Index

acetyltributyl citrate (ATBC), 185–6
active packaging (AP), 2. See also emitting/releasing systems; intelligent packaging; scavenging/absorbing systems with antioxidants, 21, 29–30, 220 classifications and components of, 15–16 EU regulations on, 257–8 FDA approval for, 15–16 HPP with components of, 27–9 intelligent packaging advancing, 275–6 NTP combined with, 24–33, 36, 279 NTP considerations with, 17, 33–6 with ozone treatment, 30–1 PET, 19 safety with, 257, 288 temperature control considerations with, 34–6 addition polymerization. See condensation polymerization adiabatic heat, 29, 34–6, 100, 102, 115 adipic acid, 109, 109f adjuvants and additives. See also antioxidants and antimicrobial agents; food additives FDA approved, for IR, 106t IR impact on polymer, 104–5 RPs from polymer, 164–6, 167t–80t, 181–90, 193, 196t, 197 safety considerations of, 113–15 trend of, 274 adulterations, 262, 263, 288. See also migration, chemical Africa, 225, 226, 232, 241t Allen, D. W., 169t, 173t, 192 allergic reactions, 92 alpha and beta particles, 3, 96 aluminum, 208t, 227 aluminum foil/polymeric structures, 113, 137, 145, 207–8 antifungal agents, 90–2 antimicrobial packaging application methods of, 45 application time frame for, 53, 53f aqueous ozone combined with, 54–7, 55f, 56f, 57f chlorine dioxide with, 57–8, 58f cold plasma treatments on, 138–9 cryogenic freezing with, 56–7, 57f direct application compared to, 44–5 edible, 45, 49–51, 50f films and coatings in, 44–5, 49–59, 50f, 51t, 52f, 53f, 55f, 57f, 59f, 68–9, 139 gamma radiation with, 51t, 51–2, 52f HPP with, 48, 49f, 50f as hurdle technology, 59–60 MAP with, 64, 68–9 PE for, 68–9, 139 PEF-processed juice in PET, 45–7, 46f, 47f, 126 PL with, 49–51, 50f research on, 275 shelf life with, 46–7, 47f, 126
antimicrobial packaging (cont’d) SW treatment with, 58–9, 59f ternary combinations with, 56–8, 57f, 58f, 59f UV light treatments with, 53f, 53–4, 54f, 58–9, 59f antioxidants (AOs) and antimicrobial agents, 17, 90–2 AP with, 21, 29–30, 220 food treated directly with, 44 ionizing radiation with polymer packaging and, 164–6, 167t–80t, 181–95, 196t, 197 IR with, 29–30 for meat, 28, 29–30 in polymerization, 106 types of, 21 AP. See active packaging Araujo, H. P., 179t–80t, 181 argon, 140 Army, U.S., 205, 208, 209, 218 Arrhenius’ Law, 115 ascorbates, 18, 21 aseptic processing and packaging, 97, 102 cold plasma technology for, 137–8 for HPP, 119 for PEF, 116–18 PL for, 142, 143, 144–7 Asia, 225, 226, 232, 237, 241t ATBC. See acetyltributyl citrate Australia, 228–9, 242t Bacillus spp., 4, 85, 88, 129, 130–1, 138, 144 bacteria. See pathogenic and spoilage microorganisms; specific bacteria bacteriocins, 84–8. See also nisin bacteriophages defined, 88–9 FDA approved, 89 GI tract impact of, 89 barcodes, 282–4, 283f barrier properties. See also dielectric barrier discharge; gas barrier/permeability; high-barrier packaging cold plasma impact on, 139–40 MATS impact on, 213–14, 215t–16t, 218–20 MATS-processed food shelf life and, 218–19 nanotechnology and, 286f, 286–7 behavioral economics theories, 229–31 BESELA, 211 beta particles. See alpha and beta particles bibliometric study, 237 biological agents adoption and approval of, 83–4 cold plasma immobilization of, 138–9 common, 84–7 bisphenol A (BPA) EU regulations on, 257–8 IR impact on, 181 Bloch, P. H., 233, 234f, 235 bottles and jars, 110 antimicrobial, with PEF, 45–7, 46f, 47f, 126 sealing, 117–18, 118f, 279f Bourges, F., 167t, 170t–1t, 192 BPA. See bisphenol A cancer, 259, 267, 268–9 Candida, 91 canned products, 83, 86, 118 capacitively coupled plasma (CCP), 134 caprolactam (CP), 181, 184 carbon dioxide (CO₂). See also modified-atmosphere packaging antimicrobial and cellular impact of, 64–5 cold pasteurization with, 25 emitting systems, 20–1, 68 fresh produce limits for, 69t on meat, 20, 65, 72 PEF synergistic impact with, 31–2 scavenging systems, 20–1 ultrasound with, 32 Carlsson, D. J., 170t, 187, 193 CCP. See capacitively coupled plasma cellular changes/damages, 26 with CO₂, 64–5 with cold plasma treatment, 138
cellulose. See regenerated cellulose ceramics, 256
cesium-137, 3, 96, 103
CFR. See Code of Federal Regulations
Le Chatelier’s principle, 101
cheese, 8t, 86, 88, 92, 181, 184
chemical changes, 122. See also inertness, chemical; migration, chemical; radiolysis products to DNA, 26, 103, 104, 138, 142 in intelligent packaging chromism, 276–7
IR packaging considerations for, 11, 12, 105, 160, 162–3
sensors for, 280
with thermal compared to NTP, 2
chemical treatments HPP eliminating need for, 3, 95 ozone treatment compared with, 128–9
China, 242t, 243
chitosan, 139, 140
chlorine dioxide, 32, 57–8, 58f
chlorine treatment, 131
chromatography-mass spectroscopy, 165
chromism, 276–9, 278f, 279f
Clostridium botulinum, 83, 85, 86, 131
CO₂. See carbon dioxide
cobalt-60, 3, 96, 103, 105, 107f
Code of Federal Regulations (CFR), 103, 103t
cold pasteurization, 25
cold plasma technology, 121
on antimicrobial packaging, 138–9
on barrier properties, 139–40
features of, 136
for glass surface treatments, 135, 138
in-package, 141
on Listeria spp., 139
with nitrogen, 134, 137, 138 origins of, 273
polymer adhesion modified with, 136–7
polymer surface treatment with, 135–6, 138
power sources and types of, 134
on printing and labeling, 140–1
process and applications of, 133–4
for surface sterilization, 137–8
color, package design, 235–6, 239t, 242t
color-changing materials, 276–9, 278f, 280–1, 282, 282f
colorings, 266, 286
color management, food of meat, 29, 43, 44, 147
with MW sterilization, 209, 218
PL treatment impact on, 147
composites or laminates benefits of, 111–12, 113
MATS impact on barrier of, 214, 215t–16t, 218–20
MATS impact on dielectric properties of, 217f, 217–18
MATS impact on morphology of, 213
MATS impact on thermal properties of, 214, 217
for MW sterilization, 208–12, 211f
for PEF packaging, 125
PL sterilization of, 145
condensation polymerization, 107–9, 109f
consumer preference aesthetics of package in, 12, 225, 226, 233, 235, 236–7, 243, 244, 274
behavioral economics theories of, 229–31
Bloch model of, on package design, 233, 234f, 235
brand loyalty and, 231
color and shape of package influence on, 235–6
e-commerce role in, 232
gender considerations in, 236
high/low involvement role in, 236–7
HPP and, 95
on labeling, 238t–42t
for meat color, 29
package material type in, 237, 238t–41t
consumer preference (cont’d) on safety, 275
studies/surveys of, 225–6, 237, 238–42t, 243–4
for sustainability, 227
copolymers, 21, 23, 29, 52, 111–12
coherent, 131–2
covalent bonds, 28, 102, 106
CP. See caprolactam
CPET. See crystalline polyethylene terephthalate
cross-direction orientation, 110
cryogenic freezing, 56–7, 57f
crystalline/amorphous ratio, 109, 111
crystalline polyethylene terephthalate (CPET), 109
crystallinity
MATS impact on, 213
ozone impact on polymer, 133
of polymers, 109–10, 113–14, 133
sensors for changes in, 280
crystallography, 277
dairy chilling water systems, 131–2
DBD. See dielectric‐barrier discharge
DC. See dietary concentration
DEHA. See di‐2‐ethylhexyladipate
Delaney clause, 259, 268–9
Demertzis, P. G., 168t–9t, 173t, 193
dense phase carbon dioxide (DPCD), 25
de Oliveira, C. P., 166, 178t, 182
Deschenes, L., 170t, 188
design. See labeling/printing; package design
di‐2‐ethylhexyladipate (DEHA), 185–6, 190
dielectric barrier discharge (DBD), 134, 139, 217f, 217–18
dietary concentration (DC)
FDA regulations on, 162
with ionizing radiation, 162, 166, 167t–80t, 181–90
diffusion, 114
disinfection. See aseptic processing and packaging; MW-assisted thermal sterilization;
stereildification
DNA, 26, 103, 104, 138, 142
DPCD. See dense phase carbon dioxide
Driffeld, M., 169t, 171t, 173t, 175t, 189–90
e-beam. See electron beam radiation
E. coli
antimicrobial film impact on, 44–5
AP and NTP impact on, 27, 28
bacteriocins for, 86, 88
cold plasma impact on, 138, 139
e-commerce, 232
economics, 229–31, 289
EcoShield™, 89
ECR. See electron cyclotron resonance
EC Regulation 1935/2004, 253
edible packaging and coatings, 45,
49–51, 50f, 274–5, 275f
EDTA. See ethylenediaminetetraacetic acid
EFSA. See European Food Safety Authority
elasticity, 109, 131, 133
electricity consumption, 16
electron beam (e-beam) radiation, 24–5, 29, 30, 159
electron cyclotron resonance (ECR), 134
emitting/releasing systems, 16
carbon dioxide, 20–1, 68
ethanol, 22, 29
flavor/odor, 23–4
humidity, 22–3
with PEF, 31–2
endocrine-disrupting compounds, 257
endothermic reactions, 24
endowment effect, 230
energy efficiency
with enzymatic oxygen scavengers, 19
of NTP, 1, 16, 121
Enterobacteriaceae, 68
enterocins, 88
environmental impact, 16, 220
intelligent packaging concerns
with, 287–8, 288f
package design and, 227–9
enzymes
NTP impact on, 25, 34
oxygen management with, 19, 34
Index 295

