Index

Ablation pits, 41f
Abrasion, natural grain, 305–6
Abundance sensitivity, 56, 57f, 56f
Acapulco meteorite, 435f
Acasta Gneiss, 192f, 192–93
Accelerator mass spectrometry (AMS), 48, 395, 57f
Accessory phases, 371f
Accuracy, 66f, 65–66
Acid leaching techniques, 187
Adirondack mountains, 208
Admittance ratio, 116f
Advective hot geotherms, 210f
AER. See Age-elevation relationship
AFM. See Atomic-force microscopy
AFT. See Apatite fission-track
AGB star. See Asymptotic Giant Branch
Age, 243, 386f. See also Cooling age; Model age approach
bias, 306f
central, 277
cosmic rays exposure, 402f
of crystals, 387, 243f, 242–43
domains, 180
of Earth, 2–7, 188–91, ix
equations, 260, 239, 373f, 372–74, 276–78
equilibrium, 122, 94f
erupiton, 251f
grain size compared to, 283f, 207f
Hadean, 192–93
of meteorites, 188–92
pooled, 277
probability diagram, 242f
Th-Ra and U-Th, 388f–89f
uncertainty and, 251f
Age-elevation relationship (AER), 115, 122, 108, 118f, 115f
Age of meteorites and the Earth (Patterson), 12, 188
The Age of the Earth (Holmes), 65
Age spectrum, 243, 245, 122, 247f, 104f
concordant, 244f
discordant, 244, 246, 244f–45f
saddle-shaped, 246, 245f
step-heating, 122, 104f
Al. See Aluminum
Alden meteorite, 422, 424t
Algal, Lyman Thomas, 232, 241, 232f
Aliquots, 262f
Alkali feldspars, 240
Almah, C. L., 378
Allende meteorite, 422, 424t
Alpha-decay (α-decay), 270, 285, 369, 293f, 24–26
Alpha-ejection, 298–99
correction, 296, 305–6
diffusion and, 301, 301f
date model and, 345
He and, 302f, 301f
(U-Th)/He dating and, 301
parent zonation and, 303
Alpha-particles, 270, 271f–72f
Alpha recoil tracks (ARTs), 331, 293f, 330f, 273f, 270–71
Alpha spectrometry, 370–71
Alpha-stopping distance, 296
Altyn Tagh fault, 378
Al₂O₃-Mg, 423–25
Al-B, 414f
Al-Mg dating, 49, 424f
Aluminum (Al), 165t. See also Al-Mg dating
Amelin, Y., 174
Amphiboles, 241
AMS. See Accelerator mass spectrometry
Analytical solutions, 86
Analytical techniques, 370f
element extraction in, 40–42
parent-daughter nuclides in, 62
sample preparation procedures in, 39–40
in U series, 369–70
Analytical times, 368t
Anderson, E. C., 395
Angrite NWA 4590, 437t
Anisotropic diffusion, 86, 329f, 327f, 91–92, 324–28
Annealing model, 355
Anorthoclase crystals, 242f
Anorthoclase phenocrysts, 246f
Apatite, 206–7
atomic structure of, 310f
bulk grain, 346f

© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Apatite (cont’d)
crystal fragmentation of, 320–22
crystal grain size and, 319–20
crystal morphologies for, 300f
detrital, 120f–21f
Durango, 343f, 319f, 321f, 316f, 312f–14f
etched spontaneous tracks in, 275f
eU relationship and, 309f
fission-track dating of, 282f, 281–82
fission-track in grains of, 302f
grain size compared to age of, 283f, 207f
He concentrations in, 315f
(He-Th)/He dating of, 319f, 315f, 299t, 303–5
from Henry Mountains, 305f
intragrain diffusion profiles of, 320–22
morphologies of, 297f
Pb concentrations in, 94f
radiation damage in, 355, 318f, 341f, 315–19
single-grain, 304f, 355f, 278f, 304–5
step-heating experiments and, 311–14
zircon crystals and, 294f
Apatite fission-track (AFT), 284f, 320f, 348f, 352f, 115f
Apatite grains, 347, 435f
Apollo norite “77215, 134
40Ar/39Ar dating, 14, 435, 231
accuracy and calibration in, 248
advantages of, 252
appropriate materials
alkali feldspars, 240
amphiboles, 241
micas in, 240–41
plagioclase feldspars in, 241, 379f
challenges in, 252–53
incremental heating in, 243–46
independent calibration in, 249–50
interlaboratory issues in, 252
intragrain age gradients in, 243
K-Ar calibration in, 249
of minerals, 342–43
neutron activation in, 234–35
neutron fluence gradients in, 236f, 235–36
neutron irradiation
Ar isotope apportioning in, 238–40
interfering reactions in, 237–38
recoil energy in, 240
40K decay constants in, 248–50
single crystal fusion in, 242–43
in stratigraphic sequences, 242
Turner’s method of, 234, 234f
variable 40K/K in, 236–37
Archean Pikwitonei Domain, 141, 142f
Archean zircon, 272f
Argon (Ar), 231, 253–34. See also 40Ar/39Ar dating
concentration profile, 105
gas flow, 48, 48f
isotope apportioning, 238–40
Arithmetic mean, 70, 277
Armstrong, P. A., 281
Armstrong, R., 204f
Arnold, J. R., 396
Arrhenius law, 91, 99, 85, 264–65
Arrhenius trends, 269, 91f, 270f, 106f
anisotropic diffusion and, 327f, 326–28
Ar concentration profile from, 105
for He, 314f
He diffusion and, 323, 324f
4He/3He thermochronometry and, 356
plots of, 92f
step-heating experiments and, 91, 104, 104f, 313f
ARTs. See Alpha-recoil tracks
Aston, Francis, 45, 52, 11
Asymptotic Giant Branch (AGB star), 30
Atlantic mid-ocean ridge, 163t
Atomic-force microscopy (AFM), 274
Atomic mass scale, 20
Atoms, 20, 310f
isotopes and, 19
nucleus behavior in, 17
Rb-Sr and Sm-Nd, 128t
Rutherford’s structural model for, 17–18
Average values, 70–71
Avogadro’s number, 19
Baadsgaard, H., 250
Backscattered electron, 195f
Baddeleyite, 211–12
Barberton greenstone belt, 162
Barberton komatiite, 145
Barcoding, 212
Barnes, J. W., 372
Baryonic matter, 292
Basal quarter sections, 296f
Basalt, 144, 438t
magma, 137
Re-Os system for, 163f, 163t, 163–64
Sm-Nd dating of, 137f
Basin-averaged erosion rates, 411–12
Bateman, Harry, 10
Batholith, 198, 198f
Bauer, C. A., 395
Beacon, Heights, 400f
Beaver, George, 10
Beckinsale, R. D., 233
Be concentrations, 401f
Becquerel, Henri, 8, 8f
Bedrock approach, 118
Bedrock erosion, 410
Bell curve, 67
Bengtson, A., 310
Bequerel, A. Henri, 171
Beryllium (Be), 403, 405, 407f, 412f, 401f
Bessel function, 88
Beta-decay (β−decay), 25, 32f, 26f
β-particles emitted, 27f
Bethe, Hans, 30
Bierman, P. R., 396
Binding energy, 19–20, 20f–22f
Blackburn, T. J., 332
Black shales, 161t
Bohr, Niels, 18
Bohr straggle, 93
Boulton, Bertram, 10
Bonneville shoreline, 401f
Boulders, 409f
Boyce, J. W., 307, 333, 296–9
Braun, J., 113, 110
Braun spectral method, 117f
Brandon, M. T., 121, 112f, 109–12, 114f–15f
Braun, J., 113, 110
Braun spectral method, 117f
British Columbia, 350
Bruderheim L-chondrite meteorite, 103, 104f
BSE. See Bulk-silicate Earth
Buffon, Comte de, 4
Bulk-grain apatite, 346f
Bulk-grain cooling age, 109
Bulk-grain dates, 122
Bulk-Pb evolution model, 184
Bulk-silicate Earth (BSE)
composition of, 132t
isotope evolution of, 145f
Re-Os parameters in, 153–54
Burchfield (Kelvin), 4
Burial dating, 407, 413–15
Cadmium shielding, 237
Cadogan, P., 240
CAI. See Calcium-aluminum inclusion
Calcite, 333
Calcium-aluminum inclusion (CAI), 191, 130, 191f
Calibration, 405f, 249–50
Cambrian Lontova Formation, 139t
Cambrian seawater, 138
Cameron, G. H., 396
Campbell, N. R., 232
Canadian shield, 355f
Canyon Diablo meteorite, 189
Carbo meteorite, 430f
Carbon-14, 402–5
Carbonaceous chondrites, 154
Carbonates
age equations for, 372–74
cave deposits, 374–77
age equations for, 372–74
crystal ages, 387
eruption dating of, 387–89
geochemistry, 209–11
granitic, 374
from Mount St. Helens, 383–85
pedogenic, 377–78
in silicate rocks, 378–80
speleothem, 211f
of volcanic crystals, 383–87
volcanic rock disequilibrium and, 381f, 380–83
from Yellowstone, 386f, 385–87
Carbon fixation, 209
Carius, Georg, 156
Caries tube dissolution, 156
Carl, C., 79
Carslaw, H. S., 86, 344
Cathodoluminescence images, 272f, 181f, 195f–96f
CA-TIMS. See Chemical abrasion TIMS
Cave deposits, 374–77
C-axis directions, 329f, 327f, 327–28
CDEM. See Continuous dynode electron multipliers
Central age, 277
Central limit theorem, 68
Chadwick, James, 19
Chain of Ponds pluton K-spars, 104f
Chamberlin, Thomas Crowder, 5
Chemical abrasion TIMS (CA-TIMS), 187
Chemical dating methods, 45
Chemical diffusion, 83–85
Chemical reactions, 19
Chemical separation, 42, 370
Cherniak, D. J., 324, 326, 328, 341, 207
China, 146t
Chlorine (Cl), 19, 246f
Chondritic meteorites, 157f, 155f
Chromium (Cr). See 54Cr/52Cr and 53Cr/52Cr deviations
Chronology analysis, 191–92
Chronometric systems, 14
Circular cylinder morphologies, 330f
Cl. See Chlorine
Clarke, Frank Wigglesworth, 10
Clay-rich sediments, 137–38
Clayton, R. N., 234
Clerici solution, 40
Clinopyroxene, 379f
Closure depth, 109f, 111f
Closure function, 102, 103t
Closure temperature, 207, 98f
Closure profiles and, 102–3
Dodson’s formulation for, 101
erosion rate and, 115f, 109f
first-order loss in, 98–99
in fission-track dating, 281f
ganguly extensions and, 101–2
for Lu-Hf and Sm-Nd systems, 143f
monotonic cooling path and, 98, 100
multidomain diffusion and, 103–5
in thermochronologic data, 100f, 97–101
Closure temperature (cont’d)
time-date correlation and, 122
of U-Pb thermochronology, 205f
of zircon, 331f, 330f
CNO cycle, 30
Coefficient, correlation, 73, 68
Compston, W., 422
Concentration-measurement approach, 307
Concentric oscillatory zoning, 180
Concordance, 243
Concordant age spectrum, 244f
Concordia diagrams, 179f, 177–78
Condie, K. C., 204f
Conduction of Heat in Solid (Carslaw and Jaeger), 86
Confidence interval, 68
Confidence level, 68, 80t, 69t
Connelly, J. N., 191f
Continuous dynode electron multipliers (CDEM), 58, 59f
Cooling age
bulk-grain, 109
of detrital sample, 118
erosion rate and, 110, 117f, 111f, 115–16
eU concentrations and, 331f
Cooling rates, 319f
Corals, 209, 375f
Core-to-rim parent zonation, 302, 304f
Correlated uncertainties, 68–69
Correlation coefficient, 73, 68
Coseismic emergence, 376f
Cosmic-ray cascade, 397f
Cosmic rays
cosmogenic nuclides and, 397f, 396–400
on Earth, 396–97
exposure age, 402f
flux, 403, 35t
galactic, 430, 396, 430f
lower energy, 398f
