Index

absolute zero of temperature, 2, 60
acid, 139
degree of dissociation, 139
deposition (acid rain), 350–351
dissociation constants, 139–40
polyprotic acid, 140
mine drainage, 187–8
rain, 147
strong and weak acids, 139
acidity of mine waters, 149
acidity of solutions, 148
activation energy, 205, 206, 212
activity
 apparent equilibrium constant, 52
 equilibrium constant, 52
 ideal crystalline solution (local charge balance model), 100–101
 ideal pure gas and gas mixture, 87
 ideal solid solution (mixing-on-site model), 98–9
 ideal solution, 96
 nonideal crystalline solution, 101
 nonideal gas, 88
 nonideal gas mixture, 89, 90
 nonideal solution, 97
activity coefficients, 90
 equations for asymmetric regular solutions, 102
 equations for nonideal gas mixture, 90
 equations for symmetric regular solution, 102
 practical activity coefficient, 135
 rational activity coefficients, 97, 101
activity coefficients in aqueous solutions
 Davies equation, 138, 139
 Debye–Hückel equation, 137
 Debye–Hückel limiting law, 137, 139
 extended Debye–Hückel equation, 137, 139
 Pitzer model, 139
 Truesdell–Jones equation, 139
activity–composition relationships
 H2O–CO2 fluids, 90, 91
advection–diffusion equation, 212
aerosol, 332
affinity of a reaction, 208
air pollutants, 344, 345
alkalinity, 149, 356
alkalinity of seawater, 356
Allende meteorite, 294
aluminium avoidance principle, 101
ammonia assimilation, 366
ammonification, 367
andesite model of continental growth, 308
anode, 169
anomalous lead, 239
anoxic, 182, 336
anoxygenic photosynthesis, 336
Antarctica ozone hole, 345, 347
antineutrino, 226
antiparticle, 226
Archean–Proterozoic boundary, 309
Arrhenius equation, 205, 209
assimilatory Fe(III) reduction, 276
assimilatory nitrate reduction, 367
assimilatory sulfate reduction, 269
asteroids, 291
asthenosphere, 298
astronomical unit, 291
atmosphere, 283
atomic orbitals, 13, 15, 16, 37, 40
atomic radius, 44
atoms
 atomic mass unit (amu), 14
 atomic number, 13, 21
 atomic orbitals, 13, 15, 16
 atomic weight, 14, 21
 Bohr radius, 11
electrons, 10
excited state, 17
ground state, 17
neutron number, 13
neutrons, 10
nucleus, 10
protons, 10
auxiliary thermodynamic functions, 61
Avogadro’s number, 14
bacterial sulfur reduction (BSR), 268–70
balancing oxidation–reduction reactions, 168
banded iron formation (BIF), 276, 337, 339
barometric law, 329
Basaltic Achondrite Best Initial (BABI), 246
base, 139
degree of dissociation, 139
dissociation constant, 139
strong and weak bases, 140
Big Bang theory, 283
bioleaching, 188–9
biological oxidation, 339
biomineralization, 156
biooxidation, 189–90
biosphere, 283
black dwarf, 287
blocking (or closure) temperature, 243
Bode’s Law, 291
Boltzmann constant, 208
bond energy, 38
bond length, 24, 38
Born–Haber cycle, 29, 30
branched decay, 227, 241
bulk distribution coefficient, 314, 315, 317
bulk Earth composition, 300–301
bulk silicate Earth (BSE), 300
Bushveld Complex, 240, 241, 249
calcite–aragonite puzzle
aragonite sea, 155–6, 362
calcite sea, 155–6, 362
calcium–aluminum-rich inclusions (CAIs), 292
calculation of activities for minerals and mineral constituents
clinopyroxene, 100–101, 117
garnet, 99–100, 116, 117
olivine, 99, 102–3
orthopyroxene, 117
plagioclase, 101, 118
calculation of Fe²⁺ and Fe³⁺ from total Fe data, 125
Canfield ocean, 360
carbonate alkalinity, 149
carbonate compensation depth (CCD), 157–8
carbonate-associated sulfur (CAS), 343
carbonic acid system
closed system, 147–8
dissociation of carbonic acid, 147–9
