Index

a
- *ab initio* molecular dynamics (AIMD) 479, 480
- *ab initio* wavefunction methods 476–477
- accelerated molecular dynamics (aMD) 486
- acrylonitrilebutadiene-styrene resins 403
- additive technology 500
- adiabatic flow
 - stagnation pressure 149
 - two-phase gas-liquid flow 170–171
- adiabatic model 134–137
- adiponitrile 403
- adsorption isotherm 91–94
- Advanced Research Project Agency–Energy (ARPA–E) 471
- air contaminants 305
- Air Products (AP-X™) 242
- Algorithm for continuous/integer global optimization of nonlinear equations (ANTIGONE) 208
- alternative fracturing fluids
 - broader economic and environmental benefits 47
 - cost of 33, 41–42
 - CO₂ vs. LPG 43–45
 - environmental and microeconomic impacts 47–49
 - flowback and recycling 45–46
 - improved operations with 39–47
 - saltwater disposal sites, availability of 42–43
 - seismic implications 46
 - unlocking arid and water sensitive shales 46–47
- American Industrial Hygiene Association (AIHA) 305
- American Society for Testing and Materials (ASTM)
 - D975 requirements 415
 - D1655 specification 527, 528–529, 534, 535, 539, 540
 - D7566 specification 414, 527, 528
- amine sweetening 184
- Anderson-Schulz-Flory (ASF) distribution 271–272, 440, 441
- annualized fixed cost 225
- Anton Paar DMA 4100, 419, 422
- Anton Paar SVM3000 based on ASTM-D-7042 419, 423
- aqueous dew point temperature 341
- Aroforming process 384
- aromatization of light alkanes. see light alkane aromatization
- As-Low-As-Reasonably-Practicable (ALARP) 311
- ASPEN Plus
 - flowsheet 268–273
 - process 406, 445, 446
- atmospheric distillation analysis 419–421
- atoms-in-molecules (AIM) analysis 467
- auto-ignition temperature (AIT) 326, 327
- auto thermal reforming (ATR) 271, 272, 439, 440

b
- balance of plant (BOF) 511, 523
- Barnett shale 22
- Bernoulli’s equation
 - compressible pipeline flow 133
 - flow between vessels 150
 - fluid mechanics 123–124
 - rationalization with 138–139
- Berthelot-Lorentz combining rules 62
- beta-type zeolites 393
- bi-fuel/dual fuel 23
- billion standard cubic feet per day (BSCFD) 499
- binary interaction parameters (BIP) 60, 348–350
- binary systems of NG components with water 347–351
- biofuels 505–507
- blending/pooling problems 199
- boiling liquid expanding vapor explosion (BLEVE) 320, 326
- boiling water reactors (BWR) 289
- bond critical points (BCP) 467
- Brönsted acid sites (BAS) 383, 393–394
bubble-point curve 59
Buček’s method 342
butadiene
petrochemical industry 403
process description 404–405
production capacity of 403
steam cracking 403
techno-economic analysis 406–410
Butler Volmer reaction mechanism 515
Byogy renewables process 506–508

