Index

accident and emergency department (AED), 177
Actinobacteria
coryneform bacteria, 12
filamentous bacteria, 13
morphologically and metabolically diverse, 11
propionic acid bacteria, 13
aerobic culture
agar and broth media, 134, 135
broth phase, pure culture growth, 135–136
conjunction with guidelines, 133, 134
plate phase, isolation, 133–135
reculturing stored microorganisms, 137
sample collection, transport, and culture, 133, 134
sterile technique, 134
storage phase, 136–137
agonal period, 200
alcohol, 220–221
amphetamines, 221–222
amplicon length heterogeneity-polymerase chain reaction (ALH-PCR), 343
anaerobic culture
broth phase, 138, 142
freezer stocks preparation, 142
growth environment, 138, 140, 141
growth medium preparation, 141–142
non-inclusive media list, 138, 139
plate phase, 138, 142
reculturing stored organisms, 138, 143
sterile technique, 140–141
storage phase, 138
analysis of similarities (ANOSIM), 346
analysis of variance statistics (ANOVA), 346
antidepressants, 222–223
antipsychotics, 223–225
aquatic settings
carcass security, 79
filtering strategies, 78–79
flowing aquatic habitats, 77
freshwater and marine, 77
multiparameter probes, 78
nonflowing aquatic habitats, 77–78
relatively stagnant aquatic habitats, 77
streamflow velocity, 78
vertebrate decomposition, 77
water quality variables, 78
Archaea and Eukaryota, 20–21
Arpad Vass’ original efforts, 246–247
autopsy microbiology and virology
diagnosis of infection
bacterial and fungal culture, 154
biochemical markers, 156
clinical and autopsy specimens investigation, 154, 155
emerging infectious diseases and bioterrorism agents (see bioterrorism agents)
fungal infections, 170–171
gastrointestinal infection, 172–173
infective endocarditis, 171–172
meningitis and central nervous system infections, 173–174
molecular techniques, 156
mycobacterial infection, 168–170
pneumonia, 164, 167–168
septicemia, 174–175
serological antigen and antibody tests, 156
staining techniques, 154
SUDI/SUID, 175–178

© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
autopsy microbiology and virology (cont’d)
historical view
 antemortem vs. postmortem blood cultures, 147
 contamination reduction, 148–149
 hypotheses, 148
 presumptive antemortem infective diagnosis, 149
infection transmission risks
 clinical and statutory guidelines, biosafety, 164, 167
 occupational exposure, 163
 risk factors, identification of, 164–166
investigation results
 biochemical markers (see biochemical markers)
 culture (see culture)
 serology and molecular tests, 160–161
sample collection
 blood, 151–152
 CSF, 152
 pathogens, 149
 quality microbiological specimens, standard procedure, 149–151
 tissue, pus, and fluids, 153
 urine and bowel contents/feces, 154

