Contents

List of Contributors xix
About the Editors xxv
Preface xxvii

1 Introduction to Natural Gas Monetization 1

Nimir O. Elbashir

1.1 Introduction 1
1.2 Natural Gas Chain 2
1.3 Monetization Routes for Natural Gas 4
 1.3.1 Large Industries and Power Plants 4
 1.3.2 Small/Medium Industries and Commercial Users 6
 1.3.3 Residential 7
 1.3.4 Natural Gas Export 7
 1.3.4.1 Pipeline Export 7
 1.3.4.2 Liquefied Natural Gas (LNG) 8
1.4 Natural Gas Conversion to Chemicals and Fuels 9
1.5 Summary 13

Acknowledgment 13

References 13

2 Techno-Economic Analyses and Policy Implications of Environmental Remediation of Shale Gas Wells in the Barnett Shales 15

Rasha Hasaneen, Andrew Avalos, Nathan Sibley, and Mohammed Shammaa

2.1 Introduction 15
2.1.1 Framing the Issues: The Energy and Environmental Equation 15
2.1.2 Well Lifecycle Analysis and Environmental Impacts 17
2.2 Shale Gas Operations 18
 2.2.1 Summary of Shale Gas Operations 18
 2.2.2 Hydraulic Fracturing and Water Impacts 19
 2.2.2.1 Fresh Water Consumption 20
 2.2.2.2 Transportation and Disposal of Produced Water 20
 2.2.3 Fuel Usage 21
 2.2.4 Seismicity and Seismic Implications 21
2.3 The Barnett Shale 22
2.4 Environmental Remediation of Greenhouse Gas Emissions Using Natural Gas as a Fuel 22
 2.4.1 Single Fuel, Bi-Fuel, or Dual Fuel 23
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.2 Forms of Natural Gas</td>
<td>23</td>
</tr>
<tr>
<td>2.4.3 Environmental Impact</td>
<td>24</td>
</tr>
<tr>
<td>2.5 Environmental Remediation of Water and Seismic Impacts</td>
<td>24</td>
</tr>
<tr>
<td>2.5.1 Waterless Fracturing</td>
<td>24</td>
</tr>
<tr>
<td>2.5.1.1 Liquefied Petroleum Gas Fracturing</td>
<td>25</td>
</tr>
<tr>
<td>2.5.1.2 Carbon Dioxide Fracturing</td>
<td>25</td>
</tr>
<tr>
<td>2.5.2 Recycling Produced Water</td>
<td>26</td>
</tr>
<tr>
<td>2.5.2.1 Fracturing with Produced Water</td>
<td>26</td>
</tr>
<tr>
<td>2.5.2.2 Treating Wastewater</td>
<td>27</td>
</tr>
<tr>
<td>2.6 Theoretical Calculations</td>
<td>28</td>
</tr>
<tr>
<td>2.6.1 Current Operations</td>
<td>28</td>
</tr>
<tr>
<td>2.6.1.1 Key Assumptions</td>
<td>28</td>
</tr>
<tr>
<td>2.6.1.2 Fuel Usage by Well</td>
<td>28</td>
</tr>
<tr>
<td>2.6.1.3 Annual Fuel Usage and Costs</td>
<td>30</td>
</tr>
<tr>
<td>2.6.1.4 Greenhouse Gas Emissions from Fuel Burn</td>
<td>30</td>
</tr>
<tr>
<td>2.6.1.5 Hydraulic Fracturing Impacts</td>
<td>31</td>
</tr>
<tr>
<td>2.6.2 Operations after Environmental Remediation of Greenhouse Gases</td>
<td>31</td>
</tr>
<tr>
<td>2.6.2.1 Conversion to Dual Fuel Systems</td>
<td>31</td>
</tr>
<tr>
<td>2.6.2.2 Environmental Improvements</td>
<td>32</td>
</tr>
<tr>
<td>2.6.3 Operations after Environmental Remediation of Hydraulic Fracturing</td>
