Contents

About the editors, xvi
List of contributors, xix
Foreword, xxii
Series preface, xxiv
Preface, xxv

1 A primer on microbiology, 1
David O. Carter, Emily N. Junkins and Whitney A. Kodama
1.1 Introduction, 1
1.2 Microbial characteristics, 2
 1.2.1 Microbial taxonomy and function, 2
 1.2.2 Enzyme activity, 5
1.3 Microorganisms and their habitats, 7
 1.3.1 Oxygen and moisture, 8
 1.3.2 Temperature, 9
1.4 Competition for resources, 10
1.5 The ecology of some forensically relevant bacteria, 11
 1.5.1 Actinobacteria, 11
 1.5.2 Firmicutes, 13
 1.5.3 Proteobacteria, 16
1.6 Archaea and microbial eukaryotes, 20
1.7 Conclusions, 21
 Acknowledgments, 21
 References, 21

2 History, current, and future use of microorganisms as physical evidence, 25
Zachary M. Burcham and Heather R. Jordan
2.1 Introduction, 25
 2.1.1 Why and how are microorganisms used in forensic science?, 25
2.2 Methods for identification, 26
 2.2.1 Classical microbiology, 26
 2.2.2 Genomics and strain typing, 27
2.3 Estimating PMI, 30
 2.3.1 Microbial succession, 32
2.4 Cause of death, 36
 2.4.1 Natural causes, 36
 2.4.2 Biocrimes, 38
2.5 Trace evidence, 40
 2.5.1 Human, 40
 2.5.2 Nonhuman animals and food, 42
2.6 Other medicolegal aspects, 43
 2.6.1 Sexual assault, 43
 2.6.2 Medical malpractice, 43
 2.6.3 Nosocomial infections and antibiotic resistance, 44
 2.6.4 Food safety and environmental contamination, 44
2.7 Needs that must be met for use in chain of custody, 48
2.8 Summary, 49
 Acknowledgments, 50
 References, 50

3 Approaches and considerations for forensic microbiology decomposition research, 56
 M. Eric Benbow and Jennifer L. Pechal
 3.1 Introduction, 56
 3.2 Challenges of human remains research, 57
 3.3 Human remains research during death investigations, 58
 3.4 Human surrogates in research, 60
 3.5 Considerations for field studies, 61
 3.6 Descriptive and hypothesis-driven research, 62
 3.7 Experiment design, 65
 3.8 Validation studies, 69
 Acknowledgments, 70
 References, 70

4 Sampling methods and data generation, 72
 Jennifer L. Pechal, M. Eric Benbow and Tawni L. Crippen
 4.1 Introduction, 72
 4.2 Materials, 73
 4.2.1 Financial considerations, 73
 4.2.2 Terrestrial settings, 74
 4.2.3 Aquatic settings, 77
 4.3 Sample collection techniques, 79
 4.4 Sample preservation, storage, and handling techniques, 80
 4.5 Data considerations, 86
 4.6 Conclusions, 90
 Acknowledgments, 90
 References, 91
5 An introduction to metagenomic data generation, analysis, visualization, and interpretation, 94
Baneshwar Singh, Tawni L. Crippen and Jeffery K. Tomberlin
5.1 Introduction, 94
5.2 DNA extraction, 96
 5.2.1 Sample collection and storage, 96
 5.2.2 Extraction methods, 97
5.3 DNA sequencing, 99
 5.3.1 Amplicon sequencing of marker (16S rDNA/18S rDNA/ITS) loci, 99
 5.3.2 Multi-omics sequencing: metagenomic, metatranscriptomic, metaproteomic, and metametabolomic approaches, 102
 5.3.3 Next-generation sequencing platforms, 105
5.4 Marker gene data analysis, visualization, and interpretation, 107
 5.4.1 Data analysis pipelines, 107
 5.4.2 Preprocessing of sequence data, 108
 5.4.3 Sequence clustering approaches, 111
 5.4.4 Microbial diversity estimations, 112
5.5 Multi-omics data analysis, visualization, and interpretation, 114
 5.5.1 Sequence preprocessing, 115
 5.5.2 Sequence assembly, 115
 5.5.3 Taxonomic profiling, 116
 5.5.4 Gene prediction and metabolic profiling, 116
5.6 Statistical analysis, 117
5.7 Major challenges and future directions, 118
References, 119

