOTOPE GEOCHEMISTRY, 223

10 Radiogenic Isotopes, 225

11 Stable Isotopes, 253

PART IV THE EARTH SUPERSYSTEM, 281

12 The Core–Mantle–Crust System, 283

13 The Crust–Hydrosphere–Atmosphere System, 326

APPENDIX 1 Units of measurement and physical constants, 372

APPENDIX 2 Electronic configurations of elements in ground state, 374

APPENDIX 3 First ionization potential, electron affinity, electronegativity (Pauling scale), and coordination numbers of selected elements, 377

APPENDIX 4 Thermodynamic symbols, 379

APPENDIX 5 Standard state (298.15 K, 10^5 Pa) thermodynamic data for selected elements, ionic species, and compounds, 382

APPENDIX 6 Fugacities of H₂O and CO₂ in the range 0.5–10.0 kbar and 200–1000°C, 396

APPENDIX 7 Equations for activity coefficients in multicomponent regular solid solutions, 400

APPENDIX 8 Some commonly used computer codes for modeling of geochemical processes in aqueous solutions, 404

APPENDIX 9 Solar system abundances of the elements in units of number of atoms per 10^6 silicon atoms, 408

APPENDIX 10 Answers to selected chapter-end questions, 403

References, 406

Index, 431
Contents

Preface, xiii

1 Introduction, 1

1.1 Units of measurement, 1
 1.1.1 The SI system of units, 1
 1.1.2 Concentration units for solutions, 3
1.2 The Geologic Time Scale, 3
1.3 Recapitulation, 5
1.4 Questions, 5

PART I CRYSTAL CHEMISTRY, 7

2 Atomic Structure, 9

2.1 Historical development, 9
 2.1.1 Discovery of the electron, 9
 2.1.2 The Rutherford–Bohr atom, 10
 2.1.3 Wave mechanics, 12
2.2 The working model, 13
 2.2.1 Quantum numbers, 14
 2.2.2 Energy levels of the atomic orbitals, 16
2.3 The ground state electron configuration of elements, 17
 2.3.1 Filling atomic orbitals with electrons: the Aufbau principle, 17
 2.3.2 The Periodic Table, 18
 2.3.3 Transition elements, 18
2.4 Chemical behavior of elements, 18
 2.4.1 Ionization potential and electron affinity, 18
 2.4.2 Classification of elements, 20
2.5 Summary, 21
2.6 Recapitulation, 21
2.7 Questions, 22

3 Chemical Bonding, 23

3.1 Ionic bonding, 24
 3.1.1 Ionic radii, 24
 3.1.2 Coordination number and radius ratio, 25
 3.1.3 Lattice energy of ideal ionic crystals, 28
3.2 Crystal structures of silicate minerals, 31
3.3 Ionic substitution in crystals, 31
 3.3.1 Goldschmidt’s rules, 31
 3.3.2 Ringwood’s rule, 32
3.4 Crystal-field theory, 33
 3.4.1 Crystal-field stabilization energy, 33
 3.4.2 Nickel enrichment in early-formed magmatic olivine, 35
3.5 Isomorphism, polymorphism, and solid solutions, 36
 3.5.1 Isomorphism, 36
 3.5.2 Polymorphism, 36
 3.5.3 Solid solutions, 36
3.6 Covalent bonding, 37
 3.6.1 Valence bond theory versus molecular orbital theory, 37
 3.6.2 Covalent radii, 38
 3.6.3 Hybridization of atomic orbitals, 38
 3.6.4 Sigma (σ), pi (π), and delta (δ) molecular orbitals, 39
 3.6.5 The degree of ionic character of a chemical bond: Electronegativity, 40
3.7 Metallic bonds, 43
3.8 Van der Waals bonds, 44
3.9 Hydrogen bond, 44
3.10 Comparison of bond types, 45
3.11 Goldschmidt’s classification of elements, 45
3.12 Summary, 47
3.13 Recapitulation, 48
3.14 Questions, 48