formation from CO₂ and H₂O, 53, 159
open system, 147
catalysis
heterogeneous catalysis, 209
homogeneous catalysis, 209
catalytic chain reaction, 346
catalytic converters in automobile exhausts, 210
cathode, 169
Chapman mechanism, 329
charge balance equation, 147
chemical bonds
covalent bond, 23, 37, 46
hydrogen bond, 23, 44–5
ionic bond, 23, 24, 46
metallic bond, 23, 43, 46
nonpolar covalent bonds, 42
polar covalent bonds, 42
van der Waals bond, 23, 43, 44, 46
chemical equilibrium, 51–2, 64, 110, 141
chemical potential
definition, 81–2
variation with composition, 84–6
variation with pressure, 84
variation with temperature, 84
chemical variation diagrams, 318
chlorofluorocarbon (CFC) compounds, 346
chondrites, 292
chondritic uniform reservoir (CHUR), 246, 247
chondrules, 292
Clapeyron equation, 72
classification of sedimentary redox environments, 182
Clausius–Clapeyron equation, 72
close-packed structures, 43
coefficient of compressibility at constant
temperature, 66
coefficient of thermal expansion at constant
pressure, 66
comet, 291, 359
common lead, 236
common-ion effect, 144, 154
compatible elements, 312
complex ions, 145, 146
composition of modern atmosphere, 331, 332
composition of modern seawater, 354
concentration units
molality, 3
molarity, 3
mole fraction, 3
mole number, 79
normality, 3
condor, 233, 234
condensation sequence, 296
congruent dissolution, 159
connate water, 265
constituents, 79
continental crust, 297, 299, 306–7
composition of continental crust, 307–8
crustal growth rate, 308–10
growth of continental crust, 308
coordination number, 25–27, 98
octahedral coordination, 26
square planar coordination, 27
tetrahedral coordination, 26
trigonal coordination, 27
cosmic abundance of elements, 294–5
cosmic background radiation, 284
covalent bonding, 37–43
covalent compounds, 24
covalent radius, 38
critical radius ratio, 27
crystal-field theory
 crystal-field splitting parameter, 33, 34
 crystal-field stabilization energy, 33, 34
 octahedral site-preference energy, 35
Dalton’s law of partial pressures, 53
decay constant, 227, 242
decay series, 230
decompression melting, 310
dehydration reaction, 72, 91
denitrification, 367
detrital uraninite, 337, 342
diadochy, 31
diamond, 71
dielectric constant, 134
diffusion coefficients, 211, 212
discordia, 235
replaced equilibria, 107, 110
disproportionation, 270, 273
dissimilatory iron metabolism, 276
dissimilatory sulfate reduction, 269
dissolution of silicate minerals, 216–18
dissolved constituents in seawater, 355, 356
Dobson unit, 345
Doppler effect, 284
Duhem’s law of partial pressures, 57, 95
dwarf planets, 290–291

Earth’s core, 296–300
ecliptic plane, 291
El–pH diagrams
 Fe–O–H2O system, 179–82
 fields of natural aqueous environments, 178
 stability limits of surface water, 176–7
electric dipole moment, 42
electrolytes, 135
electrolyte solution, 135
electromotive force (EMF), 169
 electromotive series, 171–2
electron affinity, 18, 20, 21, 23, 42
electron capture, 227
electron configuration, 32, 41, 42
electron negativity, 42
electropositive, 42
ionic character of a bond, 42, 43
elementary reactions, 198, 201
 parallel reactions, 203–4
 sequential elementary reactions, 202
 endothermic reactions, 54, 68, 206
 energy of crystallization, 29
 enthalpy, 61
 entropy, 59–60
 configurational entropy, 61
 residual entropy, 61
 third-law entropy, 60
 epsilon parameter, 247
 equation of state, 57
 compensated Redlich–Kwong (CORK) equation, 89