Pd-Ag systematics and, 430f
radioactive isotopes produced by, 421, 35t
secondary, 409f
Cosmochronometer, 422f
Cosmogenic nuclides
application types of, 401
background of, 395–96
basin-averaged erosion rates and, 411–12
bedrock erosion and, 410
boulders sampled for, 401f
burial dating in, 413–15
cosmic ray attenuation, 399–400
cosmic ray cascade and, 397f
cosmic ray reaction types, 398–99
cosmic rays and, 396
cosmic rays on Earth and, 396–97
detection of, 397–98
erosion rates and, 409–10
extraterrestrial, 401–2
half-life and, 398t
ice cores with, 406
isochron burial dating and, 415
of meteorites, 402–5
ocean with, 406
paleocorrosion rates and, 412–13
produced in situ, 415, 407
profile dating with, 408–9
in radioactive isotopes, 33–35
rocks production rates and, 400–401
soil and sediment with, 406–7
surface exposure dating with, 407–8
vertically mixed soil and, 410–11
Coulomb repulsion, 22, 24f, 24–25
Covariance matrices, 73
Dalrymple, G. B., 5, 3, 237, 245, 233
Dalton (Da), 20
Daly detector, 59f, 58–59
Damon, P. E., 322
Dana, J. D., 7
Darwin, Charles, 5
Darwin, George, 5
Data
distributions, 71f
high and low precision, 65–66
sets, 81–82, 72–73
Date calculation, 306
Date evolution, 95f
Date predictions, 332f
Da. See Dalton
Dabie orogeny, 206
Dalrymple, G. B., 5, 3, 237, 245, 233
Dating equations, 173
Dating methods. See specific dating method
Daughter isotopes, 28
composition of, 40–42
parent isotopes and, 29–30
radioactive decay and, 27f
Daughter-parent concentration, 102
Daughter-product mobility, 310
Daughter-product retention, 122
Dauphas, N., 175f
Davis, R., 395
DDEM. See Discrete dynode electron multipliers
Dead zone, 350
Decay chains
 ingrowth balance and, 367–69
 isotope, 172f
 in minerals, 297f
 in radioactive isotopes, 33
 secular equilibrium in, 368f
 Th, 33, 35f
 for 238U/235U, 366f
 U, 34f–35f
 in U series, 367–69
Decay constants, 173–74, 128–29
Decay modes, 128
Deep-sea sediments, 303
Degrees of freedom, 73–75
De Maillet, Benoit, 4
Dempster, Arthur, 52, 45f, 45–46
Density, normalized, 279f
Density-functional theory (DFT), 310
Denudation rate, 410f
Dependent variable, 76
Depleted-mantle (DM) model reservoir, 145f
De Saint-Victor, Claude Félix Abel Niépce, 8
Detectors, 42, 55f
daly, 59f, 58–59
Faraday cups and, 58f, 57–58
gas energy-loss, 60
gas-filled energy loss, 61f
ion multipliers in, 58–60
Detrital age probability distribution, 120
Detrital apatite, 120f–21f
Detrital double-dating, 353
Detrital sample, 118, 137–38
Detrital thermochronology, 116–21
Detrital zircon geochronology, 204f, 202–4
Deutsch, S., 180
Devils Hole calcite, 376–77
DFT. See Density-functional theory
Diagenetic minerals, 137–38
Diamonds, 159–60
Dietz, Leonard, 50f
Diffusion, 316, 318, 106f, 324f. See also He diffusion
 alpha-ejection and, 301, 301f
 anisotropic, 86, 329f, 327f, 91–92, 324–28
Ar, 231
 chemical and heat, 83–85
Earth’s heat, 105–7
fractional loss in, 96f
4He/3He, 14, 343–44
initial infinite concentration, 86
interstitial, 85f
length and time scales in, 87f, 86–87
measurement, 90f, 89–94
multidomain, 122, 92–93, 103–5
pumps, 61–62
semi-infinite media in, 87–88
simple, 88f
temperature dependence of, 85–86
theory of, 83
Discordance, 243
Discordant age spectrum, 244, 246, 244f–45f
Discrete dynode electron multipliers (DDEM), 58, 59f
Discrete observations, 74
Discrimination window, 60
Dis-equilibrium, 372, 182
alpha decay and, 369
206Pb, 238U dates, 183f
Pa, 183
volcanic rock, 381f, 380–83
DM. See Depleted-mantle model reservoir
Dodson, M. H., 103f, 205f, 97–103
D’Orbigny Angrite, 425, 426t, 424t
Dose-luminescence relationship, 264
Dose-rate measurements, 262–64
Dose-response-curve measurements, 267
Dose-response curves, 268f
Double-dating applications, 353–55
Double-focusing mass analyzer, 55–57
Dunai, T. J., 396, 306
Dunbar, C. O., 5
Durango apatite, 343f, 312f–14f
cooling rates of, 319f
date-eU correlations in, 321f
eU concentrations and, 316f
Dynamic melting region, 381f–82f
Ea (activation energy), 329f, 341f–42f
EAM. See East Asian Monsoon
Earth
 age of, 2–7, 188–91
 composition of, 130
 continental crust over, 204f
 cosmic rays on, 396–97
 Hadean, 193
 heat diffusion in, 105–7
 historical chronologies of, 1–2
 mass extinctions on, 203f, 201–2
 mineral-melt distribution coefficients of, 132t
 numerical age of, ix
 Patterson, C., calculating age of, 192
Earth (cont’d)
Re-Os system and mantle peridotites of, 165f, 164–65
87Sr/86Sr ratio in, 145
surface heating of, 106
surface problems of, 396
total mass of, 152
two-stage Pb evolution model for, 190f
Earthquake Flat (EQF), 354f
Earth’s crust
errosional exhumation of, 108–9
erosion rate spatial patterns of, 109–13
erosion rate temporal patterns of, 113
heat and diffusion in, 105–7
paleotopography of, 113–16
thermal fields of, 107–8
Earth’s Deep History (Rudwick), 3
East Asian Monsoon (EAM), 377
East Pacific Rise (EPR), 387
Edge model date, 345
Ehlers, T. A., 281
Einstein, Albert, 10, 19–20
Elastic recoil detection analysis (ERDA), 334
Electron
backscattered, 195f
bombardment, 46–47
capture, 25, 232f
excitation, 260f
impact ion source, 46f
multipliers, 59f–60f
Electron spin resonance (ESR), 39, 398, 284
analysis of, 267–68
applications for, 269–70
considerations in, 268–69
dose-response curves from, 268f
fundamentals of, 266–67
mean-life of, 269f, 268–69
of quartz, 270, 270f
reciprocal intensity of, 269f
of speleothem samples, 267f
of untreated mollusc, 268f
Electrostatic sectors, 56f
Element abundances, 32–33
Element purification, 43–44
Elevation, 119f
Elution curves, 44f
$E=mc^2$, 19–20
Energy, of cosmic rays, 398f
Energy balance, 24f
Energy loss detector, 61f
Enthalpy yields, 85
Entropy yields, 85
Époques de la Nature (Buffon), 4
EPR. See East Pacific Rise
Epsilon, 129
EQF. See Earthquake Flat
Equations
age, 260, 239, 276–78
dating, 173
degrees of freedom in, 73
in fission-track dating, 276–78
fractional loss, 88–89
heat and chemical diffusion, 83–85
isochron, 133–34
of radioactive decay, 27–30, 151–52
for radiocarbon dating, 403
U series dating and, 373f, 372–74
Equilibrium age, 122, 94f
Equilibrium dates, 95
Equivalent sphere, 345
ERDA. See Elastic recoil detection analysis
Erosional exhumation, 115f, 116–17, 108–9
Erosion rates, 265, 407, 122, 412f, 410f
basin-averaged, 411–12
closure temperature and, 115f, 109f
cooling age and, 110, 117f, 111f, 115–16
cosmogenic nuclides and, 409–10
isotherms and, 112
spatial patterns of, 109–13
temporal patterns of, 113
vertical transect approach to, 112f
wavelengths in, 117f
Error bars, 68
Eruption ages, 251f
Eruption dating, 387–89
ESR. See Electron spin resonance
Esser, R. P., 246
Estonia, 138
Etched spontaneous tracks, 275f
Eu/Eu*, 386f
Europium (Eu). See also Eu/Eu*
Excess scatter, 80
Exhumation, 122, 106–7
Exposure-burial diagram, 413, 414f
External detector method, 277, 275, 276f
Extinct radionuclides, 422f, 421–22
26Al–26Mg, 423–25
182Hf–182W, 430–31
I–Pu–Xe, 433–35
55Mn–55Cr chronometry and, 425–28
metamorphic resetting sensitivity and, 439–41
107Pd–107Ag, 428–30
planetary isochrons and, 437–39
146Sm–142Nd, 436–37
Extraterrestrial cosmogenic nuclides, 401–2

