Contents

List of Contributors xi
Preface xv

1 Introduction 1
Rebecca Pferdehirt, Florian Gnadt and Jennie R. Lill
1.1 Post-translational Modification of Proteins 1
1.2 Global versus Targeted Analysis Strategies 3
1.3 Mass Spectrometric Analysis Methods for the Detection of PTMs 5
1.3.1 Data-Dependent and Data-Independent Analyses 6
1.3.2 Targeted Analyses 7
1.3.3 Multiple Reaction Monitoring 8
1.3.4 Multiple Reaction Monitoring Initiated Detection and Sequencing 9
1.4 The Importance of Bioinformatics 9
Acknowledgements 11
References 11

2 Identification and Analysis of Protein Phosphorylation by Mass Spectrometry 17
Dean E. McNulty, Timothy W. Sikorski and Roland S. Annan
2.1 Introduction to Protein Phosphorylation 17
2.2 Analysis of Protein Phosphorylation by Mass Spectrometry 25
2.3 Global Analysis of Protein Phosphorylation by Mass Spectrometry 39
2.4 Sample Preparation and Enrichment Strategies for Phosphoprotein Analysis by Mass Spectrometry 46
2.5 Multidimensional Separations for Deep Coverage of the Phosphoproteome 54
2.6 Computational and Bioinformatics Tools for Phosphoproteomics 57
2.7 Concluding Remarks 65
References 66

3 Analysis of Protein Glycosylation by Mass Spectrometry 89
David J. Harvey
3.1 Introduction 89
3.2 General Structures of Carbohydrates 89
3.2.1 Protein-Linked Glycans 90
3.3 Isolation and Purification of Glycoproteins 94
3.3.1 Lectin Affinity Chromatography 95
3.3.2 Boronate-Based Compounds 95
3.3.3 Hydrazide Enrichment 96
3.3.4 Titanium Dioxide Enrichment of Sialylated Glycoproteins 96
3.4 Mass Spectrometry of Intact Glycoproteins 96
3.5 Site Analysis 96
3.6 Glycan Release 98
3.6.1 Use of Hydrazine 99
3.6.2 Use of Reductive β-Elimination 99
3.6.3 Use of Enzymes 100
3.7 Analysis of Released Glycans 102
3.7.1 Cleanup of Glycan Samples 102
3.7.2 Derivatization 102
3.7.2.1 Derivatization at the Reducing Terminus 102
3.7.2.2 Derivatization of Hydroxyl Groups: Permethylation 104
3.7.2.3 Derivatization of Sialic Acids 106
3.7.3 Exoglycosidase Digestions 106
3.7.4 HPLC and ESI 107
3.8 Mass Spectrometry of Glycans 107
3.8.1 Aspects of Ionization for Mass Spectrometry Specific to the Analysis of Glycans 107
3.8.1.1 Electron Impact (EI) 107
3.8.1.2 Fast Atom Bombardment (FAB) 108
3.8.1.3 Matrix-Assisted Laser Desorption/Ionization (MALDI) 108
3.8.1.4 Electrospray Ionization (ESI) 113
3.8.2 Glycan Composition by Mass Spectrometry 114
3.8.3 Fragmentation 114
3.8.3.1 Nomenclature of Fragment Ions 116
3.8.3.2 In-Source Decay (ISD) Ions 116
3.8.3.3 Postsouce Decay (PSD) Ions 117
3.8.3.4 Collision-Induced Dissociation (CID) 117
3.8.3.5 Electron Transfer Dissociation (ETD) 118
3.8.3.6 Infrared Multiphoton Dissociation (IRMPD) 118
3.8.3.7 MSn 118
3.8.3.8 Fragmentation Modes of Different Ion Types 119
3.8.4 Ion Mobility 126
3.8.5 Quantitative Measurements 128
3.9 Computer Interpretation of MS Data 128
3.10 Total Glycomics Methods 130
3.11 Conclusions 131
Abbreviations 131
References 133

4 Protein Acetylation and Methylation 161
Caroline Evans
4.1 Overview of Protein Acetylation and Methylation 161
4.1.1 Protein Acetylation 161
4.1.2 Protein Methylation 162
4.1.3 Functional Aspects 163
4.1.4 Mass Spectrometry Analysis 163
4.2 Mass Spectrometry Behavior of Modified Peptides 164
4.2.1 MS Fragmentation Modes 164
4.2.2 Acetylation- and Methylation-Specific Diagnostic Ions in MS Analysis 165
4.2.3 Application of MS Methodologies for the Analysis of PTM Status 168
4.2.4 Quantification Strategies 169
4.2.4.1 Single Reaction Monitoring/Multiple Reaction Monitoring 170
4.2.4.2 Parallel Reaction Monitoring 171
4.2.4.3 Data-Independent Acquisition MS 172
4.2.4.4 Ion Mobility MS 173
4.2.5 Use of Stable Isotope-Labeled Precursors 174
4.2.5.1 Dynamics of Acetylation and Methylation 174
4.2.5.2 Stoichiometry of Acetylation and Methylation 175
4.3 Global Analysis 176
4.3.1 Top-Down Proteomics 176
4.3.2 Middle Down 177
4.4 Enrichment 178
4.4.1 Immunoaffinity Enrichment 178
4.4.2 Reader Domain-Based Capture 179
4.4.2.1 Kac-Specific Capture Reagents 179
4.4.2.2 Methyl-Specific Capture Reagents 180
4.4.3 Biotin Switch-Based Capture 180
4.4.4 Enrichment of N-Terminally Acetylated Peptides 181
4.5 Bioinformatics 181
4.5.1 Assigning Acetylation and Methylation Status 182
4.5.2 PTM Repositories and Data Mining Tools 183
4.5.3 Computational Prediction Tools for Acetylation and Methylation Sites 183
4.5.4 Information for Design of Follow-Up Experiments 185
4.6 Summary 185
References 185