 modified Redlich–Kwong (MRK) equation, 88
 Redlich–Kwong (RK) equation, 58
 van der Waals (VDW) equation, 58
 equilibrium constant
definition, 51–2
 GAPES geobarometers, 117–18
 Garnet–biotite geothermometry, 120–121
 Garnet–clinopyroxene geothermometer, 119–20
 GRAIL geobarometer, 116–17
 jadeite–analbite reaction, 113
 magnetite–ilmenite thermometry and oxygen barometry, 122–3
 oxidation–reduction reaction, 169–70
 pressure dependence, 112–13
 relation to free energy of reaction, 86
 temperature dependence, 111–12
 equilibrium isotopic effects, 258
 equivalent weight, 3
 errors in geothermobarometry
 random errors, 127
 systematic errors, 127
 euxinic, 182, 360
 evaporation and condensation processes, 262, 263–4
 evaporites, 357, 360, 361
 exact differential, 56
 excess functions, 79, 98, 101, 102
 excess siderophile element problem, 303
 exchange reactions, 107, 108, 110, 118, 259
 exosphere, 329
 exothermic reactions, 54, 68, 206
 expressions for chemical potential
 ideal gases, 87
 ideal gas mixtures, 87
 ideal solutions involving condensed phases, 92, 96, 135
 nonideal gases, 88
 nonideal gas mixtures, 89
 nonideal solutions involving condensed phases, 97, 135
 expressions for Gibbs free energy
 ideal crystalline solution, 99
 ideal solution, 92
 nonideal crystalline solution, 101
 nonideal solution, 92, 98
 regular solution, 92
 exsolution, 93
 extensive properties, 55
 extent of reaction, 69, 83

Faraday constant, 173
Fick’s laws of diffusion
 first law, 211
 second law, 212
fluid inclusions
fluid inclusion assemblage, 128
homogenization temperature, 129
trapping pressure, 128
trapping temperature, 128
free energy
Gibbs free energy, 61, 63
Helmholtz free energy, 61
free energy (change) of a reaction, 67–8, 208
free radicals, 329
fugacity, 88, 89
fugacity coefficient, 88
galaxies, 284
dobarometry, 107
deochemical coherence, 31
deochemical (or biogeochemical) cycles,
 362–8
carbon cycle, 362
dendogenic components, 362
exogenic components, 362
nitrogen cycle, 363
oxygen cycle, 363
phosphorus cycle, 364
sulfur cycle, 363
deochron, 238
deologic time, 296
teologic Time Scale, 3–4
deonosphere, 283
deeothermometers and geobarometers, 108–9
deeothermometry, 107
tiant impact hypothesis, 302, 334
deebs free energy function, 74
deebs phase rule, 55–7, 83
components (or phase components), 55, 79
phases, 55
variance (degrees of freedom), 56, 57
Geebs–Duhem equation, 83–4
deeiations, 344
dlobal energy balance, 352
dlobal warming, 351
delchosmidt's classification of elements, 45–7
datmosphere elements, 45, 46
diophile elements, 45, 47
chalcophile elements, 45, 46
dithophile elements, 45, 46
 siderophile elements, 45, 46
gram-equivalent weight, 150
deeosphere gases, 351, 353
dound state electron configuration, 17, 21
Aufbau principle, 17
dlectron acceptors, 20, 21
dlectron donors, 20, 21
Hund's rule of maximum multiplicity, 17, 34
lanthanide contraction, 25
metalloids, 21
noble elements, 20, 21
octate rule, 21
screening (or shielding) effect, 20
transition elements, 18, 33–5
Haber–Bosch process, 366
half-life of a reaction, 200
Harker diagram, 318
dee heat capacity, 61
heat capacity at constant pressure, 61–3
heat capacity at constant volume, 61, 62
specific heat capacity, 61
heat content function, 74
dee heavy bombardment period, 335
Deen's law, 95–7
Deen's law constant, 95, 96
Hess's law of heat summation, 29
heterogeneous reaction, 197
high field strength elements (HFSE), 312
Dees–Houtermans model, 237
homogeneous reaction, 197
H2O system
 ice point, 2