EPDM. See ethylene propylene diene monomer
epoxy, 257
essential oils, 21, 28, 44, 48–50, 52
ethanol, 22, 29, 90
ethnic foods, 274
ethylenediaminetetraacetic acid (EDTA), 85–7
ethylene oxide, 129, 137, 160
ethylene propylene diene monomer (EPDM), 131
ethylene scavengers, 21–2, 32
ethylene-vinyl acetate polymer matrix, 126
ethylene vinyl alcohol (EVOH), 109
antioxidants in films of, 21
cold plasma for barrier properties of, 139–40
density of, 208t
high-barrier multilayer packaging with, 210, 211f, 212
IR with films of, 29
MATS impact on, 213, 214, 217, 217f
PVDC compared with, 210, 212
EU. See European Union
EURL. See European Union Reference Laboratories
European Food Safety Authority (EFSA), 254, 258
European Union (EU), 225, 237, 238t–9t
AP and intelligent materials regulations in, 257–8
FCMs labeling in, 254
FCMs legislative framework in, 253–5
FCMs regulation by material type, 255–8
FCMs regulation in U.S. compared to, 252, 264, 267–9
FCMs traceability in, 255
GMP regulation in, 255
intelligent packaging regulations in, 252, 256, 257
IR regulations in, 160
safety and scientific advisory authorities in, 258
European Union Reference Laboratories (EURL), 258
EVOH films. See ethylene vinyl alcohol
exothermic reactions, 24
FAP. See Food Additive Petition
FCMs. See food contact materials
FCN. See Food Contact Notification
FDA. See Food and Drug Administration
FDCA. See Food Drug and Cosmetic Act
Federal Advisory Committee Act, 267
FEMA. See Flavor and Extract Manufacturers Association
fermentation, 86, 277
Fick’s Laws of diffusion, 114, 166, 193–4
films and coatings
antimicrobial, 44–5, 49–59, 50f, 51t, 52f, 53f, 55f, 57f, 59f, 68–9, 138–9
FCMs in EVOH, 21
cold plasma for barrier properties of, 139–40
cold plasma treatment on, 138–9
color-changing, 280
edible, 45, 49–51, 50f, 274–5, 275f
ethanol-emitting, 22
FDA regulations on, 264
for high-barrier packaging, 211–12, 212f
ionizing radiation on monolayer polymer, 167t–77t, 181, 182, 184–6, 190, 191–2
ionizing radiation on multilayer polymer, 166, 178t–80t, 182–4
IR on EVOH, 29
microperforated, 72f, 72–3, 76
in oxygen management, 18–19
ozone treatment of bio, 130–1
for PEF in-pack treatment, 126–7
resins as, 18, 19, 33–4, 174t
fish and seafood
aqueous ozonation with antimicrobial coating on, 54–5, 55f
flavor/odor absorbers for, 23
IR impact on PVC film packaged, 186
fish and seafood (cont’d)
MATS compared to retort processed, 219
ozone treatment on, 55f, 55–7, 56f, 57f, 128–9