Bacillus anthracis, 15
Bacillus subtilis, 14
Bacteroidales, 255
Bacteroidetes, 254
Bayesian source tracking algorithm, 300
benzodiazepines
 alprazolam, 227
 7-aminometylabolites, 225–226
 clonazepam, 225–226
 demoxepam, 226
 diazepam, 227
 flunitrazepam, 225–227
 nitrazepam, 225–226
 nitrobenzodiazepines, 225
 nordiazepam, 226–227
 N-oxide benzodiazepines, 226, 227
 temazepam, 226
 triazolo benzodiazepines, 227
Bifidobacterium, 193
biochemical markers
 diagnosis of infection, 156
 investigation results, 161–163
biocrimes, 25
 definition, 38
 involving agriculture, 39–40
 involving humans, 38–39
biolog plates, 128–129
bioterrorism agents
 classification system, 178, 179
 diagnostic samples and microbiology tests, 179–181
 documentation, 179
 frozen samples, 179
 Hantavirus syndrome and virus, 181
 L. pneumophila, 181
tularemia, 182
zoonosis, 178, 182
bone bioerosion
 and bacterial community analysis, 320–322
 Cyanobacteria, 317
 mechanisms, timing, and source, 319–320
MFD
 budded-type MFD, 317, 318
 lamellate tunnels, 317, 318
 linear longitudinal MFD, 317, 318
 Wedl tunnels, 317–319
 microbial alteration, 317, 318
bone microstructure
 bone minerals, 314
 collagen fibril, 313–314
 destructive foci, 315
 Haversian systems/osteons, 314, 315
 lamellar bone, 314, 315
 metacarpal, 315, 316
 primary and secondary bone, 314
 Volkmann’s canal, 314, 315
built environment, microbiota
 forensic classification
 machine learning and statistical classification, 334
 sampling and sequencing considerations, 332–333
 sequence clustering, 334–335
 human–home microbial dynamics, 330–331
 human skin microbiome, 328–329
 indoor spaces, 330
 interpersonal relationships, 332
pets, 332
surfaces and environmental systems, 329
tracking disease, hospital environment, 335–336
tracking occupancy and activity, 336
urbanization, 330
cadaver decomposition island (CDI), 32
candidate phyla (CP), 364
cannabis, 228
cerebrospinal fluid (CSF), 152
Chloroflexi, 365
circular consensus sequencing (CCS) approach, 107
clandestine graves, 250–251
Clostridia, 246
Clostridium spp., 8, 14–15
cocaine, 228
commensal, 193
corpse decomposition
freshwater decomposition
fish, 252–253
swine, 253
marine decomposition, 252
swine, 254–255
whale falls, 253–254
microbial ecology of
abiotic and biotic factors, 245
bacteria and Arpad Vass’ original efforts, 246–247
marker gene and metagenomics methods, 247–248
microbial signatures, PMI estimation
entomology, 264
gene marker data, human models, 267–268
gene marker data, nonhuman models, 266–267
insect and microbial community patterns, 266
outdoor and indoor decomposition scenarios, 245
soil microbiology
biomass and activity, 248
gravesoil, microbial diversity, 248–250
nematode abundance, 248
plant litter, 251–252
signature detection, 250–251
stages, 246
terrestrial human decomposition
body farms, 258
cadaver and insect microbial communities, 262–263
cadaver and soil microbial communities, 261–262
facilities, 259
initial insights, 259–260
microbial eukaryotic decomposers, 261
microbial signature identification, 260–261
terrestrial nonhuman decomposition
mice, 256–257
rats, 255–256
swine, 257–258
universal decomposition signature
bacterial taxa, 264, 265
microbial community patterns, 263
Moraxellaceae, 264
Pseudomonadaceae, 264
Xanthomonadaceae, 264
Corynebacterium, 12
coryneform bacteria, 12
C-reactive protein (CRP), 156, 162, 163
culture
aerobic culture
agar and broth media, 134, 135
broth phase, pure culture growth, 135–136
conjunction with guidelines, 133, 134
plate phase, isolation, 133–135
reculturing stored microorganisms, 137
sample collection, transport, and culture, 133, 134
sterile technique, 134
storage phase, 136–137
anaerobic culture
broth phase, 138, 142
freezer stocks preparation, 142
growth environment, 138, 140, 141
growth medium preparation, 141–142
non-inclusive media list, 138, 139
plate phase, 138, 142
reculturing stored organisms, 138, 143
sterile technique, 140–141
storage phase, 138
anatomical sites, results from, 157
culture (cont’d)
- blood
 - investigation results, 158–159
 - sample collection, 151–152
- complementarity approaches, 129
- consideration, 156–157
- CSF
 - investigation results, 159–160
 - sample collection, 152
- high-throughput sequencing, 128
- *Ignatzschineria* spp., 128
- Illumina 16S taxa, subset of, 129, 131
- other samples, 160
- PMI, 157
- postmortem bacteria, subset of, 129, 130
- pure culture period, 128
- sample collection and handling, 132–133
- cyanide, 233
- cyanobacteria, 317

death, cause of
- biocrimes, 25
 - definition, 38
 - involving agriculture, 39–40
 - involving humans, 38–39
- natural causes
 - disease, 36–37
 - drowning, 37–38

decomposition research see also corpse decomposition
descriptive and hypothesis-driven research
- manipulation studies, 63–65
- pattern-oriented studies, 62–63

eperimental design
- experimental unit, 65–66
- microbial community succession, 65
- mixed-grass prairie, 65
- project-by-project basis, 69
- pseudoreplication, 67–68
- sampling approaches, 68–69
- split-plot designs, 66–67
- statistical power, 68
- treatment randomization, 66

field studies, considerations for, 61–62

human remains
- challenges of, 57–58
- during death investigations, 58–59

surrogate decomposition process, 56
- animal surrogates, 60
- human surrogates, 60–61

validation studies, 69–70
demonstrative microbial profiling analysis methods
- abundance charts, 347, 348
- HCA, 348–350
- MDS, 348, 349
denaturing gradient gel electrophoresis (DGGE), 343