 steam point, 2
 triple point, 2, 57
Dee's Law, 284
Huronian glaciation, 335
hybrid orbitals, 39, 40
hydrated ionic radius, 137
hydration, 134
hydrofluorocarbon compounds, 347
hydrogen burning
 CNO cycle, 287
 proton–proton chain, 287
hydrosphere, 283, 354–62
hydrothermal fluids, 263–6
ideal crystalline solutions
 local charge balance (LCB) model, 100–101
 mixing-on-sites (MOS) model, 98–100
ideal gas law, 53, 57, 87
incompatible elements, 312, 313, 315, 317, 319
incongruent dissolution, 159
initial ratio, 231, 246
intensive properties, 55
interaction (or Margules) parameters, 101–3
internal energy, 59
ion activity product, 145
ionic bonding, 24–31
ionic compounds, 24, 134
ionic potential, 42, 312
ionic radius, 24, 26
ionic strength, 136
effective ionic strength, 145
stoichiometric ionic strength, 145
ionic substitution, 31–3
Delchosmidt's rules, 31, 32
Ringwood's rules, 32
ionization potential, 18, 20, 21, 23
ionosphere, 329
iron isotopes, 275–7
isochron, 231, 232, 236, 238, 241
isoelectronic series, 25
isomorphism, 36
isotopes, 14
isotopic fractionation, 254
causes of isotopic fractionation, 255–6
delta notation, 256
fractionation factor, 255–8
mechanisms of isotopic fractionation, 255
types of isotopic fractionation, 258
Jovian planets, 291
kaolinite line, 266
Karman line, 326, 327
kinetic isotopic effects, 258
kinetic models of reactions, 213
Kuiper belt, 291, 359
late heavy bombardment, 359
Late Precambrian glaciation, 335, 359
late veneer, 303–5, 359
lattice energy, 28–30
law of mass action, 51–3, 141
laws of thermodynamics, 58–9
first law of thermodynamics, 58–9
second law of thermodynamics, 59–60
third law of thermodynamics, 60
zeroth law of thermodynamics, 59
Le Chatelier’s principle, 54, 209
Lewis fugacity rule, 89, 96
ligand-field theory, 33
liquid immiscibility, 316
lithosphere, 298
low field strength elements (LFSE), 312
lysocline, 158
Madelung constant, 28, 29
magma ocean, 304–5, 333
magma series
calc-alkaline (high-alumina) series, 311, 312
tholeiitic series, 311, 312
magmatic crystallization
equilibrium crystallization, 316
fractional crystallization (Rayleigh fractionation), 316, 318
magmatic water, 265
majorite, 298
mantle, 296–9
mantle array, 248
mass balance equations, 145
mass transfer in aqueous solution
advection, 210–212
diffusion, 210–212
mass-dependent fractionation, 253, 254
mass-independent fractionation (MIF), 273–5, 338
mesosphere, 326, 327
metabolism
assimilatory metabolism (or anabolism), 183
dissimilatory metabolism (or catabolism), 183
metamorphic water, 265
metastability, 71
meteoric water, 264, 266
meteoric water line, 265
meteorites, 292–4
meteoroids, 291, 292
meteors, 292
methanogenesis, 341
methods of geochronology
acidophiles, 184
aerobes, 183
anaerobes, 183
\(^{40}\text{Ar}–^{39}\text{Ar}\) method, 243–4
autotrophs, 184
chemoheterotrophs, 184
\(^{14}\text{C}\) method, 244–5
eukaryotes, 183
halophiles, 184
heterotrophs, 184
hyperthermophiles, 183
K–Ar method, 241–3
mesophiles, 183
microorganisms, 182–3
photoautotrophs, 184
photoheterotrophs, 184
prokaryotes, 183
psychrophiles, 184
Rb–Sr system, 230–332
Re–Os system, 240–241
Sm–Nd system, 232–3
thermoacidophiles, 184
thermophiles, 183
U–Th–Pb system, 233–40
missing xenon paradox, 333
mixing properties of solutions, 92–3
mixing ratio, 328
model age, 229, 235, 239
Mohorovicic Discontinuity (Moho), 297
molecular orbitals, 37–40
antibonding orbitals, 40, 41
bonding orbitals, 40, 41
delta orbitals, 39, 40
pi orbitals, 39, 40
sigma orbitals, 39, 40