<td>32</td>
</tr>
<tr>
<td>2.6.3.1 Waterless Fracturing</td>
<td>32</td>
</tr>
<tr>
<td>2.6.3.2 Environmental Improvements</td>
<td>34</td>
</tr>
<tr>
<td>2.6.4 Net Present Value and Expected Capital Outlay</td>
<td>34</td>
</tr>
<tr>
<td>2.7 Results and Discussion</td>
<td>35</td>
</tr>
<tr>
<td>2.7.1 Improved Operations with Environmental Remediation of Greenhouse Gas Emissions</td>
<td>35</td>
</tr>
<tr>
<td>2.7.1.1 Capital Investment Analysis</td>
<td>37</td>
</tr>
<tr>
<td>2.7.1.2 Broader Economic and Environmental Benefits</td>
<td>38</td>
</tr>
<tr>
<td>2.7.2 Improved Operations with Alternative Fracturing Fluids</td>
<td>39</td>
</tr>
<tr>
<td>2.7.2.1 Cost of Alternative Fracturing Fluids</td>
<td>41</td>
</tr>
<tr>
<td>2.7.2.2 Availability of Salt Water Disposal Sites</td>
<td>42</td>
</tr>
<tr>
<td>2.7.2.3 Fracturing with CO₂ vs. LPG</td>
<td>43</td>
</tr>
<tr>
<td>2.7.2.4 Flowback and Recycling of Fracturing Fluid</td>
<td>45</td>
</tr>
<tr>
<td>2.7.2.5 Seismic Implications</td>
<td>46</td>
</tr>
<tr>
<td>2.7.2.6 Unlocking Arid and Water Sensitive Shales</td>
<td>46</td>
</tr>
<tr>
<td>2.7.2.7 Broader Economic and Environmental Benefits</td>
<td>47</td>
</tr>
<tr>
<td>2.7.3 Environmental and Microeconomic Impacts of Combined Technology Alternatives</td>
<td>47</td>
</tr>
<tr>
<td>2.8 Opportunities for Future Research</td>
<td>49</td>
</tr>
<tr>
<td>References</td>
<td>50</td>
</tr>
<tr>
<td>3 Thermodynamic Modeling of Natural Gas and Gas Condensate Mixtures</td>
<td>57</td>
</tr>
<tr>
<td>Epaminondas Voutsas, Nefeli Novak, Vasiliki Louli, Georgia Pappa, Eirini Petropoulou, Christos Boukouvalas, Eleni Panteli, and Stathis Skouras</td>
<td>57</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>57</td>
</tr>
<tr>
<td>3.2 Thermodynamic Models</td>
<td>61</td>
</tr>
<tr>
<td>3.2.1 Peng-Robinson EoS</td>
<td>61</td>
</tr>
<tr>
<td>3.2.2 PC-SAFT EoS</td>
<td>61</td>
</tr>
</tbody>
</table>
3.2.3 UMR-PRU 63
3.3 Prediction of Natural Gas Dew Points 64
3.3.1 Synthetic Natural Gases 65
3.3.2 Real Natural Gases 67
3.4 Prediction of Dew Points and Liquid Dropout in Gas Condensates 70
3.4.1 Synthetic Gas Condensates 71
3.4.2 Real Gas Condensates 72
3.4.2.1 Characterization of the Plus Fraction 73
3.4.2.2 Dew Point Predictions 75
3.5 Case Study: Simulation of a Topside Offshore Process 75
3.6 Concluding Remarks 81
References 82

4 CO₂ Injection in Coal Formations for Enhanced Coalbed Methane and CO₂ Sequestration 89
Ahmed Farid Ibrahim and Hisham A. Nasr-El-Din
4.1 Coalbed Characteristics 89
4.2 Adsorption Isotherm Behavior 91
4.3 Coal Wettability 95
4.4 CO₂ Injectivity 101
4.5 Pilot Field Tests 106
4.6 Conclusions 108
References 108