6 Culture and long-term storage of microorganisms for forensic science, 127
Emily N. Junkins, Embriette R. Hyde and David O. Carter
6.1 Introduction, 127
6.2 The value of culturing microorganisms, 128
6.3 Collection and handling of samples, 132
6.4 Protocols, 134
 6.4.1 Aerobic culture, 134
 6.4.2 Sterile technique, 134
 6.4.3 Sample collection, transport, and culture, 134
 6.4.4 Anaerobic culture, 138
 6.4.5 Preparing freezer stocks of pure culture, 142
 6.4.6 Reculturing stored microorganisms, 143
6.5 Conclusions, 143
Acknowledgments, 143
References, 143

7 Clinical microbiology and virology in the context of the autopsy, 146
Elisabeth J. Ridgway, Bala M. Subramanian and Mohammad Raza

7.1 Introduction, 146
7.2 The historical view of autopsy microbiology, 147
7.3 Which samples should you collect and how?, 149
 7.3.1 Blood, 151
 7.3.2 Cerebrospinal fluid, 152
 7.3.3 Tissue, pus, and fluids, 153
 7.3.4 Urine and bowel contents/feces, 154
7.4 Which methods are available for the diagnosis of infection?, 154
7.5 How do you put the results into context?, 156
 7.5.1 Culture, 156
 7.5.2 Serology and molecular tests, 160
 7.5.3 Biochemical markers, 161
7.6 What are the risks of transmission of infection in the postmortem room?, 163
7.7 How does autopsy microbiology contribute to the diagnosis of specific conditions?, 164
 7.7.1 Pneumonia, 164
 7.7.2 Mycobacterial infection, 168
 7.7.3 Fungal infections, 170
 7.7.4 Infective endocarditis, 171
 7.7.5 Gastrointestinal infection, 172
 7.7.6 Meningitis and central nervous system infections, 173
 7.7.7 Septicemia, 174
 7.7.8 Neonates and sudden unexplained death in infancy, 175
 7.7.9 Emerging infectious diseases and bioterrorism agents, 178
7.8 Conclusion, 182
References, 182

8 Postmortem bacterial translocation, 192
Vadim Mesli, Christel Neut and Valery Hedouin

8.1 Introduction, 192
 8.1.1 The intestinal microbiota in health, 192
8.2 Bacterial translocation in health and disease, 195
 8.2.1 Pathophysiological mechanisms, 196
 8.2.2 Factors responsible for an increase in the bacterial translocation, 197
8.3 Bacterial translocation in humans, 198
 8.3.1 Bacterial translocation after death, 199
 8.3.2 Identification of bacterial metabolites around the corpse, 200
8.4 Physiological changes after death influencing the selection of commensal bacteria, 200
 8.4.1 Variations of available substrates for bacterial proliferation, 200
 8.4.2 Temperature, 201
 8.4.3 Anaerobic conditions, 202
8.5 Consequences of bacterial translocation, 204
 8.5.1 Clinical interest, 204
 8.5.2 Identification of infectious agents at autopsy, 204
 8.5.3 Postmortem interval estimation, 204
 8.5.4 Infectious risk for postmortem organ transplantation, 205
 8.5.5 Postmortem toxicological analysis, 205
 8.5.6 Prevention of biological risk at autopsy, 206
 8.5.7 Environmental consequences, 206
8.6 Conclusion, 206
References, 207