Flavor and Extract Manufacturers Association (FEMA), 24

flavor and odor absorbers or emitters for, 23–4
HPP impact on, 3, 107, 111
IR impact on, 105
MAP impact on, 72f, 72–3
oxygen control impact on, 209
PEF impact on, 4, 121

Food Additive Amendment (1958), 261–2
Food Additive Petition (FAP), 161, 162, 195, 197, 266

food additives
GRAS exemption for, 260–1
U.S. definition of, 252, 259–60
U.S. exemptions regarding, 260–2
Food and Agriculture Organization, 228

Food and Drug Administration (FDA), 142
antifungals approved by, 91, 92
AP approval from, 15–16
bacteriophages approved by, 89
FCMs approval rules/process of, 265–7
on films and coatings, 264
flavor/odor absorbers approved by, 23–4
food additive regulations by, 260, 261–2
GMP regulations of, 266–7
IR food types and dosage approved by, 103, 103t, 104, 115
IR packaging/adjuvant allowances by, 11, 12, 12t, 106t, 115, 162, 191
on MATS processing, 209
nisin approval by, 83, 84–5, 86
ozone treatment approval by, 128
food contact materials (FCMs), 251.

See also food additives
AP regulations as, 257–8
categories in U.S., 264–5
EU and U.S. regulation comparison on, 252, 264, 267–9

EU legislative framework for regulation of, 253–5
EU regulation by type of, 255–8
EU safety and advisory authorities for, 258
FDA acceptance rules for, 265–7
procedural leniency compared to performance requirements for, 263
traceability requirements for, 255, 266
U.S. administrative rules for, 264
U.S. exemptions for, 260–2
U.S. legislative framework on, 259–65
U.S. regulations on prior sanctioned substances as, 259, 261–2

Food Contact Notification (FCN), 161, 163, 195, 197, 264, 265

Food Drug and Cosmetic Act (FDCA), 15–16, 115–16, 252, 259–61, 262

Food Science Technology Abstract (FSTA), 2, 3f

food waste, 227, 228–9
Franz, R., 172t, 189
freezing. See cryogenic freezing
fresh produce
aqueous ozonation with antimicrobial coating on, 54–6, 55f, 56f
aqueous ozone treatment for, 54–6, 55f, 56f, 129, 130
bacteriocins for, 87
carbon dioxide limits for, 69t
carbon dioxide scavengers for, 20
chlorine dioxide for, 32, 57–8, 58f
cold plasma technology on in-package, 141
e-beam radiation for, 24–5
ethanol release control for, 29
ethylene scavengers for, 21
gamma radiation and antimicrobial film for, 52, 52f
gaseous ozone treatment on, 31, 132
gas permeability regulated with AP for, 16
gas sensors for, 282, 282f
Index 297

high CO₂ MAP on, 69t, 69–79, 70f, 71f, 72t, 72f, 74f, 75f, 76, 77f, 78f, 79f
IR/MAP treatment for, 30
IR migration on monolayer polymer packaged, 191–5, 193t
IR on, 33, 103
LAB relationship, 76, 79f
PEF on, 33
PL and antimicrobial coating for, 49–51, 50f
PL on, 33, 49–51, 50f
UV light and antimicrobial coating on, 53f, 53–4, 54f
UV treatment for, 43, 53f, 53–4, 54f
waste reduction for, 228
frozen foods, 10t, 103t, 144
fruits. See fresh produce
FSTA. See Food Science Technology
Abstract
fungi, 90–2

gamma radiation, 3, 96, 159, 279
antimicrobial film with, 51t, 51–2, 52f
maximums for, 103t, 103–4
gas barrier/permeability, 1, 16, 105, 112, 125, 208, 210
gaskets, 131
gastrointestinal (GI) tract, 84, 89, 91
generally recognized as safe (GRAS) status
for antifungals, 91, 92
of flavor/odor absorbers, 23–4
food additive exemption requirements as, 260–1
of nisin, 83, 84–5, 86
of ozone treatment, 128
regulations, 265, 269
GI tract. See gastrointestinal tract
glass
cold plasma surface treatments for, 135, 138
density of, 208t
for HPP packaging, 112, 113
for PEF packaging, 117–18, 118f
polymers compared to, 106–7
recycling of, 227
sterilization of, 207
global market, 225, 232, 238t–42t
good manufacturing practices (GMP)
EU regulation on, 255
FDA regulation on, 266–7
gram-negative organisms, 65, 68, 85–7, 88, 91, 139, 142. See also E. coli
gram-positive organisms, 68, 76, 85, 87, 88, 91, 139, 142. See also Listeria
grapefruit seed extract, 57
GRAS status. See generally recognized as safe status
green bio-polymers, 140
green tea extract, 21