molecular orbital theory, 37, 38
Nernst distribution coefficients, 96, 311, 313
Nernst equation, 173–5
Index

neutrino, 226
nitrification, 366
nitrogen fixation, 366
normalization concentrations, 321
nuclear statistical equilibrium, 288
nucleosynthesis, 285–90
 Big Bang nucleosynthesis, 285
 cosmic ray spallation, 290
 explosive nucleosynthesis, 289
 stellar nucleosynthesis, 285–9

oceanic crust, 297, 299, 306
Odo–Harkins rule, 226, 295, 318
open and closed sedimentary systems, 271
order of a reaction, 199
 first-order reaction, 200–201
 second–order reaction, 200, 201
 zeroth order reaction, 200
Ordinary lead, 239
overall reaction, 197
oxic, 182
oxidation, 122, 159
oxidation half-reaction, 168
oxidation (or valence) number, 168
oxidation of pyrite, 186–7
oxidation (or redox) potential (Eh), 174
oxidation state, 167
oxidation–reduction reactions, mediated by microorganisms, 184–6
 aerobic degradation (respiration), 184, 364
 anaerobic degradation (respiration), 185
 methanogenesis, 185
oxidizing agent (or electron acceptor), 168
oxygen
 buffers, 191–2
 fugacity, 191
 isotope geothermometry, 259–61
ozone
 budget, 350
 layer, 327, 330
 shield, 345
partial melting models
 equilibrium (or batch) partial melting, 313–15
 fractional (or Rayleigh) partial melting, 314, 315
 modal and nonmodal melting, 314–15
partial molar properties, 80–81
Pauli’s exclusion principle, 16
pe, 175–6
Periodic Table, 18–19, 26
petrogenetic grid, 107
pe–pH diagrams, 176
phase diagrams, 71
 activity–activity diagram (K-silicate minerals), 161–4
 Eh–pH diagrams (oxidation–reduction reactions), 176–9
 oxygen fugacity–sulfur fugacity diagram (Fe–S–O system), 192–3
 pe–pH diagrams (oxidation–reduction reactions), 176
 pressure–temperature diagram (MgO–H2O system), 73
 pressure–temperature diagrams (calcite–aragonite), 73–4
 pH of an aqueous solution, 54
 equivalence between pH and pe, 176
 pH buffer, 150–151
 phosphorite deposits, 341
 photic zone, 339
 photochemical oxidation, 339
 photochemical reaction, 329
 photodissociation, 329, 346, 350, 365
 photolysis, 274, 329
 photosphere, 293, 294
 photosynthesis, 184, 245, 339, 341, 364
 phototrophs, 336
 Planck’s Constant, 11, 208
 planetary accretion, 296
 heterogeneous accretion, 302, 303
 homogeneous accretion, 302
 planetesimals, 296
 planets, 291
 plate tectonics, 310, 311, 313
 polarization, 28, 42
 polygenic hypothesis, 286
 polymorphism, 36
 polymorphs
 Al2SiO5 polymorphs, 114
 CaCO3 polymorphs, 151
 SiO2 polymorphs, 159
 precipitation of calcite
 abiotic precipitation, 154–5
 biological precipitation, 156–7
 kinetics of dissolution and precipitation, 213–15
 role of magnesium, 215–16
 present atmospheric level (PAL), 336, 342
 primary (or primordial) atmosphere, 333
 primary geochemical differentiation, 301–2
 primary magmas, 310, 312
 primordial lead, 237
 principle of detailed balancing, 201
 principle of faunal succession, 3
 principle of original horizontality, 3
 principle of superposition, 3
 production and destruction of ozone, 329–30
 proto-atmosphere, 334
 proto-ocean, 334
 pyrolite, 298, 299
quantum numbers
 azimuthal quantum number, 14, 15
 magnetic quantum number, 14, 15
 principal quantum number, 11, 14, 15
 spin quantum number, 16
radiative forcing, 353–4
radioactive decay mechanisms, 225
 alpha decay, 227
 beta decay, 226
 nuclear fission, 227
radioactivity, 226
radiogenic isotopes, 245
radiometric age determination, 227–8
 conditions to be satisfied, 229
equation, 227–8