C
capital investment 23, 37–38
carbon dioxide fracturing 25–26
carbon number distribution 435, 436
carbon sequestration 34
catalytic steam reforming 509
C9-C14 cut 437
Cetane Index Calculation 426–427
Cetane number (CN) 427
C7+ fraction characterization 65, 70
Chabazite-type zeolite 393
chemical conversion routes 10
chemical production complex 230
Chevron Phillips’ Aromax process 384
chloroprene 403
choked flow
compressible pipeline flow 137–138
critical pressure ratio 157
maximum flow rate 157–158
meters 156–158
problem 158–159
circulating fluidized bed reactor 441
coalbed characteristics 89–91
coalbed methane (CBM) 4, 90
coal composition 90
coal formation
adsorption isotherm 91–94
coal wettability 95–100
enhanced coalbed methane (ECBM) process 89–90, 95, 101–103, 106
gas storage in 91, 92
pilot field tests 106–107
properties and the operation 108
Young’s modulus and Poisson’s ratio 105
coal salinity 90
coal softening 105–106
coal-to-liquid (CTL) technology 439
coal-water–air systems 95, 96
coal wettability 95–100
coarse-grained molecular dynamics (CGMD) 486
CO₂ emissions
and energy demand 16
environmental assessment 266
reduction 60, 81, 379, 466
CO₂ injectivity 89, 101–106, 108
cold filter plugging point (CFPP) 435
Colebrook-White equation 127, 128, 165
combined heat and power (CHP) 511–512
combined reforming of methane (CRM) 440
combining rule 1 (CR-1) 345
complete active space self-consistent field (CASSCF) 478
compressible pipeline flow
adiabatic model 134–137
application 139
Bernoulli approximation 133
choked flow 137–138
control valve 159–160
flow between vessels 150–151
isentropic flow 132–133
isothermal flow 132–133
meters 153–155
polytropic flow 134
rationalization with Bernoulli’s equation 138–139
stagnation pressure for 148
compression performance model 207–208, 217–218
compressor/pump stations 180
computational fluid dynamics (CFD) models 325
computer-aided process engineering (CAPE) 76
Co nanoparticles 466, 467
contact angle 95–100
continuity equation 121–122
continuous catalyst regeneration (CCR) technology 382
Control of Industrial Major Accident Hazards (CIMAH) regulations 332
control valve
compressible flow 159–160
incompressible flow 159
problem 161
conventional diesel fuels 414
conventional FT reactors 441
conventional GTL plant setup 452
CO₂ removal 17, 267, 282
CO₂ sequestration 89
and capture 47
environmental improvements 34
hydraulic fracturing 45
process 95
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crane Handbook</td>
<td>139–142</td>
</tr>
<tr>
<td>cricondenbar pressure (cricoP)</td>
<td>58, 59</td>
</tr>
<tr>
<td>cricondentherm temperature (cricoT)</td>
<td>59</td>
</tr>
<tr>
<td>criteria air pollutants (CAP)</td>
<td>222</td>
</tr>
<tr>
<td>critical point</td>
<td>59, 165, 176</td>
</tr>
<tr>
<td>critical pressure ratio</td>
<td>157</td>
</tr>
<tr>
<td>CSMGem</td>
<td>469</td>
</tr>
<tr>
<td>cubic equations of state (EoS)</td>
<td>59</td>
</tr>
<tr>
<td>effect of characterization</td>
<td>65</td>
</tr>
<tr>
<td>Cubic-Plus-Association equation of state (CPA)</td>
<td>344–346</td>
</tr>
<tr>
<td>CYCLAR process</td>
<td>384–385, 395</td>
</tr>
<tr>
<td>d</td>
<td></td>
</tr>
<tr>
<td>Darcy friction factor</td>
<td>124, 126, 127</td>
</tr>
<tr>
<td>decline stage, CBM</td>
<td>90</td>
</tr>
<tr>
<td>degrees of freedom</td>
<td>171, 479, 486</td>
</tr>
<tr>
<td>demethanizer pressure</td>
<td>241, 251–254</td>
</tr>
<tr>
<td>density functional theory (DFT)</td>
<td>470, 478</td>
</tr>
<tr>
<td>dewatering</td>
<td>17, 90</td>
</tr>
<tr>
<td>dew point curve (CBDE)</td>
<td>59</td>
</tr>
<tr>
<td>dew point temperatures</td>
<td>341–342</td>
</tr>
<tr>
<td>diesel fractionation</td>
<td>420, 421</td>
</tr>
<tr>
<td>di-ethyleneglycol (DEG)</td>
<td>368</td>
</tr>
<tr>