Hazard Analysis and Risk-Based Preventive Controls (HARPC), 266–7
HDPE. See high-density polyethylene
headspace for HPP packaging, 98, 102, 113, 119
MAP, gas compositions, 64, 70f in PEF PP tubes, 125–6
heating. See temperature control
Henry’s Law, 115
hermetic seal, 102, 118
high-barrier packaging, 210–12, 211f, 212f
high-density polyethylene (HDPE)
cold plasma impact on permeability of, 140
crystallinity of, 110
ionizing radiation AO/RP/DC impact on, 170t, 185, 187–8, 190, 193
PL sterilization of, 145
high-pressure carbon dioxide (HPCD), 32–3
high-pressure processing (HPP), 1
adiabatic heat with, 29, 34–5, 100, 102, 115
antimicrobial packaging with, 48, 49f, 50f
AP components combined with, 27–9
consideration, benefits, and shortcomings of, 6t, 43, 95–6
high CO₂ MAP with, 66–7
high-pressure processing (HPP) (cont’d)
impacts on food and packaging, 3, 11, 27, 28–9, 96, 100–2, 107, 111, 279
machine, 99f
metals and glass for, 112–13
morphology in packaging with, 111, 113–15
origins of, 273
overview of, 3, 95, 98
oxygen management with, 28–9
package materials and systems for, 5, 11, 12, 95–6, 98–102, 106–15, 118–19
polymers and plastics for, 12t, 96, 106–8, 111–15
pressure-sensitive polymers in, 277
on RTE foods, 28
safety with, 3, 95, 113–15
studies and publications on, 2, 3f
volume changes with, 11, 27, 96, 100–2, 107
HPCD. See high-pressure carbon dioxide
HPP. See high-pressure processing
humidity regulation, 22–3, 31, 33
hurdle technologies, 2, 5
antimicrobial packaging as, 59–60
of AP and NTP combination, 26, 36
defined, 44
MAP as, 79–80
ICP. See inductive coupled plasma
indicator/markers, 4–5, 17, 25
induction sealing, 117, 118f
inductive coupled plasma (ICP), 134
inertness, chemical, 122, 134, 253–4, 268
insects, 4, 15, 25, 97, 103, 103t, 160
intelligent packaging
barcode evolution in, 282–4, 283f
color-changing materials in,
276–9, 278f, 280–1, 282, 282f
concerns and considerations with,
275–6, 279–82, 287–9, 288f
EU regulations on, 252, 256, 257–8
nanotechnology in, 220, 273, 280, 281f, 285–7, 286f
NTP considerations with, 279–82
pressure-sensitive, 277, 279f, 280, 281f
RFID tags in, 32, 284–5, 285f
safety of, 257, 288
sensor types and function in,
280–2, 282f
shelf life extension and monitoring
with, 257, 279, 282, 282f, 285
temperature control with, 278f, 278–9
trend of, 274
with UV light treatments, 278
ionizing radiation
AOs/RPs/DCs in polymer
packaging with, 164–6, 167t–80t, 181–95, 196t, 197
applications for, 10t, 96–7, 160
cell damage with, 26
consideration, benefits, and shortcomings of, 10t, 43–4
history of, 159–60
on monolayer polymers, 167t–77t,
181, 182, 184–5, 190, 191–2
on multilayer polymers, 166, 178t–80t, 182–4
nonionizing compared to, 3–4
oxygen management with,
162–3
pre-market approval processes for,
160–1
regulatory approval/guidelines for,
11, 97, 160–6, 195, 197
RPs and safety with, 160–1
sources and process of, 3, 159, 160
IR. See irradiation
Irganox, 28, 193t
iron/iron salts, 18
irradiation (IR), 1. See also gamma
radiation; ionizing radiation;
nonionizing radiation; ultraviolet
light treatments
adjuvants impacted by, 104–5
with antioxidants, 29–30
AP and impact of, 26
on BPA, 181
EU regulations on, 160
on EVOH films, 29
on fresh produce, 30, 33, 103, 191–5, 193t
impacts on food and packaging, 11, 104–5, 160, 162–3, 181, 186, 279
kGy maximums with, 12t, 103t, 106t, 197
labeling for, 12, 25, 104, 104f
MAP with, 30
on meat, 103t
migration with, 160, 163, 165–6, 181–6, 190–5, 193t, 196t, 197
in nitrogen atmosphere, 162–3, 182, 191
origins of, 273
oxygen management with, 105, 191
package materials and systems for, 11, 12, 12t, 29, 97, 103–5, 104f, 106t, 107f, 108f, 115–16, 160, 162, 191
polymers approved for, 12t, 105, 106t
polymers impacted by, 104–5
polymers with simulants during and after, 184–6
purpose of, 103
regulatory approval/guidelines for, 12, 12t, 103t, 104, 104f, 106t, 115–16, 160, 162, 191, 195, 197
studies and publications on, 2, 3f
types and benefits of, 3–4, 96–7
isostatic pressures, 98, 101, 279

Jeon, D. H., 169t, 184
juice packaging
package design for, 233, 238t–9t, 241t–2t, 243
PEF for, 45–7, 46f, 47f, 125–6

Kawamura, Y., 167t–8t, 174t, 189
kGy. See radiation dose
Komolprasert, V., 163–6, 175t, 176t–7t, 185, 189