Desulfobacteraceae, 254
Desulfobulbaceae, 254
Desulfonema, 20
Desulfoarcina, 20

DNA profiling, human hair
- asynchronous growth cycle stages, 360–361

DNA sequencing, 367–368
metagenomic analysis
- amplicon-based next-generation workflow diagram, 362, 363
- pubic hair, 362–364
- scalp hair, 362, 364–365

nuDNA, 360
sample collection, storage, and isolation
- common routes, 365, 366
- microbial community, crime items, 365
- pubic hair bacterial profile, 366–367
- skin bacteria, 366
- storage conditions, 367

STRs, 360

DNA sequencing
- amplicon sequencing, marker loci (see also marker gene data analysis)
- amplicon library, 101
- barcoded fusion primer design, 101
- culture-independent molecular method, 99
- 18S rRNA gene, 100
- ITS region, 100
- 16S rRNA gene, 99–100
- target region primer selection, 101

human hair, 367–368
multi-omics sequencing (see also multi-omics data analysis)
DNase treatment, 103
high-throughput sequencing platform, 102
metaproteomics, 104–105
metatranscriptomic approach, 103
oligo-dT-based approach, 103
rRNA removal, 104
sequencing depth, 102
small molecules and
biomacromolecules, 103
stabilizers, 103
transcript abundance measurement, 104
whole-genome shotgun sequencing
approach, 102
next-generation sequencing platforms
advantages and disadvantages, 105, 106
Illumina HiSeq/MiSeq sequencer, 105
Ion PGM™/Ion Proton™ System, 105
NextSeqR/HiSeq sequencing
platforms, 107
PacBio® RS II sequencing system,
105, 107
Roche 454-pyrosequencer, 105

18S amplicon sequencing, eukaryotes, 333
18S rRNA gene
DNA sequencing, 100
microbial identification, 29
next-generation sequencing, 344
enteric Proteobacteria, 16–18
Enterococcus, 15
environmental contamination
human and zoonotic pathogens, 44–47
indicator organisms, 47
Epsilonproteobacteria, 254
ethanol see alcohol
ethylene glycol, 233
ethyl glucuronide (EtG), 220–221
ethyl sulfate (EtS), 220–221
Eubacterium, 13
extensively drug-resistant (XDR) strains, 169

facultative anaerobe, 5, 8
filamentous bacteria, 13
Firmicutes, 34–35, 253, 254, 258
decomposers, 13
lactic acid bacteria, 15
non-lactic acid Firmicutes, 16
non-sporulating Firmicutes, 16
sporulating Firmicutes, 14–15
Flavobacteriales, 255

forensic entomology, decomposition and
applications
entomology-based phases, 275, 276
microbe–arthropod interactions (see
microbe–arthropod interactions)
movement of remains, 277–278
PMI framework, 275
time of death, 275–277
forensic microbiology
chain of custody needs, 48–49
death, cause of
biocrimes, 25, 38–40
natural causes, 36–38
medicolegal aspects
environmental contamination, 44–47
foodborne illnesses, 47–48
medical malpractice, 43–44
nosocomial infections and antibiotic
resistance, 44
plant pathogens, 47
sexual assault, 43
microbial identification
classical microbiology, 26–27
genomics and strain typing, 27–30
vs. molecular epidemiology, 25
PMI estimation
environmental factors, 31
human microbial communities, 35–36
invertebrates, 30
mammalian microbial communities, 33–35
next-generation sequencing methods, 32
prokaryotic and eukaryotic organisms, 32
soil microbial communities, 32–33
stages of decomposition, 30–31
taphonomy, 30
time of death, 30
trace evidence
agroterrorism, 42
animal abuse cases, 42
human, 40–41
formic acid, 234
freshwater decomposition
fish, 252–253
swine, 253
Fusobacteria, 246
γ-hydroxybutyrate (GHB), 229–230
gamma-hydroxybutyric acid (GHB), 205–206
Gemmatimonadetes, 364
Genomic Standards Consortium (GSC) guidelines, 87
gram-negative anaerobes, 193
gravesoil, microbial diversity
acidic soils, 250
bacterial and microbial eukaryotic communities, 248–249
Chitinophagaceae, 249
moisture effect, 249–250
rhabditid nematodes, 249
soil aeration, 250
Sphingobacterium, 249
vertebrate remains, 249
zymogenous bacteria, 249
gut flora see intestinal microbiota