radius ratio, 27
Raoult’s law, 78, 95–97
rate constants, 52, 199, 205
rate equations for elementary reactions, 200
rate laws, 199
rate of a chemical reaction, 198
rate of hydration of carbon dioxide, 204
rate of oxygen to ozone conversion, 203
Rayleigh distillation equation, 264, 271
reaction boundary, 71, 114
reaction mechanisms, 198–9
reaction quotient, 173
reactive intermediate, 202
red beds, 339
red giant, 287, 288
reduced partition functions, 260–261
reducing agent (or electron acceptor), 168
reduction, 122
reduction half-reaction, 168
reference state, 64, 84, 136
residence times, 331, 332, 355
reverse weathering, 357
reversible process, 60
salt, 140
saturation index, 144
secondary atmosphere, 333
silicon–oxygen tetrahedron, 31
single-stage lead, 237
SI system of units, 1–2
 CGS system, 1
 MKS system, 1
smog, 347–50
 photochemical smog, 349–50
 sulfurous smog, 348–9
snowball Earth, 339
Solar Nebula, 291, 294, 296
Solar System, 283, 290, 297
solids
 amorphous, 9
 crystalline, 9
glass, 9
solid solution, 36–7, 98
solubility, 141
 barite, 141
calcite, 151–4
 fluorite, 141–2
gypsum, 142–3
 silica, 159–61
solubility product, 141
solute, 135
solutions
 ideal solid solution, 98
 ideal solution, 92, 95
 nonideal solution, 92, 94, 97
 regular solution, 92, 102
 solvus equilibria, 107, 109
calcite–dolomite, 126
Spinder diagrams, 321–3
stability constant, 145
stable isotope geothermometry, 255, 260
stable isotopes, 225, 253, 254
Stair-step pattern of siderophile elements, 303, 304
standard (state) chemical potential, 84
 state function, 53, 56, 61
standard (state) electrode potential, 170–171, 173
standard hydrogen electrode (SHE), 170
standard state
 aqueous solute, 135
 ideal pure gas, 84, 85, 87
 nonideal gas mixture, 89
 nonideal pure gas, 88
standard state enthalpy (of formation), 65
standard state free energy (of formation), 65
steady (or stationary) state, 202
Stillwater Layered Complex, 232, 233, 249
stratosphere, 326, 327
structural classification of silicate minerals, 31
Sudbury Nickel Irruptive, 232
sulfidic ocean, 343
sulfur isotope composition through geologic time, 270–271
sulfur isotope geothermometry, 262
sulfur isotope ratios in marine sediments, 272
sulfur-reducing bacteria, 269
supernova, 286, 288
tectonic discrimination diagrams, 319–21
temperature scale
 Celsius scale, 2
 Fahrenheit scale, 3
 Kelvin scale, 2
terrestrial planets, 291
thermal inversion, 350
thermochemical sulfate reduction, 268, 270
thermocline, 355
thermodynamic data tables, 74
thermodynamic equilibrium
 chemical potential of constituents, 82–3
 free energy of reaction, 68–9
thermodynamics, 51
thermodynamic system, 54, 55, 283
 adiabatic system, 55, 58
closed system, 55, 58, 60
heterogeneous system, 55
homogeneous system, 55
isolbaric system, 55
isochoric system, 55
isolated system, 55, 58
isothermal system, 55
open system, 55, 58
thermosphere, 326, 327
transient steam atmosphere, 333
transition state (or activated)
complex, 206
transition state theory, 206–8
triple point
 Al2SiO5 polymorphs, 114
 H2O system, 57
troposphere, 326, 327, 347
uncertainty principle, 12
uniform reservoir (UR), 248
univariant curve, 71, 114
univariant reaction, 107–9, 114
valence bond theory, 37, 38
van der Waals radius, 38, 44
voltaic (or galvanic) cells
 hydrogen–oxygen fuel cell, 172
 zinc–copper cell, 170–171
 zinc–hydrogen cell, 168–70
volume integral, 66
water:rock ratios, 265, 267
wave mechanics, 14–15
white dwarf, 287
whole-cell reaction, 171
zoned zircon crystals, 234