LAB. See lactic acid bacteria labeling/printing
barcode evolution in, 282–4, 283f
clean, 274
cold plasma technology on, 140–1
in consumer preferences, 238t–42t
EU FCMs regulation on, 254

food waste reduction tips on, 229
for IR, 12, 25, 104, 104f
RFID tags in, 32, 284–5, 285f
lactic acid bacteria (LAB), 67–9, 74, 76, 79f, 80, 88
Lactobacillus spp., 65, 76, 87
Lactococcus lactis, 85, 86, 87
laminates. See composites or laminates
LDPE. See low-density polyethylene light treatments, 1, 8t, 17, 18–19. See also pulsed light; ultraviolet light treatments
linear low-density polyethylene (LLDPE), 110, 169t, 183–4
lipid/oil oxidation, 20–1, 25, 28, 30–1, 43–4
lipopolysaccharide (LPS), 85–6, 91
liquids and semiliquids, 4, 116
Listeria spp.
apaqueous ozonation with antimicrobial coating on, 54–6, 55f, 56f
bacteriocins for, 85–8
bacteriophages for, 89
cold plasma impact on, 139
gamma radiation with antimicrobial film on, 51t, 51–2, 52f
HPP with antimicrobial packaging on, 48, 49f
PL on, 145
PL with antimicrobial coating on, 49–51, 50f
UV light with antimicrobial coating on, 53f, 53–4, 54f
ListShield™, 89
LLDPE. See linear low-density polyethylene
loss aversion, 230
cold plasma impact on
permeability of, 140
crystallinity of, 110
ionizing radiation AO/RP/DC impact on, 167t–9t, 182, 183, 185, 188–9, 192–3, 195, 197
PL sterilization of, 145, 146–7
LPS. See lipopolysaccharide
machine-direction orientation, 110
Maillard degradation, 209, 218
mangrove forests, 287, 288f
manufacturing practices. See good
manufacturing practices
MAP. See modified-atmosphere
packaging
marketing, 5, 12, 230. See also
consumer preference; labeling/
printing; package design
MATS. See MW-assisted thermal
sterilization
MCT. See moisture control
technology
meat
antioxidants for, 28, 29–30
AP and NTP combined for, 26, 279
bacteriophages for, 89
carbon dioxide impact on, 20, 65, 72
color management of, 29, 43,
44, 147
drip loss reduction for, 68
gamma radiation and antimicrobial
film for, 51t, 51–2
high CO₂ for raw, 66t, 66–9
in-package cold plasma technology
for, 141
IR for, 103t
MATS-processed, 218
moisture control for, 23
nisin use for, 86
ozone treatment on, 128–9
pediocins for RTE, 88
PL treatment impact on color of,
147
melamine, 258
melting point
crystallinity and, 109
for HPP packaging, 111
with MATS, 214, 217
mental accounting theory, 230–1, 236
metabolomics, 274
metals, 207, 208t
cold plasma surface treatments
for, 136
for HPP, 112–13
ozone impact on, 131–2
for PEF packaging, 118
PL sterilization of, 144–5
polymers compared to, 106–7
MIC. See minimum inhibitory
concentration
Micrococcus, 129
microperforated films, 70, 72f,
72–3, 76
microwave ovens, 99, 219
microwave (MW) radiation/
sterilization, 1. See also
MW-assisted thermal
sterilization
cold plasma-assisted thermal
sterilization composites or laminates for,
208–12, 211f
cold plasma treatment with, 134
composites or laminates for,
208–12, 211f
cold plasma-assisted thermal
sterilization
composites or laminates for,
208–12, 211f
flavor impact from, 72f, 72–3
TOR exemption on, 262
minimum inhibitory concentration
(MIC), 22
modified-atmosphere packaging
(MAP), 2
antimicrobial treatment with,
64, 68–9
defined, 63
flavor impact from, 72f, 72–3
headspace gas compositions of,
64, 70f
high CO₂ for fresh produce, 69t,
69–79, 70f, 71f, 72t, 72f, 72t,
74f, 75f, 76, 77f, 78f, 79f
high CO₂ for raw meat, 66t, 66–9
Index