5 Fluid Flow: Basics 113
Paul A. Nelson, Todd J. Willman, and Vinay Gadekar
5.1 Introduction 113
5.2 Thermodynamics of Fluids 116
5.2.1 First Law of Thermodynamics 117
5.2.2 Second Law of Thermodynamics 118
5.2.3 Heat Capacity 118
5.2.4 Properties of a Perfect Gas 119
5.2.5 Equations of State 120
5.3 Fundamental Equations of Fluid Mechanics 121
5.3.1 Continuity Equation 121
5.3.2 Momentum Balance 122
5.3.3 Bernoulli’s Equation 123
5.3.4 Mechanical Energy Balance 124
5.3.5 Total Energy Balance 125
5.3.6 Speed of Sound 125
5.4 Incompressible Pipeline Flow 126
5.4.1 Reynolds Number 126
5.4.2 Friction Factor 127
5.4.3 K-Factors for Fittings 127
5.4.4 Fouling Factor 128
5.4.5 Other Head Loss and Gain Terms 128
5.4.6 Example Application 129
5.5 Laminar Flow 130
5.6 Compressible Pipeline Flow 132
5.6.1 Introductory Remarks 132
5.6.2 Isothermal Flow 132
5.6.3 Bernoulli Approximation 133
5.6.4 Isentropic Flow 133
5.6.5 Polytropic Flow 134
5.6.6 Adiabatic Flow 134
5.6.7 Choked Flow 137
5.6.8 Rationalization with Bernoulli’s Equation 138
5.6.9 Example Application 139
5.7 Comparison with Crane Handbook 139

References 142

6 Fluid Flow: Advanced Topics 143
Paul A. Nelson, Moye Wicks III, Todd J. Willman, and Vinay Gadekar

6.1 Introduction 143
6.2 Notation 143
6.3 Piping Networks 145
6.3.1 Network Flow 145
6.3.2 Stagnation Pressure and Temperature 146
6.3.2.1 Incompressible 146
6.3.2.2 Isothermal 147
6.3.2.3 Isentropic 148
6.3.2.4 Adiabatic 149
6.3.3 Flow Between Vessels 150
6.3.3.1 Incompressible 150
6.3.3.2 Compressible 150
6.3.4 The System of Equations 151
6.3.5 Example Application 151
6.4 Meters 152
6.4.1 Incompressible Flow Through a Meter 152
6.4.2 Compressible Flow Through a Meter 153
6.4.3 Individual Meter Types 155
6.4.3.1 Orifice Meter 155
6.4.3.2 Flow Nozzle 155
6.4.3.3 Venturi Tube 156
6.4.4 Choked Flow Through a Meter 156
6.4.4.1 Critical Pressure Ratio 157
6.4.4.2 Maximum Flow Rate 157
6.4.5 Example Problem 158
6.5 Control Valves 159
6.5.1 Incompressible Flow Through a Control Valve 159
6.5.2 Compressible Flow Through a Control Valve 159
6.5.3 Example Problem 161
6.6 Two-Phase Gas-Liquid Flow 161
6.6.1 Introductory Remarks 161
6.6.2 The Method of Dukler and Taitel 162
6.6.3 Pressure Drop in Two-Phase Flow 164
6.6.4 The Homogeneous Flow Model 165
6.6.5 Temperature Effects 166
Contents

6.6.6 Comment on the Effect of Change in Elevation 167
6.6.7 Isothermal Flow 167
6.6.8 Isentropic Flow 168
6.6.9 Adiabatic Flow 170
References 171

7 Use of Process Simulators Upstream Through Midstream 173

Justin C. Slagle

7.1 Introduction 173
7.1.1 The Origin of Hydrocarbon Process Simulation 173
7.1.2 What Is a Process Simulator? 174
7.2 Upstream 174
7.2.1 Down Hole PVT 175
7.2.2 Well Site 176
7.2.3 Pipelines 178
7.2.4 Compressor/Pump Stations 180
7.2.5 Methanol/Ethylene Glycol Injection 180
7.2.6 Tanks 182
7.3 Midstream 183
7.3.1 Amine Sweetening 184
7.3.2 Sulfur Recovery 184
7.3.3 Tail Gas Treatment 186
7.3.4 Sour Water Stripper 187
7.3.5 Incinerator/Flare 189
7.3.6 Glycol Dehydration 189
7.3.7 NGL Recovery 190
7.3.8 NGL Fractionation 192
7.4 Going Further 192
Acknowledgement 196
References 196