9 Microbial impacts in postmortem toxicology, 212
 Jared W. Castle, Danielle M. Butzbach, G. Stewart Walker, Claire E. Lenehan,
 Frank Reith and K. Paul Kirkbride
9.1 Introduction, 212
9.2 Microbial factors complicating postmortem toxicological analyses, 213
 9.2.1 Cadaver decomposition and specimen contamination, 213
 9.2.2 Postmortem drug and metabolite degradation, 214
9.3 Precautions taken to limit microbial impacts, 214
9.4 Experimental protocols used to investigate postmortem drug and metabolite degradation due to microbial activity, 218
9.5 Examples of microbially mediated drug degradation, 219
 9.5.1 Drugs, 220
 9.5.2 Poisons, 233
9.6 Concluding remarks, 234
References, 235

10 Microbial communities associated with decomposing corpses, 245
 Embriette R. Hyde, Jessica L. Metcalf, Sibyl R. Bucheli, Aaron M. Lynne and Rob Knight
10.1 Introduction, 245
 10.1.1 Overview of the importance of bacteria in decomposition and Arpad Vass’ original efforts to catalogue this diversity, 246
 10.1.2 Marker gene and metagenomics methods for facilitating studies of the microbial ecology of decomposition, 247
10.2 The soil microbiology of decomposition, 248
 10.2.1 Microbial diversity of gravesoil and the rate of decomposition, 248
 10.2.2 Detecting decomposition signatures in soil and clandestine graves, 250
 10.2.3 Plant litter, 251
10.3 Freshwater and marine decomposition, 252
 10.3.1 Freshwater decomposition: Fish, 252
 10.3.2 Freshwater decomposition: Swine, 253
 10.3.3 Marine decomposition: Whale falls, 253
 10.3.4 Marine decomposition: Swine, 254
10.4 The microbiology of nonhuman models of terrestrial decomposition, 255
 10.4.1 Terrestrial decomposition: Rats, 255
 10.4.2 Terrestrial decomposition: Mice, 256
 10.4.3 Terrestrial decomposition: Swine, 257
10.5 The microbiology of terrestrial human decomposition, 258
 10.5.1 Initial insights into the microbial ecology of human decomposition, 259
 10.5.2 Identification of microbial signatures associated with decomposition, 260
 10.5.3 Microbial eukaryotic decomposers, 261
 10.5.4 Linking cadaver and soil microbial communities, 261
 10.5.5 Linking cadaver and insect microbial communities, 262
10.6 Is there a universal decomposition signature?, 263
10.7 Using microbial signatures to estimate PMI, 264
 10.7.1 Estimating PMI in terrestrial systems using gene marker data in nonhuman models of decomposition, 266
 10.7.2 Estimating PMI in terrestrial systems using gene marker data in human models, 267
10.8 Conclusions, 268

Acknowledgments, 268
References, 269

11 Arthropod–microbe interactions on vertebrate remains: Potential applications in the forensic sciences, 274

Jeffery K. Tomberlin, M. Eric Benbow, Kate M. Barnes and Heather R. Jordan

11.1 Introduction, 274
 11.1.1 Decomposition and applications in forensic entomology, 275
 11.1.2 Microbe–arthropod interactions, 278
11.2 Framework for understanding microbe–arthropod interactions on vertebrate remains, 282
 11.2.1 Precolonization interval, 282
11.3 Postcolonization interval, 287
 11.3.1 Colonization, 288
 11.3.2 Development, 290
 11.3.3 Succession, 292
 11.3.4 Dispersal, 295
11.4 Future directions and conclusion, 297
 11.4.1 Forensic sciences, 297
 11.4.2 Environmental sciences, 298
 11.4.3 Medical research, 298
11.5 Acknowledgments, 298
References, 298

12 Microbes, anthropology, and bones, 312
Franklin E. Damann and Miranda M.E. Jans
12.1 Introduction, 312
12.2 Bone microstructure, 313
12.3 Microbially mediated decomposition, 315
12.4 Bone bioerosion, 317
 12.4.1 Mechanisms, timing, and source of microbial interaction, 319
 12.4.2 Exploration of bioerosion and bacterial community analysis, 320
12.5 Reconstructing postmortem histories, 322
12.6 Conclusions, 324
References, 324