F. See Fluorine
Fanale, F. P., 332
Fanning curvilinear model, 280
Fanning linear model, 280
Farley, K. A., 346, 344, 300f, 312f–13f
182Hf–182W, 430–31

Half-life

cosmogenic nuclides and, 398t
decay constants and, 128–29
of intermediate daughter products, 182–83
of isotopes, 23f
Lu–Hf isochron and, 129
parent-daughter pairs and, 367–69
of Pt, 152–53
in radioactive decay, 28, 152
U series and, 366f
U-Th parent-daughter pairs and, 367f

Hall, C. M., 240

Halley, Edmund, 5

Halliday, A. N., 78

Haloes, radiation-damage, 271f
Haloes, visible-light, 272f
Hammond, P. E., 383–84
Hampel, W., 395
Harmon, R., 368, 204f
Harrison, T. M., 99, 103, 194, 246f, 88–89, 104–5

Hasebe, N., 277

Hazen, R. M., 14

He. See Helium

Heat. See also Step-heating

avadvection, 108f
4He/3He diffusion, 14, 343–44
4He/3He spectra, 347
4He/3He thermochronometry, 342–45
Arrhenius trends and, 356
of glacial incision, 350
(U-Th)/He dating and, 351f
evolu-ribbon diagrams in, 347, 346f
requirements and assumptions in, 346–47
step-heating experiments, 343f

Hein, J. A., 344
Heizler, M. T., 104–5

Helium (He), 292, 296f. See also He
alpha-ejection and, 302f, 301f
apatite and dates for, 349f
apatite concentrations of, 315f
Arrehenius trend for, 314f
crystal fraction and, 299f
implantation, 303–5
isotopes, 14
leakage, 10
measurement, 294–95
shell flashes, 31
Henry Mountains, 305f

Herman, F., 265f, 264–65

Herodotus, 5

Hess, V. F., 396

Heteroscedastic, 70

Hf. See Hafnium

Hf/W ratios, 432, 432f

Hillebrand, W. F., 10, 291

Hilton, J. A., 344
Heizler, M. T., 104–5

Helium (He), 292, 296f. See also He
alpha-ejection and, 302f, 301f
apatite and dates for, 349f
apatite concentrations of, 315f
Arrehenius trend for, 314f
crystal fraction and, 299f
implantation, 303–5
isotopes, 14
leakage, 10
measurement, 294–95
shell flashes, 31
Henry Mountains, 305f