8 Optimization of Natural Gas Network Operation under Uncertainty 197

Emmanuel Ogbe, Ali Elkamel, Michael Fowler, and Ali Almansoori

8.1 Introduction 198
8.2 Literature Review 199
8.3 Natural Gas Supply Chains 200
8.4 Optimization Model 202
8.4.1 Mathematical Notation 202
8.4.2 Considering Gas Quality in Natural Gas Production Operation 202
8.4.3 Model for the Natural Gas Network System 204
8.4.3.1 Model for the Sources 204
8.4.3.2 Model for Mixing Stations 205
8.4.3.3 Model for End Users 206
8.4.3.4 Pressure Model 206
8.4.3.5 Pipeline Performance Model 207
8.4.3.6 Compression Performance model 207
8.5 Computation Study 208
8.5.1 Implementation 208
8.5.2 Case Study and Description 208
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.6</td>
<td>Results and Discussion</td>
<td>209</td>
</tr>
<tr>
<td>8.7</td>
<td>Conclusions and Recommendations</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>Appendix</td>
<td>215</td>
</tr>
<tr>
<td>8.A.1</td>
<td>Stochastic Model for the Sources</td>
<td>216</td>
</tr>
<tr>
<td>8.A.2</td>
<td>Stochastic Model for Mixing Stations</td>
<td>216</td>
</tr>
<tr>
<td>8.A.3</td>
<td>Stochastic Model for End Users</td>
<td>217</td>
</tr>
<tr>
<td>8.A.4</td>
<td>Stochastic Pipeline Performance Model</td>
<td>217</td>
</tr>
<tr>
<td>8.A.5</td>
<td>Stochastic Compression Performance Model</td>
<td>217</td>
</tr>
<tr>
<td>9</td>
<td>A Multicriteria Optimization Approach to the Synthesis of Shale Gas Monetization Supply Chains</td>
<td>219</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>219</td>
</tr>
<tr>
<td>9.2</td>
<td>Methodology</td>
<td>220</td>
</tr>
<tr>
<td>9.3</td>
<td>Case Study</td>
<td>221</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Problem Statement</td>
<td>221</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Environmental and Safety Metrics</td>
<td>222</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Objectives of the Case Study</td>
<td>224</td>
</tr>
<tr>
<td>9.4</td>
<td>Case Study Results</td>
<td>224</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Feedstock</td>
<td>224</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Conversion Technologies</td>
<td>224</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Base Case Product Prices</td>
<td>225</td>
</tr>
<tr>
<td>9.4.4</td>
<td>Plant Costs and Capacity Limits</td>
<td>225</td>
</tr>
<tr>
<td>9.4.5</td>
<td>Base Case Solution</td>
<td>226</td>
</tr>
<tr>
<td>9.4.6</td>
<td>Reduced Methanol Price Case Results</td>
<td>227</td>
</tr>
<tr>
<td>9.4.7</td>
<td>Reduced Urea Price Case Results</td>
<td>229</td>
</tr>
<tr>
<td>9.4.8</td>
<td>Base Case Environmental Considerations</td>
<td>230</td>
</tr>
<tr>
<td>9.4.9</td>
<td>Base Case Safety Considerations</td>
<td>231</td>
</tr>
<tr>
<td>9.5</td>
<td>Conclusion</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>232</td>
</tr>
<tr>
<td>10</td>
<td>Study for the Optimal Operation of Natural Gas Liquid Recovery and Natural Gas Production</td>
<td>235</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>235</td>
</tr>
<tr>
<td>10.2</td>
<td>Methodology Framework</td>
<td>237</td>
</tr>
<tr>
<td>10.3</td>
<td>New Process Design for NGL Recovery</td>
<td>238</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Demethanizer</td>
<td>241</td>
</tr>
<tr>
<td>10.3.2</td>
<td>J-T Expansion</td>
<td>241</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Turboexpander</td>
<td>242</td>
</tr>
<tr>
<td>10.3.4</td>
<td>Refrigeration</td>
<td>242</td>
</tr>
<tr>
<td>10.3.5</td>
<td>Compression</td>
<td>244</td>
</tr>
<tr>
<td>10.4</td>
<td>Thermodynamic Analysis for Propane Refrigeration System</td>
<td>244</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Liquefaction Process Analysis</td>
<td>244</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Simulation Results and Thermodynamic Analysis</td>
<td>244</td>
</tr>
<tr>
<td>10.5</td>
<td>Optimization for Natural Gas Liquefaction</td>
<td>245</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Optimization Model Development</td>
<td>245</td>
</tr>
<tr>
<td>10.5.1.1</td>
<td>Objective Function</td>
<td>246</td>
</tr>
</tbody>
</table>
10.5.1.2 Pressure Ratio Constraints 247
10.5.1.3 Heat Transfer Constraints 247
10.5.1.4 Energy Balance Constraints 247
10.5.1.5 Other Constraints 249
10.5.2 Optimization Results 249
10.5.2.1 Optimization Results of Propane Cycle 249
10.5.2.2 Optimization Results of Compressor and Condenser 249
10.5.2.3 Demethanizer Pressure and Ethane Recovery 251
10.6 Conclusion 254
Acknowledgements 254
Abbreviations 254
Nomenclature 255
References 256