high CO₂, overview, 64–5, 79–80
high CO₂, with HPP, 66–7
as hurdle technology, 79–80
IR with, 30
oxygen management with, 17, 70f, 72, 72f
PEF combined with, 126
shelf life with, 65, 66, 67–71, 70f, 72f, 72t, 73–4, 74f, 76, 77f, 78f, 79f, 79–80
UV light treatment with, 64
moieties. See adjuvants and additives
moisture-absorbing products, 22–3
moisture control technology (MCT), 23
molds and yeasts. See fungi; pathogenic and spoilage microorganisms
morphology
in HPP package considerations, 111, 113–15
MATS impact on, 213
MW-assisted thermal sterilization (MATS)
applications for, 206–7, 220
barrier properties impacted with, 213–14, 215t–16t, 218–20
development of, 206, 206f
dielectric properties impacted with, 217f, 217–18
FDA on, 209
high-barrier packaging for, 212
morphology changes with, 213
packaging requirements for, 207, 209, 213
retort compared with, 207, 209, 214, 218–20
shelf life with, 213, 218–19, 219f
storage goals for, 209
thermal properties impacted with, 214, 217
MW radiation. See microwave radiation/sterilization
mycocins, 90
mylar-polypropylene laminate, 208
nanotechnology, 220, 273, 280, 281f, 285–7, 286f
NASA, 103t, 209, 219
natamycin, 92
National Academy of Sciences, 267
nisin, 44
benefits and uses of, 85–7
chemical structure of, 85f
FDA approval and GRAS status of, 83, 84–5, 86
high CO₂ MAP with, 68
pectin combined with, 51t, 51–2
nitrogen, 30
IR in atmosphere of, 162–3, 182, 191
plasma treatment with, 134, 137, 138
nitrosamines, 258
nonionizing radiation, 3–4, 96–7
non-migrating systems. See scavenging/absorbing systems
nonthermal processing (NTP), 13.
See also specific processes
advantages of, 1, 16, 121
antimicrobial packaging with, 45–60
AP combined with, 24–33, 36, 279
AP considerations with, 17, 33–6
defined, 1, 2, 16
disadvantages of, 25–6
enzymes impacted by, 25, 34
intelligent packaging considerations with, 279–82
thermal compared to, 1, 2, 4–5, 16
trends in, 273–4
North America, 225, 237, 239t–40t
NTP. See nonthermal processing
nuclear reactor, 105, 107f
nutritional content, 1, 4, 16, 102
nylons, 109, 208t
obesity, 91, 226
odor. See flavor and odor
oils. See lipid/oil oxidation
omega-3 fatty acids, 140
online shopping. See e-commerce
organoleptic characteristics, 4, 253
OTR. See oxygen-transmission rate
oxidation
lipid/oil, 20–1, 25, 28, 30–1, 43–4
of MATS-processed food, 218–19
ozone inducing polymer, 132–3
oxygen management. See also antioxidants and antimicrobial agents
AP and NTP synergistic impact on, 27, 28
with enzymes, 19, 34
films and coatings in, 18–19
flavor control and, 209
with HPP, 28–9
with ionizing radiation, 162–3
with IR, 105, 191
in IR with antioxidants, 29–30
MAP ability for, 17, 70f, 72, 72f
sachets for, 19, 20–1
scavengers/absorbers for, 17–19,
33–4, 220
sensors for, 281–2
with UV light treatments, 18–19,
33–4
oxygen-transmission rate (OTR)
of high barrier polymeric films,
211–12
with high CO₂ MAP, 70, 72,
72f, 73
MATS processing impact on, 214,
215t–16t, 217f
ozone treatment, 121
with antimicrobial coatings, 54–7,
55f, 56f, 57f
AP with, 30–1
aqueous, 54–7, 55f, 56f, 57f, 129,
130, 131
chemical preservation compared
with, 128–9
chlorine compared to, 131
FDA approval of, 128
on fish and seafood, 55f, 55–7,
56f, 57f, 128–9
gaseous, 31, 129–30, 131
with heat, 129
on Listeria spp., 54–6, 55f, 56f
on meat, 128–9
packaging impacts from, 130–3
with pH controllers, 30–1
polymers impacted by, 131–2
polymers modified by, 132–3
safety of, 128
temperature control with,
30–1, 130
UV light treatments with, 131
PA. See polyamide
package design. See also intelligent
packaging; labeling/printing
aesthetics and consumer response
to, 12, 225, 226, 233, 235,
236–7, 243, 244, 274
behavioral economics theories and,
229–31
Bloch model of consumer response
to, 233, 234f, 235
brand loyalty and, 231
chromism in, 276–9, 278f, 279f
color significance in, 235–6, 239t,
242t
e-commerce role in, 232
evidence base for, 243–4
failures in, 232–3
food waste concerns and, 228–9
functions of, 225–6
material type and consumer preference of, 237, 238t–41t
rightsizing trend and, 226–7
shape significance in, 236, 238t–9t,
242t
studies/surveys on, 225–6, 237,
238t–42t, 243–4
sustainability role in, 226, 227,
237, 242t
trends in, 226–9
palladium chloride, 22
PALS. See positron annihilation lifetime spectroscopy paper, 112, 117, 145, 227
Paquette review (2004), 164–6
Park, G. Y., 174t, 176t, 181
Pascalization. See high-pressure processing
pathogenic and spoilage microorganisms, 1. See also Listeria; Salmonella
antimicrobial packaging as last hurdle for, 59–60
AP and NTP synergy on, 27
biological agents adopted for control of, 83–4
with carbon dioxide, 20
destruction prior to packaging, 76, 80
evaluation of, 4–5, 17
HPCD and ultrasound impact on, 32
ionizing compared to nonionizing
radiation for, 3–4
MAP alone impact on, 64
origins of, 59
PEF with antimicrobial bottles
impact on, 45–7, 46f, 47f, 126
PC. See polycarbonate
PE. See polyethylene
pectin/nisin applications, 51t,
51–2
PECVD. See plasma-enhanced
chemical vapor deposition
pediocins, 87–8
PEF. See pulsed electric fields
Pentimalli, M., 173t, 181
PET. See polyethylene terephthalate
pharmaceutical applications, 116,
274, 275f, 278
photochromic materials, 277–8
photosensitive dye, 18–19
pH regulation
AP and HPP synergistic impact on,
28–9
for nisin, 86
with ozone treatment, 30–1
yeasts for, 90
PL. See pulsed light
plasma. See cold plasma technology
plasma-enhanced chemical vapor
deposition (PECVD), 140
plasticizers, 105, 113, 185–6, 189
plastics. See also polymers and
polymerization
advantages of, 121–2
environmental impact of,
287–8, 288f
EU regulations on, 256–7
for HPP packaging, 11, 96, 106–8,
111–15
IR impact on, 105
recycled, 227, 257
plate counts. See total aerobic and
mesophilic plate counts
polyamide (PA), 132, 143, 146, 163
condensation reaction forming,
109, 109f
ionizing radiation AO/RP/DC
impact on, 176t, 181, 183,
184, 185
polybutylene, 133
cold plasma treatment for adhesive
properties of, 137
cold plasma treatment for
disinfection of, 138
crystallinity of, 110
high-barrier packaging with, 210
ozone modification of, 133
polyethylene-coated paperboard
(TR), 145
polyethylene terephthalate (PET),
109, 109f
AP components with, 19
cold plasma sterilization of, 138
density of, 208t
high-barrier multilayer packaging
with, 210–12, 211f
ionizing radiation AO/RP/DC
impact on, 176t–8t, 183, 185,
189, 190
MATS impact on, 213, 214,
215t–16t
for PEF bottles, 45–7, 46f, 47f,
125–6
temperature control with, 24
e-poly-L-lysine, 91f, 91–2, 92f
cold plasma sterilization of, 138
density of, 208t
cold plasma for barrier properties
of, 139–40
cold plasma for surface treatments
on, 135–6, 138
color-changing, 276–9, 278f,
280–1, 282, 282f
conjugated, 281
crystallinity of, 109–10, 113–14,
133
polymers and polymerization (cont’d)
density of common, 208t
glass and metals compared to, 106–7
green bio, 140
high-barrier developments in,
210–12, 211f, 212f
for HPP, 11, 96, 106–8, 111–15
ionizing radiation AO/RP/DC
impact with, 164–6, 167t–80t,
181–95, 196t, 197
ionizing radiation on monolayer,
167t–77t, 181, 182, 184–6, 190,
191–2
ionizing radiation on multilayer,
166, 178t–80t, 182–4
IR and, with simulants, 184–6, 191
IR impact on, 104–5
IR migration model of produce
packaged with monolayer,
191–5, 193t
laminates and composite benefits
for, 111–12, 113
machine direction orientation of,
110
MW sterilization with, 208–9
nanotechnology applications in,
285–7, 286f
ozone diffusion with, 131–2
ozone modification of, 132–3
for PEF in-pack treatment, 126–8
PL impact with, 143–4
PL sterilization of, 144–6
pressure-sensitive, 277, 279f, 280,
281f
radiation induced cross-linking of,
163–4
safety with HPP packaging with,
113–15
stability order of, 190
thermochromogenic, 278f, 278–9
types and process of, 107–9, 108f,
109f
polylefins, 22–3, 105, 110
polypropylene (PP), 22–3, 28, 110
density of, 208t
ionizing radiation AO/RP/DC
impact on, 170t–3t, 183, 185,
186–7, 189–90
ozone modification of, 133
PEF packaging in tubes of, 125–6
polystyrene (PS), 162–3
ionizing radiation AO/RP/DC
impact on, 173t–5t, 181–2, 185,
189, 190
ozone modification of, 133
polystyrene/butadiene, 112
polytetrafluoroethylene, 131
polyvinyl chloride (PVC), 134
ionizing radiation AO/RP/DC
impact on, 175t–6t, 181, 185–6
for PL treatments, 143
polymerization of, 109
polyvinylidene chloride (PVDC),
109, 112
density of, 208t
EVOH compared with, 210, 212
positron annihilation lifetime
spectroscopy (PALS), 213
potassium permanganate, 21–2, 24
PP. See polypropylene
pressure-sensitive materials, 277,
279f, 280, 281f
printing. See labeling/printing
prior sanctioned substances, 259,
261–2
processing environment
ozone for disinfecting, 130
plasma treatments for, 133–4
PL sterilization for, 144–6
produce. See fresh produce
prospect theory, 230–1
PS. See polystyrene
Pseudomonas spp., 33, 68,
130–1, 138
PTFE. See Teflon
pulsed electric fields (PEF), 1
absorber/emitter systems with,
31–2
antimicrobial bottles with, 45–7,
46f, 47f, 126
AP synergistic impact with, 27
cellular changes/damages with,
123–4
CO₂ synergistic impact with, 31–2
consideration, benefits, and
shortcomings of, 7t, 43, 44
electricity consumption of, 16
on fresh produce, 33
impact on food and packaging, 4,
45–7, 46f, 47f, 121, 126
in-pack materials and treatment with, 126–8
MAP with, 126
package materials and systems for, 11, 97–8, 116–18, 118f, 125–8
process and application of, 4, 7t, 97, 122
studies and publications on, 2, 3f
temperature considerations with, 34–5, 124–5
treatment chambers, 122–3
wave forms for, 123
pulsed light (PL), 44, 121
absorption enhancements for, 142
antimicrobial edible coating with, 49–51, 50f
for aseptic processing and packaging, 142, 143, 144–7
on fresh produce, 33, 49–51, 50f
in-package food sterilization with, 146–7
on Listeria spp., 49–50, 50f, 145
packaging requirements for, 143–4
polymers impacted by, 143–4
polymer sterilization with, 144–6
process and applications for, 141–2
reflectivity of surface and, 145–6
UV continuous light compared to, 141
UV transmission rates with, 146–7
PVC. See polyvinyl chloride
PVDC. See polyvinylidene chloride
Quick Response Code (QR), 283f, 283–4
radiation. See gamma radiation;
ionizing radiation; irradiation;
microwave radiation/sterilization; nonionizing radiation
radiation dose (kGy), 12t, 103t, 106t, 197
radioactive elements, 3, 96
radiofrequency (RF), 134, 138
radio frequency identification device (RFID), 32, 284–5, 285f
radiolysis products (RPs)
with ionizing radiation, 160–1
in ionizing radiation with polymer packaging/adjuvants, 164–6, 167t–80t, 181–90, 193, 196t, 197
Paquette review (2004) of, 164–6
storage impact on, 191
types of, 163–4
Radura logo, 12, 104, 104f
ready-to-eat (RTE) foods
gamma radiation and antimicrobial film for, 51t, 51–2, 52f
high CO2, MAP for, 64
HPP impact on, 28
microwave containers for, 99
MW sterilization history for, 205
pediocins for, 88
temperature control with, 24
UV light treatment impact on, 43
recycled materials, 227, 257
REF foods. See ready-to-eat foods
regenerated cellulose, 256
regulatory approval/guidelines, 87.
See also Food and Drug Administration; generally recognized as safe; Threshold of Regulation; U.S. Department of Agriculture
for antifungals, 91, 92
for AP, 15–16, 257–8
for bacteriophages, 89
on FCMs in EU, 253–8
flavor/odor absorbers and, 23–4
intelligent packaging, 252, 256, 257–88
for ionizing radiation, 97, 160–6, 195, 197
for IR, 11, 12, 12t, 103, 103t, 104, 104f, 115–16, 160, 162–3, 191, 195, 197
for MATS processing, 209
of nisin, 83, 84–5, 86
of ozone treatments, 128
reproductive toxicity, 267
resins, 18, 19, 33–4, 174t
retort processing, 3, 4, 97, 205, 206
MATS/MW sterilization compared to, 207, 209, 214, 218–20
packaging for, 208–9, 211, 211f, 213
shelf life and quality with, 209, 218, 219
RF. See radiofrequency
RFID. See radio frequency
identification device
rightsizing, 226–7
Riquet, A. M., 171t, 187
RMIT University, Australia, 228–9
rosemary, 28
RPs. See radiolysis products