<td>direct internal reforming (DIR) SOFC</td>
<td></td>
</tr>
<tr>
<td>closed-loop validation results</td>
<td>523</td>
</tr>
<tr>
<td>energy balance</td>
<td>514</td>
</tr>
<tr>
<td>power demand</td>
<td>517</td>
</tr>
<tr>
<td>schematic diagram of</td>
<td>513</td>
</tr>
<tr>
<td>discharge coefficient</td>
<td>153–156</td>
</tr>
<tr>
<td>dispersion models</td>
<td>324</td>
</tr>
<tr>
<td>dissipative particle dynamics (DPD)</td>
<td>486</td>
</tr>
<tr>
<td>distributed energy production</td>
<td>511–512</td>
</tr>
<tr>
<td>Domino effects</td>
<td>321</td>
</tr>
<tr>
<td>Dow Fire & Explosion Index</td>
<td>231–232</td>
</tr>
<tr>
<td>down hole PVT</td>
<td>175–176</td>
</tr>
<tr>
<td>drilling rigs</td>
<td>27</td>
</tr>
<tr>
<td>dry reforming of methane (DRM) process</td>
<td>440</td>
</tr>
<tr>
<td>dual fuel systems</td>
<td></td>
</tr>
<tr>
<td>conversion to</td>
<td>31–32</td>
</tr>
<tr>
<td>environmental remediation</td>
<td>23</td>
</tr>
<tr>
<td>dual mixed refrigerant (DMR)</td>
<td>242</td>
</tr>
<tr>
<td>Dukler and Taitel method</td>
<td>162–164</td>
</tr>
<tr>
<td>dynamic viscosity</td>
<td>131</td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Elliott combining rule (ECR)</td>
<td>345</td>
</tr>
<tr>
<td>Emergency Response and Guidelines (ERPGs)</td>
<td>305</td>
</tr>
<tr>
<td>end users</td>
<td>206, 217</td>
</tr>
<tr>
<td>energy balance</td>
<td>132</td>
</tr>
<tr>
<td>energy gain</td>
<td>128</td>
</tr>
<tr>
<td>energy loss</td>
<td>128</td>
</tr>
<tr>
<td>energy needs</td>
<td>60</td>
</tr>
<tr>
<td>Energy-related Severe Accident Database (ENSAD)</td>
<td>306</td>
</tr>
<tr>
<td>enhanced coalbed methane (ECBM) process</td>
<td>89–90, 95, 101–103, 106</td>
</tr>
<tr>
<td>enthalpy</td>
<td>119</td>
</tr>
<tr>
<td>environmental remediation</td>
<td></td>
</tr>
<tr>
<td>emissions factors</td>
<td>32</td>
</tr>
<tr>
<td>of GHG</td>
<td></td>
</tr>
<tr>
<td>bi-fuel/dual fuel</td>
<td>23</td>
</tr>
<tr>
<td>environmental impact</td>
<td>24</td>
</tr>
<tr>
<td>forms</td>
<td>23–24</td>
</tr>
<tr>
<td>single fuel</td>
<td>23</td>
</tr>
<tr>
<td>improved operations with</td>
<td></td>
</tr>
<tr>
<td>broader economic</td>
<td>38–39</td>
</tr>
<tr>
<td>capital investment analysis</td>
<td>37–38</td>
</tr>
<tr>
<td>and environmental benefits</td>
<td>38–39</td>
</tr>
<tr>
<td>water and seismic impacts</td>
<td></td>
</tr>
<tr>
<td>recycling produced water</td>
<td>26–27</td>
</tr>
<tr>
<td>waterless fracturing</td>
<td>24–26</td>
</tr>
<tr>
<td>EPCON Process Innovator®</td>
<td>113, 129, 139, 143</td>
</tr>
<tr>
<td>EPCON’s CHEMPRO</td>
<td>152</td>
</tr>
<tr>
<td>equation of state (EoS)</td>
<td>59</td>
</tr>
<tr>
<td>process simulator</td>
<td>176</td>
</tr>
<tr>
<td>thermodynamics of fluids</td>
<td>120–121</td>
</tr>
<tr>
<td>equilibrium constant</td>
<td>96</td>
</tr>
<tr>
<td>ethane recovery</td>
<td>251–254</td>
</tr>
<tr>
<td>ethylene-to-butadiene portion</td>
<td>404, 405</td>
</tr>
<tr>
<td>Eulerian-Lagrangian spray model</td>
<td>331</td>
</tr>
<tr>
<td>f</td>
<td></td>
</tr>
<tr>
<td>Fanning friction factor</td>
<td>123</td>
</tr>
<tr>
<td>fault tree analysis (FTA)</td>
<td>314</td>
</tr>
<tr>
<td>first law of thermodynamics</td>
<td>117–118</td>
</tr>
<tr>
<td>Fischer-Tropsch synthesis (FTS)</td>
<td>11, 263–264, 413, 505</td>
</tr>
<tr>
<td>ASF distribution model</td>
<td>440, 441</td>
</tr>
<tr>
<td>cobalt-based catalyst</td>
<td>440</td>
</tr>
<tr>
<td>conventional FT reactors</td>
<td>441</td>
</tr>
<tr>
<td>iron-based catalyst</td>
<td>440</td>
</tr>
<tr>
<td>jet fuel</td>
<td>527</td>
</tr>
<tr>
<td>kinetics</td>
<td>480–481</td>
</tr>
<tr>
<td>larger size and time scales molecular simulation</td>
<td>481–485</td>
</tr>
<tr>
<td>LTFT and HTFT process</td>
<td>441</td>
</tr>
<tr>