11 Modeling and Optimization of Natural Gas Processing and Production Networks 259
Saad A. Al-Sobhi, Munawar A. Shaik, Ali Elkamel, and Fatih S. Erenay

11.1 Introduction 259
11.2 Background and Process Description 260
11.2.1 Natural Gas Supply Chain 260
11.2.2 Natural Gas: Proven Reserves 261
11.2.3 Natural Gas: Utilization 261
11.2.3.1 LNG Process 263
11.2.3.2 GTL Process 263
11.2.3.3 Methanol Process 264
11.3 Simulation of Natural Gas Processing and Production Network 265
11.3.1 Problem Statement 266
11.3.2 Steady State Process Simulation of Natural Gas Processing and Production Network 266
11.3.2.1 LNG Process Simulation 266
11.3.2.2 GTL Process Simulation 271
11.3.2.3 Methanol Process Simulation 272
11.4 LP Model for Natural Gas Processing and Production Network 274
11.4.1 LP Model Formulation 278
11.4.2 Illustrative Case Study for LP Model 279
11.4.2.1 Scenario 1: Network Optimization (Base Case) 279
11.4.2.2 Scenario 2: Natural Gas Feedstock Flowrate Increment 279
11.4.2.3 Scenario 3: Natural Gas Feedstock and Product Price Increments 279
11.5 MILP Model for Design and Synthesis of Natural Gas Upstream Processing Network 280
11.5.1 Process Descriptions of Major Processing Units 282
11.5.1.1 Stabilization Unit (A) 282
11.5.1.2 Acid Gas Removal Unit (B) 282
11.5.1.3 Sulfur Recovery Unit (C) 283
11.5.1.4 Dehydration Unit (D) 283
11.5.1.5 NGL Separation Unit (E) 283
11.5.1.6 Fractionation Unit (F) 284
11.5.2 Problem Statement and Solution Strategy 284
11.5.3 MILP Model Formulation 285
11.5.4 Illustrative Case Study 286
11.6 MILP Model for Design and Synthesis of Natural Gas Production Network 288
11.6.1 MILP Model Formulation 290
11.6.2 Case Study 293
11.6.2.1 Economic Planning Using Formulated MILP Model 295
11.6.2.2 Sustainable Planning Using Formulated Model 295
11.7 Sustainability Assessment of Natural Gas Network 296
11.7.1 Case Study 1 297
11.7.2 Case Study 2 298
11.7.3 Case Study 3 298
11.8 Conclusion 300
References 300