Saccharomyces cerevisiae, 90
sachets, 16, 19–22
safety, 2, 12, 12t, 92. See also
generally recognized as safe;
regulatory approval/guidelines
with active and intelligent
packaging, 257, 288
bacteriocins and food, 84
customer preference on, 275
Delaney clause regulation for, 259,
268–9
of edible packaging, 274–5
EU advisory authorities for, 258
EU on FCMs, 253–8
with HPP, 3, 95, 113–15
with ionizing radiation packaging,
11, 97, 160–6
of ozone treatments, 128
U.S. advisory authorities for, 267
Salafranca, J., 178t–9t, 182
SalmoFresh™, 89
Salmonella, 30, 32, 43, 66, 86, 88, 89
sanitizer washing (SW), 58–9, 59f
scavenging/absorbing systems, 16
carbon dioxide, 20–1
ethylene, 21–2
flavor/odor, 23–4
humidity, 22–3
oxygen, 17–19, 33–4, 220
with PEF, 31–2
seafood. See fish and seafood
sealing characteristics and methods,
102, 111, 116
for bottles and jars, 117–18, 118f,
279f
cold plasma and, 137
cold temperature, 144
intelligent packaging for, 279f
with PL treatments, 144
self-heating and cooling materials, 24
“sell by” dates, 229, 275
sensors, 280–2, 282f
shelf life, 20, 275
antimicrobial packaging impact on,
46–7, 47f, 126
combination of technologies
for, 64
food waste and extension of,
228–9
intelligent packaging applications
for, 257, 279, 282, 282f, 285
with MAP, 65, 66, 67–71, 70f, 72f,
72t, 73–4, 74f, 76, 77f, 78f, 79f,
79–80
with MATS processing, 213,
218–19, 219f
with PEF, 126
with retort processing, 209, 218,
219
Shigella spp., 89
silicon, 219
silicone, 131, 211
silver, 139
simulants, food, 165
IR migration into, 182–6, 191
MWs and silicon migration
into, 219
single-serve packaging, 226, 227
snack foods, 226–7
sooconomic considerations, 13
soft drinks, 226–7
sorlubility, 114–15
sorption, 105, 111, 115
South America, 226, 241t, 287, 288f
Staphylococcus, 85, 88, 138
status quo bias, 230
steel, 208t, 227
sterilization. See also aseptic
processing and packaging;
microwave radiation/
sterilization; MW-assisted
thermal sterilization
cold plasma technology for
surface, 137–8
glass, 207
in-package food, 126–8, 141,
146–7
with PL, 144–6
Stoffers, N. H., 167t, 170t, 173t, 188
Streptomyces natalensis, 92
sugar/carbohydrates, 239t, 243
Index