<td>physical and morphological properties</td>
<td>466</td>
</tr>
<tr>
<td>SCF (see supercritical fluids (SCF) in FT synthesis)</td>
<td></td>
</tr>
<tr>
<td>supercritical fluids in</td>
<td>442</td>
</tr>
<tr>
<td>vs. Synfuels product distribution</td>
<td>502, 503</td>
</tr>
<tr>
<td>syngas conversion to hydrocarbons</td>
<td>478</td>
</tr>
</tbody>
</table>
fixed capital investment 226
fixed fluidized bed reactor 441
flash point analysis 420, 425
flow between vessels
 compressible flow 150–151
 incompressible flow 150
flow coefficient 159
flow nozzle 155–156
fluid flow
 compressible pipeline flow 132–139
 control valves 159–161
 Crane Handbook 139–142
 fundamental equations of fluid mechanics 121–126
 incompressible pipeline flow 126–129
 laminar flow 130–132
 meters 152–159
 notation 143–145
 piping networks 145–152
 thermodynamics of fluids 116–121
 two-phase gas-liquid flow 161–171
 units of measure 114–116
fluid mechanics
 Bernoulli’s equation 123–124
 continuity equation 121–122
 mechanical energy balance 124–125
 momentum balance 122–123
 speed of sound 125–126
 total energy balance 125
fluid velocity 146
fouling factor 128
fracture propagation 21
fresh water
 consumption 20
 management 29
friction factor 127
FTS. see Fischer–Tropsch synthesis (FTS)
fuel prices 30
fuel usage
 annual and costs 30
 transport vehicle 29
 by well 28–30
gallium 387–388
GasCalc software 344, 357
gas chromatograph (GC) 419
gas condensate
 real gas condensate (RGC) mixtures 72–75
 synthetic gas condensates 71–72
gas expansion coefficient 154
gas fracturing 25, 44
gas hydrates 467–470
gas storage, in coal formation 91, 92
gas subcooled process (GSP) 236
gas sweetening 465
gas-to-liquids (GTL) 11
 ASTM specifications 415
 best model tested 435–437
 carbon number distribution 435, 436
 composition-property prediction models
 calibrating model method 428, 429
 empirical model method 428–431
 model testing 428
 regression analysis 427–428
 conventional diesel fuels 414–415
 diesel specifications 415, 416
 diesel splitter downstream 436
 experimental study
 aim of 416–417
 atmospheric distillation analysis 419–421
 carbon distribution 419, 422
 Cetane Index Calculation 426–427
 cloud and pour points analysis 420, 425–426
 density analysis 419, 422–424
 diesel fractionation 420, 421
 distillation 418–419
 flash point analysis 420, 425
 methodology 417
 and modeling study 417
 standard testing methods 417, 418
 viscosity analysis 419, 423–424
 FT process 413
 FTS 440–442
 kinetics 480–481
 larger size and time scales molecular simulation 481–485
 and morphological properties 466
 physical properties 466
 GTL process 465–466
 hydrate formers 465
 hydrocarbon combination 414
 KMC 480–481
 new specification formulation 435
 process simulation 263–264, 271–272
 products upgrading 442–444
 quantum level investigations
 methane conversion to syngas 477–478
 methods and models 476–477
 solvation effects 479–480
 syngas conversion to hydrocarbons 478–479
 standard error 435
syngas 439–440, 466
ULSD 414
gas to oil ratio (GOR) 175
gas turbines 509
Gaussian model 325
general AMBER force field (GAFF) 473
generalized gradient approximation (GGA) 478
GERG-water
 correlation 342
 EoS 343–344
 pure component parameters 347–348
Gibbs energy (G^F) 64
Gibbs phase rule 171
global energy sources 2
glycol dehydration 76, 189–190
gPROMS® 517
grand canonical ensemble 481
grand canonical Monte Carlo (GCMC) simulations 347, 470, 474
gravimetric energy density 510, 511
greedy coverage algorithm 330
greenhouse gases (GHG) 198, 222, 509–510
 factors 31
 from fuel burn 30–31
 improved operations
 broader economic 38–39
 capital investment analysis 37–38
 and environmental benefits 38–39
shale gas wells 31–32
grouped carbon number model 417, 432–436
GTL fuels. see gas-to-liquids (GTL)