5 Tyrosine Nitration 197
Xianquan Zhan, Ying Long and Dominic M. Desiderio
5.1 Overview of Tyrosine Nitration 197
5.2 MS Behavior of Nitrated Peptides 199
5.3 Global Analysis of Tyrosine Nitration 208
5.4 Enrichment Strategies 214
5.5 Concluding Remarks 221
Acknowledgements 222
Abbreviations 222
References 223

6 Mass Spectrometry Methods for the Analysis of Isopeptides Generated from Mammalian Protein Ubiquitination and SUMOylation 235
Navin Chicooree and Duncan L. Smith
6.1 Overview of Ub and SUMO 235
6.1.1 Biological Overview of Ubiquitin-Like Proteins 235
6.1.2 Biological Overview of Ub and SUMO 236
6.1.3 Biological Functions of Ub and SUMO 236
6.2 Mass Spectrometry Behavior of Isopeptides 237
6.2.1 Terminology of a Ub/Ubl isopeptide 237
6.2.2 Mass Spectrometry Analysis of SUMO-Isopeptides Derived from Proteolytic Digestion 238
6.2.3 Analysis of SUMO-Isopeptides with Typical Full-Length Tryptic Iso-chains 238
6.2.4 Analysis of SUMO-Isopeptides with Atypical Tryptic Iso-chains and Shorter Iso-chains Derived from Alternative Digestion Strategies 244
6.2.4.1 SUMO-Isopeptides with Atypical Iso-chains Generated from Tryptic Digestion 244
6.2.4.2 Dual Proteolytic Enzyme Digestion with Trypsin and Chymotrypsin 247
6.2.4.3 Proteolytic Enzyme and Chemical Digestion with Trypsin and Acid 248
6.2.5	MS Analysis of Modified Ub- and SUMO-Isopeptides under CID Conditions	250
6.2.6	SPITC Modification	251
6.2.7	Dimethyl Modification	252
6.2.8	m-TRAQ Modification	256
6.3	Enrichment and Global Analysis of Isopeptides	259
6.3.1	Overview of Enrichment Approaches	259
6.3.2	K-GG Antibody	260
6.3.3	COFRADIC	262
6.3.4	SUMOylation Enrichment	263
6.4	Concluding Remarks and Recommendations	265
6.5	References	267

7	The Deimination of Arginine to Citrulline	275
7.1	Overview of Arginine to Citrulline Conversion: Biological Importance	275
7.2	Mass Spectrometry-Based Proteomics	279
7.3	Liquid Chromatography and Mass Spectrometry Behavior of Citrullinated Peptides	283
7.4	Global Analysis of Citrullination	288
7.5	Enrichment Strategies	291
7.6	Bioinformatics	296
7.7	Concluding Remarks	297

8	Glycation of Proteins	307
8.1	Overview of Protein Glycation	307
8.2	Mass Spectrometry Behavior of Glycated Peptides	315
8.3	Global Analysis of Glycation	318
8.4	Enrichment Strategies	319
8.5	Bioinformatics	320
8.6	Concluding Remarks	323

9	Biological Significance and Analysis of Tyrosine Sulfation	333
9.1	Overview of Protein Sulfation	333
9.2	Mass Spectrometry Behavior of Sulfated Peptides	334
9.3	Enrichment Strategies and Global Analysis of Sulfation	340
10 The Application of Mass Spectrometry for the Characterization of Monoclonal Antibody-Based Therapeutics

Rosie Upton, Kamila J. Pacholarz, David Firth, Sian Estdale and Perdita E. Barran

10.1 Introduction

10.1.1 Antibody Structure
10.1.2 N-Linked Glycosylation
10.1.3 Antibody-Drug Conjugates
10.1.4 Biosimilars

10.2 Mass Spectrometry Solutions to Characterizing Monoclonal Antibodies

10.2.1 Hyphenated Mass Spectrometry (X-MS) Techniques to Study Glycosylation Profiles
10.2.2 Hydrogen/Deuterium Exchange Mass Spectrometry (HDX-MS) to Characterize Monoclonal Antibody Structure
10.2.3 Native Mass Spectrometry and the Use of IM-MS to Probe Monoclonal Antibody Structure

10.3 Advanced Applications

10.3.1 Quantifying Glycosylation
10.3.2 Antibody-Drug Conjugates
10.3.3 Biosimilar Characterization

10.4 Concluding Remarks

References

Index