hierarchical cluster analysis (HCA), 348–350
human hair
historical and current forensic perspectives
comparison microscope, 359–360
DNA profiling (see DNA profiling)
genetic vs. acquired characteristics, 359
morphological examination, 359
transmitted light microscope, 359
microbiomes
DNA sequencing, 367–368
genetic analysis, 361
metagenomic analysis, 362–365
relevance and value, 358
sample collection, storage, and isolation
common routes, 365, 366
microbial community, crime items, 365
pubic hair bacterial profile, 366–367
skin bacteria, 366
storage conditions, 367
human skin microbiome, 328–329
hydrophobic bacterial biofilms, 364

Ignatzschineria, 18, 264
internal transcribed spacer (ITS) sequencing, 29, 333
intestinal microbiota
bacterial species and quantification, 193, 194
Bifidobacterium, 193
of colon, 195
commensal, 193
of duodenum and jejunum, 194
gram-negative anaerobes, 193
of ileum, 194–195
microbial colonization, 193
modification of, 198
molecular markers, 193
newborn intestinal tract, 193
of stomach, 194
10^{12} to 10^{14} bacteria, 192

Klebsiella pneumonia, 44
lactic acid bacteria, 15
Lactobacillus spp., 15, 362
marine decomposition, 252
swine, 254–255
whale falls, 253–254
marker gene data analysis
data analysis pipelines, 107–108
microbial diversity estimations
community richness, 113
datasets normalization, 112
mothur pipeline, 113
NMDS, 113–114
PCoA, 113–114
phylogenetic information, 113
random subsampling, 113
UPGMA clustering, 114
sequence clustering approaches
OTU-based clustering methods, 112
phylogenetic clustering, 111–112
taxonomic identification, 111
sequence data preprocessing
chimera detection software packages, 108–110
ChimeraSlayer, 110
chimeric sequences removal, 108, 110–111
Decipher, 110
noise correction software packages, 108–110
Uchime, 111
menaquinones, 313
mesotrophs, 9
metagenomic analysis, human hair
amplicon-based next-generation workflow diagram, 362, 363
pubic hair
 colonization, bacterial species, 363–364
 hydrophobic bacterial biofilms, 364
 Lactobacillus spp., 362
 microbial taxa, 362
 sexual crimes, 364
scalp hair, 362
 candidate phyla (CP), 364
 Chloroflexi, 365
 Gemmatimonadetes, 364
 SRI, 364
 TM7, 364
metagenomic data generation
DNA extraction
 direct method, 97, 98
 indirect method, 97
 organic phenol–chloroform-based approach, 98–99
 sample collection and storage, 96
 shotgun metagenomic approach, 99
 silica spin-column-based approach, 97–98
DNA sequencing
 amplicon sequencing, marker loci, 99–101
 multi-omics sequencing, 102–105
 next-generation sequencing platforms, 105–107
 enormity sequencing, 94
 future directions, 118
 multi-omics workflow, 94, 95
 statistical analysis, 117–118
 taxonomic diversity of microbes, 94
methanotrophs, 19
methylotrophs, 19
microbe–arthropod interactions
environmental sciences, 298
epinecrotic communities, 278, 279
forensic sciences, 297
intra- and interspecific competition, 279–280
medical research, 298
necrobiome, 278
Nicrophorus marginatus, 279
postcolonization interval
 death, 284–285
 detection, 286
 location, 286–287
predation
 aquatic ecosystems, 281
 bacteria–bacteria predation, 281
 cannibalism, 280
 flies and bacteria interactions, 281
 microbial and necrophagous insect communities, 281
 pathogen removal, 282
symbiosis, 282
thanatomicrobiome, 278, 279
microbes, anthropology, and bones
bone bioerosion
 and bacterial community analysis, 320–322