Herman, F., 265f, 264–65

Herodotus, 5

Hess, V. F., 396

Heteroscedastic, 70

Hf. See Hafnium

Hf/W ratios, 432, 432f

Hillebrand, W. F., 10, 291

Hilton, J. A., 344
Heizler, M. T., 104–5

Helium (He), 292, 296f. See also He
alpha-ejection and, 302f, 301f
apatite and dates for, 349f
apatite concentrations of, 315f
Arrehenius trend for, 314f
crystal fraction and, 299f
implantation, 303–5
isotopes, 14
leakage, 10
measurement, 294–95
shell flashes, 31
Henry Mountains, 305f

Herman, F., 265f, 264–65

Herodotus, 5

Hess, V. F., 396

Heteroscedastic, 70

Hf. See Hafnium

Hf/W ratios, 432, 432f

Hillebrand, W. F., 10, 291

Hilton, J. A., 344
Heizler, M. T., 104–5

Helium (He), 292, 296f. See also He
alpha-ejection and, 302f, 301f
apatite and dates for, 349f
apatite concentrations of, 315f
Arrehenius trend for, 314f
crystal fraction and, 299f
implantation, 303–5
isotopes, 14
leakage, 10
measurement, 294–95
shell flashes, 31
Henry Mountains, 305f

Herman, F., 265f, 264–65

Herodotus, 5

Hess, V. F., 396

Heteroscedastic, 70

Hf. See Hafnium

Hf/W ratios, 432, 432f
Index

Ikeya, M., 269–70
Independent and identically distributed (IID), 74, 70
Independent variable, 76
Indium grains, 371f
Inductively coupled plasma (ICP), 48f
Inductively coupled plasma mass spectrometers (ICP-MS), 42, 47–48
Industrial applications, 42
Infinite cylinder geometry, 90
Infinite slab solution, 88
Infrared stimulated luminescence (IRSL), 266f, 261f
Ingrowth balance, 367–69
Initial Ar, 233–34
Initial infinite concentration, 86, 87f
Injector magnet, 57
In situ, 415, 407
In situ analysis, 371, 389–90
IntCal13 radiocarbon calibration, 405f
Integration time, 72
Interlaboratory issues, 252
Intermediate daughter products, 182–83
Internal zonation, 180
International Vocabulary of Basic and General Terms in Metrology (VIM), 66
Interstitial diffusion, 85f
Interstitial impurity, 85f
Intracrystalline He zonation, 322f
Intragrain age gradients, 243
Intragrain diffusion profiles, 320–22
Ion beam, 55f
Ion exchange chromatography, 62, 43–44
Ion exchange column, 44f
Ion explosion spike, 274
Ion extraction and focusing, 49–50
Ionic porosity, 342f
Ion-impact ionization, 48–49
Ionization electron bombardment in, 46–47
ICP, 47–48
ion-impact, 48–49
laser resonance, 49
in mass spectrometry, 46
in SIMS, 49f
thermal, 47, 51f
Ionizing radiation, 260f
Ion multipliers, 58–60
Ion pumps, 62
I–Pu–Xe, 433–35
Iron (Fe). See Fe-oxides
Iron meteorite Carbo, 429f, 402f
Iron meteorites, 157, 433, 434f, 429f, 157f
IRSL. See Infrared stimulated luminescence
Isochron diagrams, 155f
parent-daughter, 178
Rb-Sr, 141f
Th-Ra, 379f
of U-Pb system, 176f
U series, 378f
U-Th, 384f
of U-Th-Pb system, 176–77
Isochrons, 40, 118f, 437–39, 439f–40t
advantages of, 246
burial dating, 415, 404, 404f
equations, 133–34
inverse, 247f
methods, 28, 29f
mixing lines and, 136–37
normal and inverse, 247f
systematics, 133–35
Isotherms, 112, 116f, 109f
Isotope correlation diagrams, 426–48
Isotope-dilution thermal ionization or inductively coupled plasma mass spectrometry (ID-TIMS/ID-ICPMS), 174
Isotopes, 167, 145f, 427f, 135f. See also Daughter isotopes;
Radioactive isotopes
Ar apportioning of, 238–40
atomic structure and, 19
average binding energy in, 22f
chondritic meteorites composition of, 155f
data composition representation of, 129–30
decay chains, 172f
death, 14f
He, 14
man-made radioactive, 36
of masses, 55f
neutrons and protons in, 22f
nuclides or, 366
parent, 27f, 29f, 7–8, 29–30
parent-daughter ratios and, 146
Pb, 184
Pb-Pb, 190f
40K radioactive, 232f
in Pt-Re-Os system, 153t
radioactive decay interference of, 238
radiogenic, 137
equation, 28, 51f, 72t, 44–46
Re-Os, 49, 160f
separation, 11
Soddy term of, 19
spike added to dilute, 42–43
tracers, 185
U series analyses of, 370–71
of U-Th-Pb decay, 172f
U variability of, 174
Xe. See Xenon
Ivanovich, M., 368
Ivrea Zone, 208f
Jack Hills zircon, 13, 195f, 274f, 193–94
Jaeger, J. C., 86, 344
Jaffey, A. H., 174
Jäger, E., 174, 248–50
Johnson noise, 59, 57
Joly, John, 5
Jourdan, F., 240
Juvenile zircon, 203–4