12 Process Safety in Natural Gas Industries 305
Monir Ahammad and M. Sam Mannan

12.1 Introduction 305
12.2 Incident History 306
12.2.1 Cleveland, Ohio, 1944 306
12.2.2 Skikda, Algeria, 2004 308
12.2.3 San Bruno, California, 2010 308
12.2.4 Kaohsiung, Taiwan, 2014 309
12.3 Process Safety Methods 309
12.4 Equipment and Plant Reliability 312
12.5 Facility Siting and Layout Optimization 315
12.5.1 Separation Distances 318
12.5.2 Advances in Facility Siting and Layout Optimizations 318
12.5.3 Lessons Learned from Past Incidents 322
12.6 Relief System Design 323
12.7 Toxic and Heavy Gas Dispersion 324
12.8 Fire and Explosion 326
12.9 Effective Mitigation System 329
12.10 Regulatory Program and Management Systems for Process Safety and Risks 332
12.11 Concluding Remarks 335
Nomenclature 336
References 338

13 Thermodynamic Modeling of Relevance to Natural Gas Processing 341
Georgios M. Kontogeorgis and Eirini Karakatsani

13.1 Introduction to the Problem 341
13.2 The Models 343
13.2.1 GERG-Water 343
13.2.2 CPA 344
13.2.3 Van der Waals-Platteeuw Hydrate Model 346
13.2.4 Model’s Pure Component Parameters and Comments on Database 347
13.3 Systems Studied and Selected Results: Part 1. No Chemicals 348
13.3.1 Binary Systems of NG Components with Water 348
13.3.2 Ternary Systems of NG Components with Water 351
13.3.3 Systems with ≥ 4 NG Components and Water 355
13.4 Systems Studied and Selected Results: Part 2. With Chemicals 360
13.4.1 Systems of NG Components with Water and Alcohols 360
13.4.2 Systems of NG Components with Water and Glycols 367
13.5 Conclusions and Future Perspectives 372
Nomenclature 374
Acknowledgment 376
References 376

14 Light Alkane Aromatization: Efficient use of Natural Gas 379
Swarom R. Kanitkar and James J. Spivey
14.1 Introduction 379
14.1.1 Shale Gas Revolution 379
14.1.2 Composition of Natural Gas 380
14.2 Aromatization of Light Alkanes 381
14.2.1 Thermodynamics and Short History 381
14.2.2 Existing Technologies 383
14.2.3 Role of Metals (Ga, Pt, Mo, Zn, Re) 385
14.2.3.1 Mo/ZSM-5 386
14.2.3.2 Pt/H-ZSM-5 387
14.2.3.3 Ga/H-ZSM-5 387
14.2.3.4 Re/H-ZSM-5 388
14.2.3.5 Zn/H-ZSM-5 389
14.2.3.6 Promoters 391
14.2.4 Effect of Pore Structure (ZSM-5, ZSM-8, ZSM-11, ZSM-12) 392
14.2.5 Effect of Acidity (Si/Al Ratio etc.) 393
14.3 Future Perspective 394
References 397

15 Techno-Economic Analysis of Monetizing Shale Gas to Butadiene 403
Ecem Özinan and Mahmoud M. El-Halwagi
15.1 Introduction 403
15.2 Process Description 404
15.3 Techno-Economic Analysis 406
15.4 Conclusions 406
References 411