 budded-type MFD, 317, 318
 cyanobacteria, 317
 lamellate tunnels, 317, 318
 linear longitudinal MFD, 317, 318
 mechanisms, timing, and source, 319–320
 microbial alteration, 317, 318
 Wedl tunnels, 317–319
bone microstructure
 bone minerals, 314
 collagen fibril, 313–314
 destructive foci, 315
 Haversian systems/osteons, 314, 315
 lamellar bone, 314, 315
 metacarpal, 315, 316
 primary and secondary bone, 314
 Volkmann’s canal, 314, 315
DNA analyses, 312
high throughput amplicon-based sequencing, 313
histological analyses, 312–313
histomorphology, 313
isotope analyses, 312
microbially mediated decomposition
 altered microstructure recognition, 315–316
 autolysis, 316
 Bacteroidetes and Firmicutes, 316
 Proteobacteria and Actinobacteria, 317
postmortem history reconstruction, 322–323
taphonomic effects, 312
microbial identification
 classical microbiology, 26–27
 genomics and strain typing
culture-based vs. molecular-based
microbiological methods, 30
18S rRNA genes, 29
 genetic profiling, 28
ITS, 29
microbial community analysis, 27–28
organism misidentification, 29
sequencing methods, 27–29
16S rRNA gene, 28–29
SNPs, 29
microbial profile data analysis methods
 combinations, 350
demonstrative
 abundance charts, 347, 348
HCA, 348–350
MDS, 348, 349
objective, 346–347
qualities, 345
microbial signatures, PMI estimation
 entomology, 264
gene marker data, human models, 267–268
gen marker data, nonhuman models,
 266–267
insect and microbial community
 patterns, 266
microbial succession
 human microbial communities, 35–36
 mammalian microbial communities, 33–35
 soil microbial communities, 32–33
microbiomes
 human hair
 DNA sequencing, 367–368
 genetic analysis, 361
 metagenomic analysis, 362–365
 human skin, 328–329
 postmortem, 58
 Micrococcus, 16
microorganisms
 Actinobacteria
 coryneform bacteria, 12
 filamentous bacteria, 13
 morphologically and metabolically
 diverse, 11
 propionic acid bacteria, 13
 Archaea and Eukaryota, 20–21
 competition, 10–11
 environmental parameters, 7–8
 enzymes
 classification, 5, 7
 community level physiological
 profiling, 7
 extracellular enzymes, 6–7
 intracellular enzymes, 5–6
 facultative anaerobe, 5, 8
 Firmicutes
 decomposers, 13
 lactic acid bacteria, 15
 non-lactic acid Firmicutes, 16
 non-sporulating Firmicutes, 16
 sporulating Firmicutes, 14–15
 metabolic strategies, 5, 6
 microbial function, 4–5
 microbial taxonomy
 bacteria, 2–3
 classification, 2–3
 Gram stain, 3–4
 microbial cells, 3, 4
 prokaryotic names, 3
 shape and size, 3
 obligate aerobe, 5, 8
 oxygen and moisture, 8–9
 Proteobacteria
 classes, 16, 17
 enteric Proteobacteria, 16–18
 methanotrophs, 19
 methylotrophs, 19
 nitrifying bacteria, 19
 Pseudomonas and pseudomonads, 18
 sulfate and sulfur reducers, 20
 sulfur- and iron-oxidizing Proteobacteria,
 19–20
 spatial evidence, 1
 temperature, 9–10
 temporal evidence, 2
 microscopical focal destructions (MFD)
 budded-type MFD, 317, 318
 lamellate tunnels, 317, 318
 linear longitudinal MFD, 317, 318
 Wedl tunnels, 317–319
 minimum information about any sequence
 (MIxS), 87
 molecular techniques, soil bacteria
 analysis, 342–343
 assaying DNA size variability, 343–344
 DGGE, 343
next-generation sequencing
vs. bacterial sequences, 344
diverse vs. similar habitats, 350–351
18S rRNA gene, 344
16S rRNA gene, 345
soil microbial profiles (see soil microbial profiles)