K. See Potassium
Kaapvaal Craton, 209, 207f
Kalbitzer, S., 89–90
K-Ar calibration, 249
K-Ar dating, 2, 207
accuracy and calibration in, 248
determining Ar in, 233–34
determining K in, 234
40K decay constants in, 248–50
historical perspective of, 232–33
parent-daughter ratio in, 231
40K decay constants, 250t, 248–50
KE. See Kinetic energy
Keevil, N. B., 322
Kelvin (Lord), 4–5
Kepler, Johannes, 3
KERMA. See Kinetic Energy Released per unit MAss
Ketcham model, 298
Kigoshi, K., 379
Kimberley kimberlites, 159–60
Kinetic energy (KE), 47, 25–26
Kinetic Energy Released per unit MAss (KERMA), 317, 260, 317f
Kings drainage, 121
Kinoshita, N., 436
40K/K variable, 236–37
Klein, J., 396
Komati Formation, 162, 162t
Komatiites, 145, 161–63
Konig, H., 234
KPB. See Cretaceous–Paleogene boundary
40K radioactive isotopes, 232f
Kramers, J. D., 189
Krogh, T. E., 305
K-spar-step-heating experiment, 106f
Kubik, P. W., 396
Kuiper, K. F., 250, 251f
Kulp, J. L., 332, 322
Kurz, M. D., 396

LA. See Laser ablation
LA-ICPMS. See Laser ablation inductively coupled plasma mass spectrometry
Lal, D., 396
Landscape evolution, 116–21
Lanphere, M. A., 245, 250, 233
Larsen, E. S., Jr., 522
Lasaga, A. C., 86
Laser ablation (LA), 334, 175
Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), 195–96
split stream, 197f
U-Pb dates measured by, 208f
U-Th-Pb system using, 186f
zircon dating by, 204f
Laser resonance ionization, 49
Laslett, G. M., 250
Lateral fluence gradient, 236f
Lave Creek Tuff, 385
Leaching residue, 139f
Leaching techniques, 138
Lead (Pb)
apatite concentrations of, 94f
corrections for, 183–84
Earth and two-stage evolution model of, 190f
in industrial applications, 42
isotope, 184
loss, 180–82
meteorites isotopic composition of, 12f, 12–13
in minerals, 176t
as subparent recoil-damage-zone traps, 272f
uranium associated with, 11f
valence state of, 176f
zircon incompatibility of, 180
206Pb/238U dates, 183f
Lead-alpha technique, 44–45
Pb-Pb date, 173, 184f
Pb-Pb geochronology, 191f
Pb-Pb isotope, 190f
Pd-Ag systematics, 430f
LeClerc, George-Louis, 4
LeConte, Joseph, 7
Lee, J. Y., 233
Lee, T., 422
Leibniz, 4
LEW 86010, 426t
Li, W., 278
Libby, W. F., 395
Lightfoot, John, 3
Linear regression, 80–81
Lippolt, H. J., 313
Liquid chromatography, 44
Liquid drop model, 20–22
Lithophile elements, 130
Lobello, P., 242
Los Pelambres copper-molybdenum porphyry deposit, 158
Lovera, O. M., 104f, 104–5
Ludwig, Ken, 377, 68–69
Lu-Hf dating, 14, 136, 127
of Archean Pikwitonei Domain, 142t
closure temperature and, 143f
of garnet, 141–43
reservoir parameters of, 130f
Lu-Hf isotopic composition, 129, 128t, 147–48
Luminescence dating, 260, 262f
Lunar basalts, 438t
Lunar norite “77215,” 136f, 134–36, 134t–35t
Lutetium (Lu), 152t. See also Lu-Hf
Mafic rocks, 144f
Magma, 194, 137, 198–200, 140–41
degassing rates, 383f, 381–82
differentiation, 383f, 382–83
erupted, 382f–83f
Magmatic fractionation, 131
Magmatic residence times, 353–55
Magmatic systems, 200f, 197–98
Magnetic sector mass spectrometer, 52–53
Magnetic sectors, 56f
Mahalanobis distance, 78–79
53Mn–53Cr chronometry, 425–28
Manganese (Mn), 406. See also Mn–Cr data
Man-made radioactive isotopes, 36
Mantle melting rates, 380–81
Marginal distribution, 68
Marine carbonates, 374
Marine isotopic stages (MISs), 375f
Martian meteorite ALH84001, 334
Mass analyzer, 52–57
Mass balance statements, 238
Mass defect, 19–20
Mass extinctions, on Earth, 203f, 201–2
Mass fractionation, 164–67
Mass transport times, 380–81
Melt-zone porosity, 382f
Meteoric 10Be, 405–6
Meteoric 36Cl, 405
Meteorites
Acapulco, 435f
age of, 188–91
Allende, 422
Be accumulation in, 407f
Bruderheim L-chondrite, 103, 104f
Canyon Diablo, 189
plasma, 2
vacuum systems of, 60–62
Materials, appropriate, 240–41
The Mathematics of Diffusion (Crank), 86
Matthes, M., 430
Mattinson, J. M., 206, 174
Mayer, Maria Goeppert, 18f
McDougall, I., 99, 103, 105, 242f, 88–89
MCICP-MS. See Multicollector inductively coupled plasma mass spectrometry
McLean, N. M., 80, 75, 78–79
McPhillips, D., 121
MDD. See Multiple diffusion domain model
Mean
arithmetic, 70, 277
in measurements, 67f, 67–68
standard error of, 70–72
uncertainty of, 69–76
weighted, 75f, 75–76
Mean-life (τ), 28, 269f, 268–69
Mean square weighted deviation (MSWD), 158, 75f
confidence level in, 80t
data sets with high, 81
data sets with low, 81–82
linear regression assumptions with, 80–81
measurements using, 79–82
reduced chi-squared statistic and, 79–80
Mean track length (MTL), 282f
Measurements, 307, 294–96
data distributions in, 71f
diffusion, 90f, 89–94
dose and dose-rate, 262–64
dose-response-curve, 267
mean in, 67f, 67–68
MSWD used in, 79–82
Mechanical pumps, 61
Meesters, A. G. C. A., 306
Meisel, T., 155
Melt extraction, 164–67
Melting event, 166t
Melt transport times, 380–81
Melt-zone porosity, 382f
Merrihue, C., 234
Mesoproterozoic Yavapai-Mazatzal orogeny, 208
Metamorphic belts, 245, 194–97
Metamorphic resetting sensitivity, 439–41
Metamorphic terranes, 209
Meteorite 10Be, 405–6
Meteorite 36Cl, 405
Meteorites
Acapulco, 435f
age of, 188–91
Allende, 422
Be accumulation in, 407f
Bruderheim L-chondrite, 103, 104f
Canyon Diablo, 189
Meteorites (cont’d)