PART II CHEMICAL REACTIONS, 49

4 Basic Thermodynamic Concepts, 51

4.1 Chemical equilibrium, 51
 4.1.1 Law of Mass Action – equilibrium constant (K_eq), 51
 4.1.2 Le Chatelier’s principle, 54
4.2 Thermodynamic systems, 54
 4.2.1 Attributes of a thermodynamic system, 54
 4.2.2 State functions, 56
Contents

4.2.3 The Gibbs phase rule, 56
4.2.4 Equations of state, 57
4.2.5 Kinds of thermodynamic systems and processes, 58

4.3 Laws of thermodynamics, 58
4.3.1 The first law: conservation of energy, 58
4.3.2 The second law: the concept and definition of entropy (S), 59
4.3.3 The fundamental equation: the first and second laws combined, 60
4.3.4 The third law: the entropy scale, 60

4.4 Auxiliary thermodynamic functions, 61
4.4.1 Enthalpy (H), 61
4.4.2 Heat capacity (C\text{p}, C\text{v}), 61
4.4.3 Gibbs free energy (G), 63
4.4.4 Computation of the molar free energy of a substance at T and P\text{T}, 64

4.5 Free energy change of a reaction at T and P\text{T}, \(\Delta G \), 67
4.5.1 Computation of \(\Delta G \), 67
4.5.2 Evaluation of the volume integral, 68
4.5.3 General equation for \(\Delta G \), 68

4.6 Conditions for thermodynamic equilibrium and spontaneity in a closed system, 68
4.7 Metastability, 71

5 Thermodynamics of Solutions, 79

5.1 Chemical potential, 80
5.1.1 Partial molar properties, 80
5.1.2 Definition of chemical potential (\mu), 81
5.1.3 Expression for free energy in terms of chemical potentials, 81
5.1.4 Criteria for equilibrium and spontaneous change among phases of variable composition, 82
5.1.5 Criteria for equilibrium and spontaneous change for a reaction, 83
5.1.6 The Gibbs–Duhem equation, 83

5.2 Variation of chemical potential (\mu) with temperature, pressure, and composition, 84
5.2.1 Temperature dependence of chemical potential, 84
5.2.2 Pressure dependence of chemical potential, 84
5.2.3 Dependence of chemical potential on composition: the concept of activity, 84

5.3 Relationship between Gibbs free energy change and equilibrium constant for a reaction, 86

5.4 Gases, 87
5.4.1 Pure ideal gases and ideal gas mixtures, 87
5.4.2 Pure nonideal gases: fugacity and fugacity coefficient, 88
5.4.3 Nonideal gas mixtures, 89

5.5 Ideal solutions involving condensed phases, 92
5.5.1 Mixing properties of ideal solutions, 92
5.5.2 Raoult's Law, 93
5.5.3 Henry's Law, 95
5.5.4 The Lewis Fugacity Rule, 96
5.5.5 Activities of constituents in ideal solutions, 96

5.6 Nonideal solutions involving condensed phases, 97
5.7 Excess functions, 98

5.8 Ideal crystalline solutions, 98
5.8.1 Application of the mixing-on-sites model to some silicate minerals, 98
5.8.2 Application of the local charge balance model to some silicate minerals, 100

5.9 Nonideal crystalline solutions, 101
5.9.1 General expressions, 101
5.9.2 Regular solution, 102

5.10 Summary, 103
5.11 Recapitulation, 104
5.12 Questions, 104

6 Geothermometry and Geobarometry, 107

6.1 Tools for geothermobarometry, 107
6.2 Selection of reactions for thermobarometry, 110
6.3 Dependence of equilibrium constant on temperature and pressure, 111

6.4 Univariant reactions and displaced equilibria, 114
6.4.1 Al\text{2}SiO\text{5}, polymorphs, 114
6.4.2 Garnet–rutile–Al\text{2}SiO\text{5} polymorph–ilmenite–quartz (GRAIL) barometry, 115
6.4.3 Garnet–plagioclase–pyroxene–quartz (GAPES and GADS) barometry, 116

6.5 Exchange reactions, 118
6.5.1 Garnet–clinopyroxene thermometry, 119
6.5.2 Garnet–biotite (GABI) thermometry, 120
6.5.3 Magnetite–ilmenite thermometry and oxygen barometry, 122