surface-to-volume ratio, 127–8, 194, 286–7
sustainability, 226, 227, 237, 242t, 274
Sustainable Packaging Coalition, 227
SW. See sanitizer washing
Swedish Institute for Food Preservation Research, 205

Teflon (PTFE), 131
temperature control
adiabatic heat considerations in, 29, 34–6, 100, 102, 115
AP and, 34–6
HPP considerations with, 29, 34–5
intelligent packaging and, 278f, 278–9
with ozone treatments, 30–1, 130
with PEF, 34–5, 124–5
with RTE foods, 24
self-heating and cooling technologies for, 24
thermal processing/pasteurization, 1, 2, 4–5, 16. See also retort processing
thermochromogenic material, 278f, 278–9
thermodynamics, laws of, 100–1
Threshold of Regulation (TOR), 161, 162–3, 164, 166, 195, 197, 262
tin, 208t
TOR. See Threshold of Regulation
total aerobic and mesophilic plate counts (TPC), 67, 68, 71, 76, 79f
TR. See polyethylene-coated paperboard
traceability, 254, 255, 266, 268
transmembrane potential, 123–4

trends
in NTP, 273–4
in package design, 226–9
triclosan, 139
ultrasound, 9t, 32–3, 44
ultraviolet (UV) light treatments, 121. See also pulsed light antimicrobial coating with, 53f, 53–4, 54f, 58–9, 59f
consideration, benefits, and shortcomings of, 8t, 34
continuous compared to pulsed, 141
on fresh produce, 43, 53f, 53–4, 54f
with gaseous ozone, 131
intelligent packaging with, 278
on Listeria spp., 53f, 53–4, 54f
MAP with, 64
microbicidal function of, 142
oxygen scavenging with, 18–19, 33–4
on RTE foods, 43
SW and antimicrobial packaging with, 58–9, 59f
transparency and transmission of, 146–7

United Kingdom, 228
United States (U.S.)
Army applications in, 205, 208, 209, 218
FCMs approval rules/process in, 265–7
FCMs categories in, 264–5
FCMs in federal compared to state law in, 267
FCMs legislative framework in, 259–65
FCMs procedural leniency compared to performance requirements in, 263
FCMs regulation in EU compared to, 252, 264, 267–9
FCMs regulation overview in, 259
food additives definition in, 252, 259–60
food additives exemptions in, 260–2
food waste and packaging in, 227, 228
safety and scientific advisory authorities in, 267
U.S. Department of Agriculture (USDA), 89, 104, 206, 262
UV treatments. See ultraviolet light treatments

vinyl chloride, 109, 181, 185–6
viruses. See bacteriophages
Viton, 131
volume
 HPP changes to, 11, 27, 96, 100–2, 107
 MATS changes to, 213
 surface to, ratio, 127–8, 194, 286–7

Washington State University (WSU), 205–6, 206f, 218

waste. See food waste

water vapor transmission rate (WVTR), 211, 213–14, 215t–16t, 218, 219t

WSU. See Washington State University

WVTR. See water vapor transmission rate

x-rays, 3, 96, 103–4, 159, 161

yeasts, 90–1

Zygosaccharomyces rouxii, 27