h
Hartree-Fock (HF) formalism 477
heat capacity 118–119
heat exchange reforming 439, 440
heavy ends recovered (HER) 450
heavy oils 500
high-temperature Fischer-Tropsch (HTFT) 289, 441
high-volatile A bitumen (hvAb) 95
high-volatile B bitumen (hvBb) 95
hockey stick 22
homogeneous flow model 165–166
Honeywell’s UniSim® 76
horizontal gas-liquid flow 162
Houdry process 403
HYDRAFLASH software 372
hydrate formers 465
hydrate point temperature 342

hydraulic fracturing 16–17
completions phase 19, 23
drilling phase 19, 23
flowback/recovery of 33–34
fresh water consumption 20
impacts 31
operations after environmental remediation of 32–34
production phase 19, 23
quality of water produced 27
and seismicity 18
shale gas operations 19–20
transportation and disposal of produced water 20
and water impacts 19–20
hydrocarbon compounds 70
hydrocarbon dew point (HCDP) 59
hydrocarbon liquid dropout 59
hydrocarbon mixture, PT phase diagram 58
hydrocarbon process simulation 173–174
hydrogenation reactor 504

i
ice formation 341
ideal gas law 119
incinerator/flare 189
incipient wetness impregnation (IWI) 386
incompressible pipeline flow
 application 129
 control valve 159
 flow between vessels 150
 fouling factor 128
 friction factor 127
 K-factors for fittings 127
 meters 152–153
other head loss and gain terms 128–129
Reynolds number 126
stagnation pressure 146–147
indirect internal reforming (IIR) 512
induced seismicity 21
initial boiling points (IBP) 418, 419
internal combustion engines (ICE) 509
internal reforming solid oxide fuel cell (IR SOFC) 512
International Electro-Technical Commission (IEC) 316
intrinsic rate of potential energy 222
isentropic exponent 119
isentropic flow
 compressible pipeline flow 133–134
 process 126
 rationalization with Bernoulli’s equation 138
isentropic flow (contd.)
stagnation pressure 148–149
two-phase gas-liquid flow 168–170
isoquality lines 58, 59
isothermal flow
compRESSible pipeline flow 132–133
rationalization with Bernoulli’s equation 138
stagnation pressure 147–148
two-phase gas-liquid flow 167–168

jet fuel 503, 527. See also synthetic jet fuel
Joule’s constant 114
Joule–Thomson (J–T) effect 237, 241–242

Kaiser Wilhelm Institute for Coal Research (KWI) 440
Kalman filter 520
kerogens porosity 472–476
K-factors for fittings 127, 150
Kihara potential 346, 373, 374
kinematic viscosity 415, 416, 418, 419, 423, 424, 431, 435, 436
kinetic Monte Carlo (KMC) methods 471, 480–481

Langmuir adsorption constant 346
Langmuir Hinshelwood kinetics 515
Langmuir pressure 103
Langmuir-type mathematical expressions 347
Layer of Protection Analysis (LOPA) 311
Le Chatelier equation 326
Lennard-Jones (LJ) dummy particle 472, 474
Lewis acid sites (LAS) 393–394
light alkane aromatization
acidity/Si/Al ratio 393–394
metals role
bifunctional mechanism 385, 386
Ga/H-ZSM-5 387–388
Mo/ZSM-5 386
promoters 391–392
Pt/H-ZSM-5 387
Re/H-ZSM-5 388–389
Zn/H-ZSM-5 389–391
natural gas composition 380–381
pore structure
ZSM-5 392
ZSM-8 393
ZSM-11 393
ZSM-12 393
shale gas revolution 379

thermodynamics and history 381–383
light GTL diesel cut 423, 437
limiting pore diameter (LPD) 473–474
linear alkyl benzene (LAB) 422, 437
Linear Combination Vidal Michelsen (LCVM) 60
linear programming (LP) model
case study 279–280
formulation 278
steady-state simulation 278
LINGO® 221, 229, 277, 279, 287, 295, 418, 428, 429, 431, 433
liquefaction process analysis 244
liquefied petroleum gas fracturing 25
liquid–liquid equilibrium (LLE) 483
liquid-phase hydrogenation 501
LNG process simulation 266–271
lower flammability limit (LFL) 326
low-temperature Fischer-Tropsch (LTFT) 289, 441, 466

Mach number 135, 136, 138, 147, 168
Markov method 314
Master equation (ME) 480
Mathias-Copeman parameters 64, 356
MATLAB 521
maximum covering location problem (MCLP) 330, 331
maximum flow rate 157–158
maximum water precipitation temperature 342
mean time between failure (MTBF)/mean time between failure (MTBF) 313
mechanical energy balance 124–125
membrane distillation 27
meters
choked flow through 156–158
compressible flow through 153–155
flow nozzle 155–156
incompressible flow through 152–153
orifice meter 155
problem 158–159
Venturi tube 156
methane 511
methane adsorption isotherm 92
methanol/ethylene glycol injection 180–182
methanol process simulation 272–274
methanol synthesis reactors 289
MFI zeolite 392
M-2 forming process 384
midstream sector
amine sweetening 184
glycol dehyration 189–190
incinerator/flare 189
NGL fractionation 192, 194
NGL recovery 190–193
processing 464
sour water stripper (SWS) 187–189
sulfur recovery unit (SRU) 184–186
tail gas treatment unit (TGTU) 186–187
million metric ton per annum (MMTA) 221, 229
minimal cut-sets 314
minimum source distance problem (MSDP) 330
mixed fluid cascade (MFC) 242
mixed-integer nonlinear programming (MINLP) 197, 221
case study 286–288, 293–296
formulation 285–286, 290–293
problem statement and solution strategy 284–285
process descriptions 282–284
mixed refrigerant cycles (MRC) 242
mixing stations 205–206, 216–217
molecular dynamics (MD) simulations 465
molecular mechanics (MM) 479
molecular simulations 465
Moller–Plesset second order perturbation theory (MP2) 477
molybdenum 386
momentum balance 122–123
monetization routes
advantages and disadvantages for 6–9
chain with different routes 10
export 7–9
large industries and power plants 4–6
residential 7
small/medium industries and commercial users 6–7
Monte Carlo (MC) simulation technique 465
mpMPC. see multiparametric model predictive control (mpMPC)
MSCFD reactor 504
MULTIFLASH software 361
multifunctional BaZrO₃ membrane 395
multifunctional membrane reactor model 395
multiparametric model predictive control (mpMPC) controller design 520–522
linear model approximation 519–520
multiparametric quadratic programming problem (mp-QP) 521
multitubular fixed bed reactor 441