6.6 Solvus equilibria, 126
6.7 Uncertainties in thermobarometric estimates, 127
6.8 Fluid inclusion thermobarometry, 128

6.9 Summary, 130
6.10 Recapitulation, 131
6.11 Questions, 131

7 Reactions Involving Aqueous Solutions, 134

7.1 Water as a solvent, 134
7.2 Activity–concentration relationships in aqueous electrolyte solutions, 135
7.2.1 Activity coefficient of a solute, 135
7.2.2 Standard state of an aqueous solute, 135
7.2.3 Estimation of activity coefficients of solutes, 136
7.3 Dissociation of acids and bases, 139
7.4 Solubility of salts, 140
7.4.1 The concept of solubility, 140
7.4.2 Solubility product, 141
7.4.3 Saturation index, 144
7.4.4 Ion pairs, 145
7.4.5 Aqueous complexes of ore metals, 146
7.5 Dissociation of H₂CO₃ acid – the carbonic acid system, 146
7.5.1 Open system, 147
7.5.2 Closed system, 147
7.6 Acidity and alkalinity of a solution, 149
7.7 pH buffers, 150
7.8 Dissolution and precipitation of calcium carbonate, 151
7.8.1 Solubility of calcite in pure water, 151
7.8.2 Carbonate equilibria in the CaCO₃–CO₂–H₂O system, 151
7.8.3 Factors affecting calcite solubility, 153
7.8.4 Abiological precipitation of calcium carbonate in the oceans, 154
7.8.5 Biological precipitation of calcium carbonate in the oceans, 156
7.8.6 Carbonate compensation depth, 157
7.9 Chemical weathering of silicate minerals, 158
7.9.1 Mechanisms of chemical weathering, 158
7.9.2 Solubility of Silica, 159
7.9.3 Equilibria in the system K₂O–Al₂O₃–SiO₂–H₂O, 161
7.10 Summary, 164
7.11 Recapitulation, 165
7.12 Questions, 165

8 Oxidation–Reduction Reactions, 167
8.1 Definitions, 167
8.2 Voltaic cells, 168
8.2.1 Zinc–hydrogen cell, 168
8.2.2 Standard hydrogen electrode and standard electrode potential, 170
8.2.3 Zinc–copper cell, 170
8.2.4 Electromotive series, 171
8.2.5 Hydrogen–oxygen fuel cell, 172
8.3 Relationship between free energy change (ΔG) and electrode potential (E) – the Nernst equation, 173
8.4 Oxidation potential (Eₘ), 174
8.5 The variable pe, 175
8.6 Eh–pH stability diagrams, 176
8.6.1 Stability limits of surface water, 176
8.6.2 Procedure for construction of Eh–pH diagrams, 179
8.6.3 Geochemical classification of sedimentary redox environments, 182
8.7 Role of microorganisms in oxidation–reduction reactions, 182
8.7.1 Geochemically important microorganisms, 182
8.7.2 Examples of oxidation–reduction reactions mediated by microorganism, 184
8.8 Oxidation of sulfide minerals, 186
8.8.1 Mediation by microorganisms, 186
8.8.2 Oxidation of pyrite, 186
8.8.3 Acid mine drainage, 187
8.8.4 Biodeaching, 188
8.8.5 Biooxidation, 190
8.8.6 Biofiltration, 190
8.9 Oxygen fugacity, 191
8.9.1 Oxygen buffers, 191
8.9.2 Oxygen fugacity–sulfur fugacity diagrams, 192
8.10 Summary, 193
8.11 Recapitulation, 194
8.12 Questions, 194