16 Fractionation of the Gas-to-Liquid Diesel Fuels for Production of On-Specification Diesel and Value-Added Chemicals 413
Mostafa Shahin, Shaik Afzal, and Nimir O. Elbashir
16.1 Introduction 413
16.2 Experimental Study to Measure Properties of GTL Diesel for Different Specifications 416
16.2.1 Distillation 418
16.2.2 Atmospheric Distillation Analysis 419
16.2.3 Carbon Distribution 419
16.2.4 Density Analysis 419
16.2.5 Viscosity Analysis 419
16.2.6 Flash Point Analysis 420
16.2.7 Cloud and Pour Points Analysis 420
16.3 Experimental Study Results and Discussion 420
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.3.1</td>
<td>GTLDieselFractionation</td>
<td>420</td>
</tr>
<tr>
<td>16.3.2</td>
<td>AtmosphericDistillation</td>
<td>420</td>
</tr>
<tr>
<td>16.3.3</td>
<td>Carbon Distribution for GTLDiesel Heavy Cuts</td>
<td>422</td>
</tr>
<tr>
<td>16.3.4</td>
<td>Carbon Distribution for GTLDiesel Light Cuts</td>
<td>422</td>
</tr>
<tr>
<td>16.3.5</td>
<td>DensityAnalysis</td>
<td>422</td>
</tr>
<tr>
<td>16.3.6</td>
<td>ViscosityAnalysis</td>
<td>423</td>
</tr>
<tr>
<td>16.3.7</td>
<td>Flash Point Analysis</td>
<td>425</td>
</tr>
<tr>
<td>16.3.8</td>
<td>Cloud and Pour Point Analysis</td>
<td>425</td>
</tr>
<tr>
<td>16.3.9</td>
<td>Cetane Index Calculation</td>
<td>426</td>
</tr>
<tr>
<td>16.4</td>
<td>Mathematical Models for Properties-Composition Relationship</td>
<td>427</td>
</tr>
<tr>
<td>16.5</td>
<td>Summary and Conclusion</td>
<td>434</td>
</tr>
</tbody>
</table>

Chapter 17

An Energy Integrated Approach to Design a Supercritical Fischer-Tropsch Synthesis Products Separation and Solvent Recovery System

Tala Katbeh, Nimir O. Elbashir, and Mahmoud El-Halwagi

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1</td>
<td>Introduction</td>
<td>439</td>
</tr>
<tr>
<td>17.1.1</td>
<td>Block 1: Syngas Generation (Natural Gas Reformer)</td>
<td>439</td>
</tr>
<tr>
<td>17.1.2</td>
<td>Block 2: Fischer-Tropsch Synthesis</td>
<td>440</td>
</tr>
<tr>
<td>17.1.2.1</td>
<td>Conventional FT Reactors</td>
<td>441</td>
</tr>
<tr>
<td>17.1.3</td>
<td>Introduction on the Utilization of Supercritical Fluids in the FT Synthesis</td>
<td>442</td>
</tr>
<tr>
<td>17.1.3.1</td>
<td>Block 3: Products Upgrading</td>
<td>442</td>
</tr>
<tr>
<td>17.2</td>
<td>Approach and Methodology</td>
<td>444</td>
</tr>
<tr>
<td>17.2.1</td>
<td>The FT Reactor Conditions</td>
<td>445</td>
</tr>
<tr>
<td>17.2.2</td>
<td>The Process Design Approach</td>
<td>445</td>
</tr>
<tr>
<td>17.3</td>
<td>Results and Discussion</td>
<td>447</td>
</tr>
<tr>
<td>17.3.1</td>
<td>Scenario 1: Separation of the Heavy Components First</td>
<td>447</td>
</tr>
<tr>
<td>17.3.2</td>
<td>Alternate Separation Design for Scenario 1</td>
<td>450</td>
</tr>
<tr>
<td>17.3.3</td>
<td>Scenario 2: Separation of the Water First</td>
<td>452</td>
</tr>
<tr>
<td>17.3.4</td>
<td>Scenario 3: Separation of the Vapor and Liquid Components and Use of 3-phase Separator to Recover Water, Solvent, and Syngas</td>
<td>455</td>
</tr>
<tr>
<td>17.4</td>
<td>Conclusion</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>Acknowledgements</td>
<td>461</td>
</tr>
</tbody>
</table>

Chapter 18

Multi-Scale Models for the Prediction of Microscopic Structure and Physical Properties of Chemical Systems Related to Natural Gas Technology

Konstantinos D. Papavasileiou, Manolis Vasileiadis, Vasileios K. Michalis, Loukas D. Peristeras, and Ioannis G. Economou