naphtha 403, 404
natural gas
natural gas liquids (NGL) (contd.)
 simulation results 244–245
 recovery
 compression 244
 demethanizer 241
 GSP process for 239
 Joule–Thomson (J–T) effect 241–242
 midstream sector 190–193
 process simulation 195
 refrigeration 242–244
 turboexpander 242
 self-refrigeration cycle 237
natural gas reformer 439–440
natural gas reforming 512
natural gas to acetylene (GTA). see Synfuels process
natural gas to ethylene (GTE). see Synfuels process
natural gas to liquid fuels (GTL). see Synfuels process
net positive suction head (NPHS) 150
net present value (NPV) 34–35
network flow 145–146
network systems
 blending/pooling problems 199
 computation study 208–209
 gas quality in 202–204
 generic 201
 inflow qualities 204
 optimization model 202–208
 processing and production
 processing units 282–284
 proven reserves 261
 simulation
 problem statement 265
 steady state process 266–274
 superstructure representation 281, 284, 289–290
 supply chain management 260–261
 sustainability assessment of 296–300
 utilization
 GTL process 263–264
 LNG process 263
 methanol process 264–265
 results 209–212
 superstructure in Ontario 203
 supply chains 200–202
Newton–Raphson algorithm 127
nitrogen separation/rejection 288
nonlinear iterative partial least squares (NIPALS) algorithm 531, 532
nonlinear programming (NLP) model 199
non-random two-liquid Redlich-Kwong (NRTL-RK) property method 445

O
 offshore process simulation 75–81
 olefinic C_4 streams 384
 oligomerization unit 503, 504
 optimization, for NGL
 compressor and condenser 249–251
 demethanizer pressure and ethane recovery 251–254
 energy balance constraints 247–248
 heat transfer constraints 247
 objective function 246
 pressure ratio constraints 247
 propane cycle 249
 optimization model 202–208
 orifice meter 155
 overall risk ratings (ORR) 318
 oxidative coupling of methane 226

P
 parallel mixed refrigerant (PMR) 242
 PARametric Optimization and Control (PAROC) framework
 controller design 520–522
 linear model approximation 519–520
 partial least squares (PLS) 531–533
 partial oxidation (POX) 439–440
 particulate matter (PM) emissions 24
 PC-SAFT EoS 61–63
 peak gas stage, CBM 90
 peak oil 500
 Peng–Robinson (PR) EoS 59–61, 343
 pentasil-type zeolite 392
 Perdew-Wang exchange 478
 perfect gas properties 119–120
 perturbed-chain SAFT (PC-SAFT) 61–62
 Petrotest ADU4+ automatic distillation unit 419
 phase envelope 58, 179, 181
 pilot field tests 106–107
 pipeline modeling 178–180
 pipeline performance model 207
 pipeline transportation 467–470
 piping networks
 application 151–152
 flow between vessels 150–151
 network flow 145–146
 stagnation pressure 146–149
 system equations 151
 total pressure 146–149
 pitot tube 147
 platinum(Pt)-based catalysts 387
 Poiseuille flow 130
Poisson’s ratio 105
polybutadiene 403
polymer electrolyte membrane (PEMFC) fuel cell 511
polymeric membrane technology 471
polytropic flow 134, 138
potential of mean force (PMF) landscapes 480
pressure drop 151, 160
characteristics 165
entrance effect 164
surface tension errors 164
pressure-enthalpy flash 171
pressure swing adsorption (PSA) 289
pressure-temperature (PT) phase diagram 58
pressure-volume-temperature (PVT) 175
principal component analysis (PCA) 529–531
principal components regression (PCR) 531
process safety
effective mitigation system 329–332
equipment and plant reliability 312–315
facility siting and layout optimization advances in 318–322
lessons learned from past incidents 322–323
separation distances 318
fire and explosion 326–329
incident history
Cleveland, Ohio 1944, 306–308
Kaohsiung, Taiwan 2014, 309
San Bruno, California 2010, 308
Skikda, Algeria 2004, 308
incidents and evolution 334
methods 309–311
regulatory program and management systems 332–335
relief system design 323–324
toxic and heavy gas dispersion 324–325
US PSM and RMP regulations 335
process simulator
defined 174
hydrocarbon process simulation 173–174
midstream sector 183–192
upstream sector 174–183
produced water/wastewater fracturing with 26–27
recycling (see recycling produced water) transportation and disposal of 20
ProMax model tracking 177–178, 184, 188–190
propane refrigeration system
T-H diagram of 249
thermodynamic analysis
liquefaction process analysis 244
simulation results 244–245
R
Rackett model 445
radial distribution function (RDF) analysis 472, 484
Ras Laffan industrial complex in Qatar 499
real gas condensate (RGC) mixtures
assigning UNIFAC structure 75
dew point predictions 75
molar compositions of 74
plus fraction characterization of 72–75
splitting and lumping 73–74
real natural gas (RG)
compositions of 69
natural gas dew points 67–70
ReaxFF potential 481
recovery, NGL
compression 244
demethanizer 241
GSP process for 239
Joule–Thomson (J–T) effect 241–242
midstream sector 190–193
process simulation 195
refrigeration 242–244
turboexpander 242
recycling produced water
fracturing with produced water 26–27
treating wastewater 27
refrigeration system
liquefaction process analysis 244
simulation results 244–245
Reid vapor pressure (RVP) 76, 282
reserves-to-production (R/P) rates 2
residue recycle (RR) 237
retrograde region 59
reverse MC (RMC) 472
Revised Perdew-Burke-Ernzerhof functional (RPBE) 478
Reynolds number 126, 155, 165
Rhenium 388–389
Runge-Kutta-Gill method 171
S
safety instrumented functions (SIF) 311
safety relief valve 323
saltwater disposal sites 42–43
secondary vapor cloud explosions 326
second law of thermodynamics 118, 137
second order perturbation theory 62
Index