Carbo, 430f
chondritic, 157f, 155f
chronology analysis of, 191–92
cosmogenic nuclides, 401–5
basin-averaged erosion rates, 411–12
bedrock erosion and, 410
burial dating in, 413–15
erosion rates, 409–10
ice cores, 406
isochron burial dating, 415
ocean, 406
produced in situ, 407
profile dating, 408–9
soil and sediment, 406–7
surface exposure dating, 407–8
vertically mixed soil, 410–11
geoflchronologic applications for, 156–58
Gibeon, 429
Grant, 428
iron, 433, 157, 429f, 434f, 157f
iron Carbo, 429f, 402f
line fitting results of, 157t
lunar basalts and, 438t
Martian ALH84001, 334
Muonionalusta, 429
Patterson, C., calculating age of, 192
Pb isotopic composition of, 12f, 12–13
Pb-Pb geochronology of, 191f
Re-Os system and, 156–58
Richardton chondritic, 422f
stable isotope composition in, 427f

Meteoritic phosphates, 334
Mezger, K., 208
Micas, 240–41
Microfurnace, 89, 294
Mid-ocean-ridge basalts (MORB), 144
Mid-ocean-ridges, 382f
Miki, T., 270
Milankovitch cycles, 11
Milky Way galaxy, 34f
Millikan, R. A., 396
Min, K. W., 250, 307, 233
Mineral-melt distribution coefficients, 131