9 Kinetics of Chemical Reactions, 197
9.1 Rates of chemical reactions (R): basic principles, 197
9.1.1 Elementary and overall reactions, 197
9.1.2 Rate–law expression, 198
9.1.3 Integrated rate equations for elementary reactions, 199
9.1.4 Principle of detailed balancing, 201
9.1.5 Sequential elementary reactions, 202
9.1.6 Parallel elementary reactions, 203
9.2 Temperature dependence of rate constants, 204
9.2.1 The Arrhenius equation – activation energy, 204
9.2.2 Transition states, 206
9.3 Relationship between rate and free energy change of an elementary reaction (ΔGᵢ), 208
9.4 Catalysts, 209
9.4.1 Homogeneous catalysis, 209
9.4.2 Heterogeneous catalysis, 209
9.5 Mass transfer in aqueous solutions, 210
9.5.1 Advection–diffusion equation, 210
9.5.2 The temperature dependence of diffusion coefficient, 212
9.6 Kinetics of geochemical processes – some examples, 212
9.6.1 Diffusion-controlled and surface-controlled reaction mechanisms, 212
9.6.2 Dissolution and precipitation of calcite in aqueous solutions, 213
9.6.3 Dissolution of silicate minerals, 216
9.7 Summary, 218
9.8 Recapitulation, 219
9.9 Questions, 220
PART III ISOTOPE GEOCHEMISTRY, 223

10 Radiogenic Isotopes, 225

10.1 Radioactive decay, 225
 10.1.1 Abundance and stability of nuclides, 225
 10.1.2 Mechanisms of radioactive decay, 226

10.2 Principles of radiometric geochronology, 227
 10.2.1 Decay of a parent radionuclide to a stable daughter, 227
 10.2.2 Basic equation for radiometric age determination, 228
 10.2.3 Decay series, 230

10.3 Selected methods of geochronology, 230
 10.3.1 Rubidium–strontium system, 230
 10.3.2 Samarium–neodymium system, 232
 10.3.3 Uranium–thorium–lead system, 233
 10.3.4 Rhenium–osmium system, 240
 10.3.5 Potassium (40K)–argon (40Ar) method, 241
 10.3.6 Argon (40Ar)–argon (39Ar) method, 243
 10.3.7 Carbon-14 method, 244

10.4 Isotope ratios as petrogenetic indicators, 245
 10.4.1 Strontium isotope ratios, 246
 10.4.2 Neodymium isotope ratios, 246
 10.4.3 Combination of strontium and neodymium isotope ratios, 247
 10.4.4 Osmium isotope ratios, 248

10.5 Summary, 249
10.6 Recapitulation, 250
10.7 Questions, 250

11 Stable Isotopes, 253

11.1 Isotopic fractionation, 254
 11.1.1 Causes of isotopic fractionation, 254
 11.1.2 Mechanisms of isotopic fractionation, 255
 11.1.3 Fractionation factor, 255
 11.1.4 The delta (δ) notation, 256
 11.1.5 Calculation of the fractionation factor from δ values, 256

11.2 Types of isotopic fractionation, 258
 11.2.1 Equilibrium isotope effects, 258
 11.2.2 Kinetic isotope effects, 259

11.3 Stable isotope geothermometry, 259
 11.3.1 Oxygen isotope geothermometry, 260
 11.3.2 Sulfur isotope geothermometry, 262

11.4 Evaporation and condensation processes, 262
 11.4.1 Evaporation of ocean water, 262
 11.4.2 Condensation of water vapor, 263
 11.4.3 Meteoric water line, 265

11.5 Source(s) of water in hydrothermal fluids, 265
11.6 Estimation of water: rock ratios from oxygen isotope ratios, 267

11.7 Sulfur isotopes in sedimentary systems, 268
 11.7.1 Bacterial sulfate reduction (BSR), 269
 11.7.2 Thermochemical sulfate reduction (TSR), 270
 11.7.3 Sulfur isotopic composition of seawater sulfate through geologic time, 270
 11.7.4 Open versus closed sedimentary systems with respect to sulfate and sulfide, 271
 11.7.5 Sulfur isotope ratios of sulfides in marine sediments, 272

11.8 Mass-independent fractionation (MIF) of sulfur isotopes, 273
11.9 Iron isotopes: geochemical applications, 275
 11.9.1 Fractionation of iron isotopes, 275
 11.9.2 Abiotic versus biotic precipitation of Fe minerals in banded iron formations, 276