seismicity
and hydraulic fracturing 18
impacts 17, 24–27
induced 21
and seismic implications 21–22, 46
seismic response 21
self-refrigeration cycle 237
separation distances 315, 318, 319
shale gas extraction 17
shale gas monetization supply chains
case study
base case environmental considerations 230–231
base case product prices 225
base case safety considerations 231–232
base case solution 226–227
conversion technologies 224–225
environmental and safety metrics 222–223
feedstock 224
objectives of 224
plant costs and capacity limits 225–226
problem statement 221–222
reduced methanol price case results 227–229
reduced urea price case results 229–230
methodology 220–221
optimization formulation 220
superstructure representation 220, 221
shale gas operations
completions phase 19
drilling phase 19
fuel usage 21
hydraulic fracturing 19–20
seismicity and seismic implications 21–22
and water impacts 19–20
shale gas revolution 379
shale gas wells
Barnett shale 22
drilling and production processes 17
energy and environmental equation 15–17
environmental impacts 17–18
environmental remediation
of greenhouse gas emissions 31–32
of hydraulic fracturing 32–34
natural gas as a fuel 22–27
global energy demand 16
theoretical calculations
annual fuel usage and costs 30
conversion to dual fuel systems 31–32
environmental improvements 32, 34
and expected capital outlay 34–35
fuel usage by well 28–30
greenhouse gas emissions from fuel burn 30–31
hydraulic fracturing impacts 31
net present value (NPV) 34–35
waterless fracturing 32–34
well lifecycle analysis 17–18
Shell Middle Distillate Synthesis (SMDS) 437
Si/Al ratio zeolites 393–394
simplified Parish and Prausnitz approach (PP) 346, 347, 351
Sinopec Luoyang’s GTA technology 384
SLE. see solid-liquid equilibrium (SLE)
slickwater fracturing 20, 25, 31, 42
slurry bubble reactor 441
Soave equations 347
Soave-Redlich-Kwong (SRK) EoS 59–60, 121, 345, 352
SOFC. see solid oxide fuel cell (SOFC)
solid-liquid equilibrium (SLE) 346, 361, 362, 366
solid oxide fuel cell (SOFC)
BOF 511
closed-loop validation and results 523
cost-contributing factors 511, 512
DIR 512–513
mathematical model
electrochemistry 516–517
energy balance 514–515
hypothetical model 514
kinetics 515
mass balance 514
mpMPC 519–520
natural gas reforming 512
PEMFC 511
simulation 517–519
sour gas 282
sour water stripper (SWS) 187–189
speed of sound 125–126
stagnation pressure
adiabatic flow 149
incompressible 146–147
isentropic flow 148–149
isothermal flow 147–148
static pressure 147–148
statistical associating fluid theory (SAFT) 61–62
statistical associating fluid theory for fluids
interacting through potentials of variable range (SAFT-VR) 368
steam cracking process 403
steam methane reforming (SMR) 439
steam reforming (SR) 512
stochastic model
compression performance model 207–208, 217–218
for end users 206, 217
for mixing stations 205–206, 216–217
pipeline performance model 207
pressure model 206
for sources 204–205, 216
stochastic programming approach 197, 330
styrene-butadiene latex 403
styrene-butadiene rubber (SBR) 403
subtractive technology 500
sulfur recovery unit (SRU) 184–186
supercritical fluids (SCF) in FT synthesis
alternate separation design 450, 451–452
heavy components first separation 448–451
process design approach 445–447
product cuts 444–445
products upgrading 442–444
reactor conditions 445, 446
three-phase separator 455
vapor and liquid components separation 455–460
water first separation 452–456
support vector machine (SVM) 533–534
sustainability assessment 296–300
sweet gas 263, 282
Synfuels’ cracking of methane to ethylene 404
Synfuels process
additive technology 500
arrangement for 501, 502
biofuels 505–507
definition 500
vs. Fisher-Tropsch 502, 503
location 505
pilot plant 503–505
syngas 219
conversion to hydrocarbons 478–479
gas-to-liquids (GTL) 466
generation 439–440
synthetic gas condensates (SGC)
dew point predictions for 72
gas condensate 71–72
molar compositions of 71
synthetic jet fuel
ANN 528
experimental verification of model predicted data 540–542
Fischer-Tropsch synthesis process 527
hydrocarbon groups 528
multivariate regression model, blend property
correlation
PLS for linear regression model 531–533
SVM for nonlinear regression 533–534
optimal blend selection using multivariate statistics
composition property correlation 537–539
hydrocarbon component 535–536
reliability prediction using score plot 538–540
optimal blend selection using ternary diagram 534
PCA 529–531
SPK 527–528
synthetic natural gases (SNGs)
compositions of 67
natural gas dew points 65–67
synthetic paraffinic kerosene (SPK) 527–528
system equations, in piping networks 151