13 Forensic microbiology in built environments, 328
Simon Lax and Jack A. Gilbert
13.1 Introduction, 328
13.2 The human skin microbiome, 328
13.3 The microbiota of the built environment, 329
 13.3.1 Human–home microbial dynamics, 330
 13.3.2 Influence of pets, 332
 13.3.3 Influence of interpersonal relationships, 332
13.4 Tools for the forensic classification of the built environment microbiome, 332
 13.4.1 Sampling and sequencing considerations, 332
 13.4.2 Machine learning and statistical classification, 334
 13.4.3 Sequence clustering, 334
13.5 Forensic microbiology of the built environment, 335
 13.5.1 Tracking disease in hospital environments, 335
 13.5.2 Tracking occupancy and activity in a built environment, 336
13.6 Conclusion, 336
References, 337

14 Soil bacteria as trace evidence, 339
David R. Foran, Ellen M. Jesmok and James M. Hopkins
14.1 The forensic analysis of soil, 339
14.2 Assessing the biological components of soil, 340
14.3 Bacteria in soil, 341
14.4 Molecular techniques for the forensic analysis of soil, 342
 14.4.1 Analysis of soil bacteria, 342
 14.4.2 Denaturing gradient gel electrophoresis, 343
 14.4.3 Assaying DNA size variability, 343
 14.4.4 Next-generation sequencing, 344
14.5 Soil microbial profile data analysis methods, 345
 14.5.1 Qualities of ideal forensic data analysis techniques, 345
 14.5.2 Objective microbial profiling analysis methods, 346
 14.5.3 Demonstrative microbial profiling analysis methods, 347
 14.5.4 Combinations of data analysis techniques, 350
14.6 Feasibility of next-generation sequencing for forensic soil analysis, 350
 14.6.1 Differentiating diverse and similar habitats, 350
 14.6.2 Temporal changes in soil microbial profiles, 351
 14.6.3 Spatial differences in soil microbial profiles, 351
 14.6.4 Soil sample collection strategies, 352
 14.6.5 Evidence storage and changes in bacterial abundance over time, 352
 14.6.6 Costs of next-generation sequencing of forensic soil samples, 352
 14.6.7 Legal considerations for the implementation of microbial profiling, 353
14.7 Consensus on methodologies for soil collection and analysis, 353

Acknowledgments, 354
References, 354

15 DNA profiling of bacteria from human hair: Potential and pitfalls, 358
Silvana R. Tridico, Dáithí C. Murray, Michael Bunce and K. Paul Kirkbride
15.1 An introduction to human hair as a forensic substrate, 358
 15.1.1 Relevance of hair in forensic science, 358
 15.1.2 Historical and current forensic perspectives of hair examination and analysis, 359
15.2 Current research into hair microbiomes, 361
 15.2.1 Studies conducted into the metagenomic potential of human hair as a forensic substrate, 362
15.3 Importance of hair sample collection, storage, and isolation of microbial DNA, 365
 15.3.1 Hair sample collection, storage, and analysis, 365
15.4 DNA sequencing of hair microbiomes, 367
 15.4.1 Bioinformatics considerations for analyzing microbial hair data, 368
15.5 Conclusions and future directions, 369
 15.5.1 Major challenges and future directions of metagenomic analyses of hairs in forensic science, 369
 15.5.2 Future metagenomic assessments of hair samples, 370
15.5.3 Development of more focused approaches to detect bacterial population level differences between bacteria inhabiting human hairs, 370
15.5.4 General requirements for quality management, 371
Acknowledgments, 372
References, 372

Perspectives on the future of forensic microbiology, 376
David O. Carter, Jeffery K. Tomberlin, M. Eric Benbow and Jessica L. Metcalf

Index, 379