11.10 Summary, 277
11.11 Recapitulation, 278
11.12 Questions, 278

PART IV THE EARTH SUPERSYSTEM, 281

12 The Core–Mantle–Crust System, 283

12.1 Cosmic perspective, 283
 12.1.1 The Big Bang: the beginning of the universe, 283
 12.1.2 Nucleosynthesis: creation of the elements, 285
 12.1.3 The Solar System, 290
 12.1.4 Meteorites, 292
 12.1.5 Solar System abundances of the elements, 294
 12.1.6 Origin of the Solar System: the planetesimal model, 295

12.2 Evolution of the Earth, 296
 12.2.1 The internal structure of the Earth, 296
 12.2.2 Bulk Earth composition, 299
 12.2.3 The primary geochemical differentiation of the proto-Earth: formation of the Earth’s core and mantle, 301
 12.2.4 Formation and growth of the Earth’s crust, 306

12.3 Generation and crystallization of magmas, 310
 12.3.1 Geochemical characteristics of primary magmas, 310
 12.3.2 Behavior of trace elements during partial melting of source rocks, 311
 12.3.3 Behavior of trace elements during magmatic crystallization, 316
 12.3.4 Chemical variation diagrams, 318
 12.3.5 Rare earth elements, 318

12.4 Geochemical discrimination of paleotectonic settings of mafic volcanic suites, 319
 12.4.1 Tectonomagmatic discrimination diagrams, 319
 12.4.2 Spider diagrams, 321
13 The Crust–Hydrosphere–Atmosphere System, 326

13.1 The present atmosphere, 326
 13.1.1 Temperature and pressure distribution in the atmosphere, 326
 13.1.2 Photochemical reactions in the atmosphere, 329
 13.1.3 The Ozone layer in the stratosphere, 329
 13.1.4 Composition of the atmosphere, 331

13.2 Evolution of the Earth’s atmosphere over geologic time, 333
 13.2.1 Origin of the atmosphere, 333
 13.2.2 A warm Archean Earth: the roles of carbon dioxide and methane, 335
 13.2.3 Oxygenation of the atmosphere, 336
 13.2.4 The Great Oxidation Event (GOE), 337
 13.2.5 A model for the evolution of the atmosphere, 342
 13.2.6 The Phanerozoic atmosphere, 343

13.3 Air pollution: processes and consequences, 344
 13.3.1 Depletion of stratospheric ozone – the “ozone hole”, 344
 13.3.2 Smogs, 347
 13.3.3 Acid deposition, 350
 13.3.4 Greenhouse gases and global warming, 351

13.4 The hydrosphere, 354
 13.4.1 Composition of modern seawater, 354
 13.4.2 Mass balance of dissolved constituents in seawater, 356

13.5 Evolution of the oceans over geologic time, 357
 13.5.1 Origin of the oceans, 357
 13.5.2 Oxidation state of the oceans, 360
 13.5.3 Composition of the oceans, 361

 13.6.1 The carbon cycle, 363
 13.6.2 The oxygen cycle, 365
 13.6.3 The nitrogen cycle, 366
 13.6.4 The sulfur cycle, 367
 13.6.5 The phosphorus cycle, 368

13.7 Summary, 368

13.8 Recapitulation, 369

13.9 Questions, 370

APPENDIX 1 Units of measurement and physical constants, 372
APPENDIX 2 Electronic configurations of elements in ground state, 374
APPENDIX 3 First ionization potential, electron affinity, electronegativity (Pauling scale), and coordination numbers of selected elements, 377
APPENDIX 4 Thermodynamic symbols, 379
APPENDIX 5 Standard state (298.15 K, 10^5 Pa) thermodynamic data for selected elements, ionic species, and compounds, 382
APPENDIX 6 Fugacities of H2O and CO2 in the range 0.5–10.0 kbar and 200–1000°C, 396
APPENDIX 7 Equations for activity coefficients in multicomponent regular solid solutions, 398
APPENDIX 8 Some commonly used computer codes for modeling of geochemical processes in aqueous solutions, 400
APPENDIX 9 Solar system abundances of the elements in units of number of atoms per 10^6 silicon atoms, 402
APPENDIX 10 Answers to selected chapter-end questions, 403

References, 406
Index, 431