tail gas treatment unit (TGTU) 186–187
tanks 182–183
temperature climate grades of diesel fuel 435
temperature effects, in two-phase gas-liquid flow 166–167
temperature programmed desorption (TPD) 484
ternary systems of NG components with water 351–356
thermodynamic analysis, propane refrigeration
system 244–245
thermodynamic models
CPA 344–346
GERG-water
EoS 343–344
pure component parameters 347–348
NG components with water
and alcohols 360–367
binary systems of 347–351
and glycols 367–372
systems with ≥ 4 355–360
ternary systems of 351–356
PC-SAFT EoS 61–63
Peng-Robinson EoS 61
physical properties 57
software packages 343
UMR-PRU model 63–64
vdW-P hydrate model 346–347
thermodynamics of fluids
equation of state 120–121
first law of thermodynamics 117–118
heat capacity 118–119
perfect gas properties 119–120
second law of thermodynamics 118, 137
three-phase separator (3-PHASE2) 455
threshold limiting value (TLV) 318
total dissolved solids (TDS) 20
total energy balance 125
total organic content (TOC) 472
total pressure 146–149
transferable potentials for phase equilibria (TraPPE-UA) 479
transition state theory (TST) 471
true vapor pressure (TVP) 76
turboexpander 237, 242
two-phase gas-liquid flow
adiabatic flow 170–171
Dukler and Taitel method 162–164
effect of change 167
homogeneous flow model 165–166
isentropic flow 168–170
isothermal flow 167–168
pressure drop in 164–165
temperature effects 166–167

U
ultimately recoverable resources (URR) 509
ultra low sulfur diesel (ULSD) 414
unconventional gas 17
unity bond index quadratic exponential potential (UBI-QEP) method 480
universal force field (UFF) 479
universal gas constant 119
universal mixing rules (UMR) 64
Universal Mixing Rules—Peng Robinson UNIFAC (UMR-PRU) 60–64
UOP’s methane conversion to butadiene 404
upper flammability limit (UFL) 326
upstream sector
compressor/pump stations 180
down hole PVT 175–176
methanol/ethylene glycol injection 180–182
oil and gas processes 174
pipeline modeling 178–180
tanks 182–183
well site model 176–178

W
U.S. Chemical Safety and Hazard Investigation Board 323
U.S. Department of Energy 509
U.S. Energy Information Administration 509
U.S. National Transportation Safety Board (NTSB) 308
wastewater disposal wells 22
wastewater injection 21
wastewater management 29
wastewater treating 27
water and seismic impacts
recycling produced water 26–27
waterless fracturing 24–26
water condensation 341
water dew point temperature 341
waterless fracturing
assumptions 33
carbon dioxide fracturing 25–26
environmental remediation options 32–34
impact of 40–41
liquefied petroleum gas fracturing 25
water and seismic impacts 24–26
well lifecycle analysis 17–18
well site model 176–178
Weymouth formula 142

Y
Young’s modulus 105

Z
Z forming process 384
zinc 389–391
Zn-doped SSZ-13 393
Zn-doped ZSM-5 catalysts 396
ZSM-5 zeolite 383–385