Moraxellaceae, 264
multidimensional scaling (MDS), 348, 349
multidrug resistance (MDR) approach, 169
multi-omics data analysis
gene prediction and metabolic profiling, 116–117
metatranscriptomic analysis, 114
sequence assembly, 115–116
sequence preprocessing, 115
shotgun metagenomic data analysis pipeline, 114
taxonomic profiling, 116
mycobacterial infection
environmental nontuberculous mycobacteria, 169–170
HIV, 170
MDR approach, 169
Mycobacterium avium, 170
tuberculosis (TB), 168–169

National Center for Biotechnology Information (NCBI), 38
new psychoactive substances (NPS), 231
next-generation sequencing (NGS)
hair microbiomes, 362, 363
soil bacteria
vs. bacterial sequences, 344
diverse vs. similar habitats, 350–351
18S rRNA gene, 344
16S rRNA gene, 345
soil microbial profiles (see soil microbial profiles)

Nicrophorus marginatus, 279
non-lactic acid Firmicutes, 16
nonmetric multidimensional scaling (NMDS), 113–114
non-sporulating Firmicutes, 16
nuclear DNA (nuDNA), 360

objective microbial profiling analysis
methods, 346–347
obligate aerobe, 5, 8

Oceanospirallales, 254
molecular epidemiology, 25
operational taxonomic units (OTUs), 330, 335
opiates, 230–231

Oscheius tipulae, 32
paracetamol glucuronide, 232
Pasteur, 127–128
personal protective equipment (PPE), 80, 96

Planctomycetes, 254
plant litter, 251–252
pneumonia, autopsy microbiology
H1N1 influenza virus, 167–168
Legionella pneumophila, 167
lung samples, 164
nosocomial pneumonia, 164
pathogens, 164, 167
unexpected fungal and mycobacterial infection, 167
postcolonization interval, 287–288

colonization
ambient temperature, 288–289
blow fly activity and oviposition, 288–289
corpse disposal, 289–290
necrophagous beetles, 288–289
necrophagous Coleoptera, 288
development
cold tolerance, 290
controlled substances, 291–292
Diptera and Coleoptera, 290
drug levels, 292
entomotoxicology, 291–292
environmental temperature, 290–291
holometabolous, 290
larval mass density, 291
poikilothermic insects, 290
dispersal
Calliphoridae, 296
circadian rhythm, 295
guanine–cytosine (GC) content, 296
larval insect dispersal, 295
Proteobacteria, Firmicutes, and Bacteroidetes, 297
Proteus–Providencia group, 296
pupation, 295–296
succession
 aerobic protein decomposition, 294
 anaerobic bacteria, 293–294
 autolysis, 293
 body fat, 294
 Calliphoridae, 293
 decomposition stages, 292
 Dermestidae, 295
 Dipteran larvae, 295
 fly species, 292
 insect species, 292
 microbial communities, 292–293
 Muscidae and Fannidae, 293
 Piophilidae, Phoridae, and Sphaeroceridae, 294
 putrefaction by-products, 294
 Sarcophagidae, 293
 skeletal bone decomposition, 295
 soup, 293
 waste gases, 294

postmortem bacterial translocation
 after death
 agonal period, 200
 anaerobic conditions, 202–204
 postmortem interval, 199
 substrates variation, 200–201
 temperature, 201–203
 cadaver microbiota, 192

consequences
 biological risk prevention, 206
 environmental consequences, 206
 infectious agents identification, 204
 organ transplantation, infectious risk, 205
 postmortem interval estimation, 204–205
 postmortem toxicological analysis, 205–206
 definition, 195

in health and disease
 anaerobic and aerobic bacteria, 196
 bacteria through enterocytes, 197, 198
 immune system deficiency, 198
 intestinal microbiota, modification of, 198
 intestinal mucosa alteration, 197
 mechanisms and factors, 197
 pathophysiological mechanisms, 196
 hemorrhagic shock, 198
 inflammatory bowel diseases, 198–199
 intestinal microbiota
 bacterial species and quantification, 193, 194
 Bifidobacterium, 193
 of colon, 195
 commensal, 193
 of duodenum and jejunum, 194
 gram-negative anaerobes, 193
 of ileum, 194–195
 microbial colonization, 193
 molecular markers, 193
 newborn intestinal tract, 193
 of stomach, 194
 \(10^{12}\) to \(10^{14}\) bacteria, 192
 metabolites around corpse, 200