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>463</td>
</tr>
<tr>
<td>18.2</td>
<td>Natural Gas Pipeline Transportation: Modeling Gas Hydrates</td>
<td>467</td>
</tr>
<tr>
<td>18.3</td>
<td>Modeling Porous Media in Separation and Storage Procedures</td>
<td>470</td>
</tr>
<tr>
<td>18.3.1</td>
<td>Modeling Kerogens Porosity: A Case Study</td>
<td>472</td>
</tr>
<tr>
<td>18.4</td>
<td>Molecular Simulation of Downstream Natural Gas Processing: The GTL Technology</td>
<td>476</td>
</tr>
<tr>
<td>18.4.1</td>
<td>Investigations at the Quantum Level</td>
<td>476</td>
</tr>
<tr>
<td>18.4.1.1</td>
<td>Methods and Models</td>
<td>476</td>
</tr>
<tr>
<td>18.4.1.2</td>
<td>Methane Conversion to Syngas</td>
<td>477</td>
</tr>
<tr>
<td>18.4.1.3</td>
<td>Syngas Conversion to Hydrocarbons</td>
<td>478</td>
</tr>
</tbody>
</table>
18.4.1.4 Solvation Effects 479
18.4.2 Moving Upscale: Modeling FTS Kinetics, Kinetic Monte Carlo 480
18.4.3 Classical Approaches: Molecular Simulation at Larger Size and Time Scales of the FTS Process 481
18.5 Future Outlook 485
List of Abbreviations 487
Acknowledgements 488
References 488

19 Natural Gas to Acetylene (GTA)/Ethylene (GTE)/Liquid Fuels (GTL) The Synfuels International, Inc. Process 499
Kenneth R. Hall, Joel G. Cantrell, and Ben R. Weber, Jr
19.1 Introduction 499
19.2 Additive and Subtractive Processes 500
19.3 The Synfuels Process 501
19.4 Pilot Plant 503
19.5 Location, Location, Location 505
19.6 Biofuels 505
19.7 Conclusion 507

20 Natural-Gas-Based SOFC in Distributed Electricity Generation: Modeling and Control 509
Gerald S. Ogumerem, Nikolaos A. Diangelakis, and Efstratios N. Pistikopoulos
20.1 Introduction 509
20.1.1 Distributed Energy Production 510
20.1.2 Solid Oxide Fuel Cell (SOFC) Overview 511
20.1.3 Natural Gas Reforming 512
20.1.4 Direct Internal Reforming (DIR) SOFC 512
20.2 Mathematical Model 513
20.2.1 Mass Balance 514
20.2.2 Energy Balance 514
20.2.3 Kinetics 515
20.2.4 Electrochemistry 516
20.3 Simulation 517
20.4 Multiparametric Model Predictive Control (mpMPC) 519
20.4.1 PAROC Framework 519
20.4.1.1 Linear Model Approximation 519
20.4.1.2 mpMPC Controller Design 520
20.5 Closed-Loop Validation and Results 523
20.6 Conclusion 523
References 524

21 Design of Synthetic Jet Fuel Using Multivariate Statistical Methods 527
Rajib Mukherjee, Noof Abdalla, Nasr Mohamed, Marwan El Wash, Nimr O. Elbashir, and Mahmoud M. El-Halwagi
21.1 Introduction 527
21.2 Methodology 529
21.2.1 Characterization with Principal Component Analysis 529
21.2.2 Multivariate Regression Model for Blend Property Correlation 531
21.2.2.1 PLS for Linear Regression 531
21.2.2.2 Support Vector Machine (SVM) for Nonlinear Regression 533
21.3 Results and Discussions 534
21.3.1 Optimal Blend Selection Using Ternary Diagram 534
21.3.2 Optimal Blend Selection Using Multivariate Statistics 535
21.3.2.1 Contribution of Different Hydrocarbon Components 535
21.3.2.2 Composition Property Correlation 537
21.3.2.3 Reliability Prediction Using Score Plot 538
21.3.3 Experimental Verification of Model Predicted Data 540
21.4 Conclusions 543
Acknowledgements 543
References 543

Index 545