postmortem drug and metabolite degradation
 chemical functional groups, 214–217
 drugs
 alcohol (ethanol), 220–221
 amphetamines, 221–222
 antidepressants, 222–223
 antipsychotics, 223–225
 benzodiazepines, 225–228
 cannabis, 228
 cocaine, 228
 GHB, 229–230
 NPS, 231
 opiates, 230–231
 paracetamol glucuronide, 232
 salbutamol and terbutaline, 232
 sodium fluoride, 232
 trihexyphenidyl, 232
 valproic acid, 233
 zopiclone, 233
 experimental protocols, 218–219
 fungal and mammalian metabolism, 214
 poisons
 cyanide, 233
 ethylene glycol, 233
 formic acid, 234
 xenobiotic metabolic reactions, 214

postmortem interval (PMI) estimation, 59, 69
 environmental factors, 31
invertebrates, 30
microbial succession
human microbial communities, 35–36
mammalian microbial communities, 33–35
soil microbial communities, 32–33
next-generation sequencing methods, 32
prokaryotic and eukaryotic organisms, 32
stages of decomposition, 30–31
taphonomy, 30
time of death, 30
postmortem microbiome, 58
postmortem submersion interval (PMSI), 35
postmortem toxicology, microbial impacts
cadaver decomposition and specimen contamination, 213–214
drug/poison stability, 213
postmortem drug and metabolite degradation
alcohol (ethanol), 220–221
amphetamines, 221–222
antidepressants, 222–223
antipsychotics, 223–225
benzodiazepines, 225–228
cannabis, 228
chemical functional groups, 214–217
cocaine, 228
cyanide, 233
ethylene glycol, 233
experimental protocols, 218–219
formic acid, 234
fungal and mammalian metabolism, 214
\(\gamma\)-hydroxybutyrate, 229–230
NPS, 231
opiates, 230–231
paracetamol glucuronide, 232
salbutamol and terbutaline, 232
sodium fluoride, 232
trihexyphenidyl, 232
valproic acid, 233
xenobiotic metabolic reactions, 214
zopiclone, 233
precautions
chemical preservatives, 214, 218
specimen storage at low temperatures, 218
screening methods, 212
specimen collection and analysis, 212
precolonization interval
death, 284–285
detection, 286
location, 286–287
predation
aquatic ecosystems, 281
bacteria–bacteria predation, 281
cannibalism, 280
flies and bacteria interactions, 281
microbial and necrophagous insect communities, 281
pathogen removal, 282
principle coordinate analysis (PCoA), 113–114
procalcitonin (PCT), 156, 161–163
Propionibacterium spp., 13, 329
propionic acid bacteria, 13
Proteobacteria, 34–35, 253, 258, 263
classes, 16, 17
enteric Proteobacteria, 16–18
methanotrophs, 19
methylotrophs, 19
nitrifying bacteria, 19
Pseudomonas and pseudomonads, 18
sulfate and sulfur reducers, 20
sulfur- and iron-oxidizing Proteobacteria, 19–20
Pseudomonadaceae, 255, 264
psychrotrophs, 9
454 pyrosequencing, 246
random forest (RF) classifiers, 334
sacrificial pseudoreplication, 68
salbutamol and terbutaline, 232
sample collection and storage
aerobic culture, 133, 134
aseptic (sterile) techniques, 79–80
autopsy microbiology and virology
blood, 151–152
CSF, 152
pathogens, 149
quality microbiological specimens, 149
standard procedure, 149–151
tissue, pus, and fluids, 153
urine and bowel contents/feces, 154
sample collection and storage (cont’d)
DNA profiling, human hair
common routes, 365, 366
microbial community, crime items, 365
pubic hair bacterial profile, 366–367
skin bacteria, 366
storage conditions, 367
and handling, 132–133
inadvertent contamination, 79
metagenomic data generation, 96
PPE, 80
soil microbial profiles, 352
sterility barrier, 80
sampling methods and data generation
aquatic settings
carcass security, 79
filtering strategies, 78–79
flowing aquatic habitats, 77
freshwater and marine, 77
multiparameter probes, 78
nonflowing aquatic habitats, 77–78
relatively stagnant aquatic habitats, 77
streamflow velocity, 78
vertebrate decomposition, 77
water quality variables, 78
data considerations
GSC guidelines, 87
metadata information, 87–89
MIxS, 87
sampling equipment, 86
sampling protocol, 86
financial considerations, 73
sample collection techniques
aseptic (sterile) techniques, 79–80
inadvertent contamination, 79
PPE, 80
sterility barrier, 80
sample preservation, storage, and handling
techniques
archaeal communities, 82
aseptic techniques, 83
cadaver, 83
carrion, 81
composite samples vs. individual samples, 82–83
epilithic biofilms, 83
Hess samplers and drop kick nets, 83–84
materials and supplies checklist, 86
microbiota, 84
mobile organisms, 82
necrophagous fauna, 81
noninvasive methods, 80
oligotrophic water bodies, 84
primer–template hybridizations, 84
soil microbes, 82
sterility factors and temperature, 81
storage methods, 84–85
systematic experimentation, 81
water column samples, 84
terrestrial settings
consumer collections, 75–77
environmental conditions, 74–75
primary terrestrial biomes, 74
Scientific Working Group on Materials
Analysis Guidelines (SWGMAT), 367
serology and molecular tests, 160–161
short tandem repeats (STRs), 360
similarity profile routine (SIMPROF), 346–347
simple pseudoreplication, 67–68
single-nucleotide polymorphisms (SNPs), 29
16S rRNA gene
built environment microbiome, 333
DNA sequencing, 99–100
microbial identification, 28–29
next-generation sequencing, 345
sodium fluoride, 232
soil bacteria, trace evidence
bacterial phylum, 341
biological components, 340–341
consensus, 353–354
environmental factors and human
activity, 342
microbial profile data analysis methods
combinations, 350
demonstrative, 347–350
objective, 346–347
qualities, 345
molecular techniques
assaying DNA size variability, 343–344
DGGE, 343
genetic marker, 342–343
next-generation sequencing (see next-
generation sequencing, soil bacteria)
natural and anthropogenic factors, 341–342
soil analysis, 339–340
soil microbial profiles
 costs, 352–353
diverse vs. similar habitats, 350–351
legal considerations, implementation, 353
soil sample collection strategies, 352
spatial variation, 351
storage and changes over time, 352
temporal changes, 351
soil microbiology
 biomass and activity, 248
gravesoil, microbial diversity, 248–250
nematode abundance, 248
plant litter, 251–252
signature detection, 250–251
Sporosarcina contaminans, 14
sporulating Firmicutes, 14–15
Staphylococcus spp., 16, 34
Sudden Infant Death Syndrome (SIDS), 175
sudden unexplained death in infancy (SUDI/SUID)
 accidental suffocation, 175
 AED blood cultures, 177
 bacteria and bacterial toxins, 176
 Escherichia coli, 176
 multidisciplinary review, 178
 S. aureus, 176–177
 septicemia, 176
 SIDS, 175
 viral infection, 177
taphonomic effects/processes, 312, 315
temporal pseudoreplication, 68
terminal restriction fragment length polymorphism (T-RFLP), 343–344
terrestrial human decomposition
 body farms, 258
cadaver and insect microbial communities, 262–263
cadaver and soil microbial communities, 261–262
facilities, 259
initial insights, 259–260
microbial eukaryotic decomposers, 261
microbial signature identification, 260–261
terrestrial nonhuman decomposition
 mice, 256–257
 rats, 255–256
 swine, 257–258

terrestrial settings
 consumer collections
 active trapping methods, 75
 entomological trapping methods, 75, 76
 flies, 75
 glue traps, 77
 insects and invertebrates, 75
 passive trapping methods, 75
 soil and leaf-litter dwelling invertebrates, 77
environmental conditions, 74–75
primary terrestrial biomes, 74
thermotrophs, 9
trace evidence
 human, 40–41
nonhuman animals and food
 agroterrorism, 42
 animal abuse cases, 42
soil bacteria
 bacterial phylum, 341
 biological components, 340–341
 consensus, 353–354
environmental factors and human activity, 342
microbial profile data analysis methods
 (see microbial profile data analysis methods)
molecular techniques (see molecular techniques)
natural and anthropogenic factors, 341–342
soil analysis, 339–340
trihexyphenidyl, 232
United States Government Accountability Office (GAO), 132
unweighted pair group method with arithmetic mean (UPGMA) clustering, 114
valproic acid, 233
whole-community proteomics
 (WCP), 104
Wohlfahrtiimonas, 18
zopiclone, 233