Minerals

\(^{40}\text{Ar}/^{39}\text{Ar}\) dating of, 342–43
decay chains in, 297t
diagenetic, 137–38
dis-equilibrium in, 182–83
(U-Th)/He dating using, 297t
He diffusion and kinetics of, 342f, 334–41
isochrons, 40
magma chambers dating of, 140–41
melt distribution coefficients of, 132t
ore, 138–40
separates, 389f
thermometry, 197
U, Th and Pb in, 176f
Miocene aragonitic coral, 209
MISs. See Marine isotopic stages
Mitchell, J. G., 235
Mixing lines, 136–37
Mixing scenario, 137
Mn. See Manganese
Mn-Cr data, 426f
Moazed, C., 270
Model age approach, 143
isotopic evolution in, 167, 145f
for multistage source evolution, 146–48
Re-Os system in, 164–67
Sm-Nd ratio and, 148
time of Re-depletion in, 166
for volatile depletion, 144–46
Model thermal histories, 346f, 345f
Moisture content, 264
Molecular sieve, 61
Molybdene, 138, 158t, 158–59
Monazite, 195, 333–34, 1966–97f
Monotonic cooling path, 98, 100
Monte-Carlo approach, 239, 105, 297–98, 271–72
Montgomery, D. R., 119
MORB. See Mid-ocean-ridge basalts
Mount Narryer zircon, 194
Mount St. Helens, 384f, 383–85
MSWD. See Mean square weighted deviation
MTL. See Mean track length
Müller, R. A., 395
Multicollector inductively coupled plasma mass spectrometry
(MCICP-MS), 371, 367, 389–90
Multidomain diffusion, 122, 104f, 92–93, 103–5
Multigrain aliquots, 321f
Multigrained K-feldspar sample, 247f
Multiple diffusion domain (MDD) model, 105, 106f
Multistage source evolution, 146–48
Multivariate normal distributions, 69t, 68–69
Muon, 399, 400f
Muonionalusta meteorite, 429
Muscovite, 194
Nasdala, L., 331, 328
Natural dose rates, 264
Natural grain abrasion, 305–6
Natural materials, 154, 317f, 175f
Nature’s Epoch (Buffon), 4
Navajo Sandstone, 353f
Nd isotopic evolution, 147f, 439t, 144f
Negative thermal ionization mass spectrometry (NTIMS), 156
Neodymium (Nd), 22, 132t. See also Nd isotopic evolution
Neptunium-237 series, 365
Neutron-capture process, 235
Neutron fluence gradients, 236f, 235–36
Neutrons, 21, 19, 277, 236f
activation, 234–35
energy, 235f
irradiation, 237–40
in isotopes, 22f
stars of, 31
uranium and critical mass of, 24
Newton, Isaac, 4
Newton-Raphson approach, 306
Nicolaysen, L. O., 127
Nier, Alfred, 52, 12, 232, 241, 189
Niespolo, E. M., 252
Nishizumi, K., 396
Noble gases, 46
Noril’sk determined decay constant, 152–53
NRA. See Nuclear reaction analysis
NTIMS. See Negative thermal ionization mass spectrometry
Nuclear energy
beta-decay and, 26f
potential, 25f
proton numbers in, 21–22
proton subtraction in, 21f
Nuclear fission, 20, 25–26
Nuclear fusion, 20
Nuclear physics, 2
Nuclear reaction analysis (NRA), 311
Nuclear shell model, 22
Nuclear stability
average binding energy in, 20f
binding energy and mass defect in, 19–20
liquid drop model in, 20–22
nuclear shell model in, 22
nuclides chart and, 23
rules, 23
Nuclear structure, 18f, 17–19
Nuclie yields, 274f
Nucleogenic isotopes, 35–36
Nucleon binding energies, 21f
Nucleon spallation, 399
Nucleus behavior, 17
Nuclides, 62, 355, 259
chart, 23
isotope or, 366
pair, 402
in REE, 28f
Ocean islands, 382f
Ohm resistor, 57
OLS. See Ordinary least-squares algorithm
Open systems, 265, 264
Optically stimulated luminescence (OSL), 284, 265f,
266f, 261f
Optically stimulated luminescence/thermoluminescence (OSL/TL), 39
Ordinary least-squares algorithm (OLS), 76
Ordinary least-squares linear regression, 77f, 76–77
Ore minerals, 138–40
Organic-rich sediments, 161
Orogen-parallel transect, 265
Orogen-scale trends, 350–53
Os. See Osmium
OSL. See Optically stimulated luminescence
OSL/TL. See Optically stimulated luminescence/thermoluminescence
Osmium (Os), 43, 159r, 165f, 151–52
O’Sullivan, P. B., 276
Oway Basin, 281, 283f
Ouchani, S., 312f
Outliers, 81
Overdispersion, 81
Oxidation, 43
Oxides, 241
Oxygen isotopic composition, 204
P. See Protactinium
Paces, J. B., 377
Pa disequilibrium, 183
Paleocene–Eocene Thermal Maximum (PETM), 2
Paleodepth, 348f
Paleoerosion rates, 412–13
Paleogeographic reconstructions, 211–12
Paleotopography, 349–50, 113–16
Paleozoic sediments, 245
107Pd–107Ag, 429f, 428–30
Palladium (Pd), 428
Paneth, F. A., 395, 322
Papanastassiou, D. A., 422
Parallel linear model, 280
Parent-daughter decay systems, 83, 7–8, 172f
Parent-daughter fractionation, 131
Parent-daughter isochron diagrams, 178
Parent-daughter nuclides, 62
Parent-daughter pairs, 380, 368f, 367–69
Parent-daughter ratios, 14, 130
isotopic evolution and, 146
in K-Ar system, 231
in partial melting, 131f
Parent isotopes, 27f, 29f, 7–8, 29–30
Parent nuclides, 301, 355, 259
Parent zonation, 301, 303
Parrish, R. R., 182
Partial retention zones (PRZs), 96f, 348, 95–96
Partition coefficient, 44
Patterson, Clair, 12, 189, 192, 188, 190f
Paul, W., 53
Pb. See Lead
Pd. See Palladium
PDFs. See Probability density functions
Pedogenic carbonates, 577–78
Peridotite, 168f
Permin-Triassic boundary, 203f
Permian-Triassic boundary, 250
PETM. See Paleocene–Eocene Thermal Maximum
Phenocrysts, 383
Phillips, F. M., 396
Phlogopite, 273f
Photographic emulsions, 45–46
Physics-based approach, 6
Pik, R., 333
Pikwitonei granulite terrane, 208
Plagioclase feldspars, 241, 379f
Planck’s Law, 259
Plane sheet, 90, 88
Planetary isochrons, 437–39
Plasma mass spectrometry, 2
Platinum (Pt), 151–53
Plutonic rocks, 245
Plutonium (Pu), 434
Plutons, 198–99
Polaris deposit, 139t
Polonium, 9
Polycrystalline hematite, 333f
Polytetrafluoroethylene (PTFE), 41
Ponton Grossa dike swarm, 246
Pooled age, 277
Potassium (K), 232, 231. See also K-Ar calibration; K-Ar dating; 40K decay constants; 40K radioactive isotopes
p-process nucleosynthesis, 31–32
Precambrian-Cambrian boundary, 7
Precambrian rocks, 6
Precision, 65, 66f
Price, P. B., 273–74
Probability density diagrams, 309f
Probability density functions (PDFs), 404
Probability distribution functions, 74f, 67–68
Production ratios, 237–39
Profile dating, 408–9
Protactinium (Pa), 11. See also Pa disequilibrium
Proton bombardment, 343
Proton-proton chain reaction, 30
Protons (Z), 19
in isotopes, 22f
nuclear energy and numbers of, 21–22
nuclear energy and subtraction of, 21f
Prout, William, 18f, 18–19
PRZs. See Partial retention zones
Pseudo-Arhenius plot, 279f
Pt. See Platinum
PTFE. See Polytetrafluoroethylene
Pt-Re-Os system, 153, 162t, 153f, 154–56
P-T-t paths, 194–97
Pulse counting, 60f
Purification, element, 43–44
Pyrenees, 165f, 165t
Pyroxene, 379f
Quadrupole mass analyzer, 53, 54f
Quantitative geochronology, 1
Quartz
ESR of, 270, 270f
OSL of, 265f, 263f
Ra-Ba crystallization, 384f
Ra-Ba partitioning, 384f
Radiation, ionizing, 260f
Radiation damage, 317f
in apatite, 355, 318f, 314f, 315f, 314–19
Farley and, 316
in fission-track dating, 316–17
haloes, 271f
in He diffusion, 316
techniques, 278
in zircon, 341f, 328–32
Radiation damage and accumulation model (RDAAM), 355, 318–19
Radioactive chemical dating, 11
Radioactive decay, 8t, 27f, 4–5
alpha-decay in, 24–25
beta-decay in, 25
contributions to, 151
electron capture in, 25
energy of, 25–26
equations of, 27–30, 151–52
fission and, 23–24
half-life in, 28, 152
isotope interference in, 238
parent isotopes and, 29f
of parent nuclides, 259
Radioactive geochronology, 44–45
Radioactive isotopes
of 40K, 232f
cosmic ray produced, 421, 35t
cosmogenic nuclides in, 33–35
decay chains in, 33
man-made, 36
nucleogenic isotopes and, 35–36
stellar contributions to, 33, 34t
Radioactive systems, 127
Radioactive Transformations (Rutherford), 10
Radioactive transmutations, 2
Radioactive wavelengths, 259
Radioactivity, 232, 7–13
Radiocarbon dating, 403, 405f, 404–5
Radiogenic decay, 427
Radiogenic isotope, 137
Radioisotopic dates, 355
Radioisotopic decay, ix
Radioisotopic systems, 14, ix
Radio metric system, 27
Radionuclide concentrations, 264, 402f
Radium (Ra), 9. See also Ra-Ba
Rahl, J. M., 353
Rahn, M. K., 280
Ramsay, William, 10, 291
Ramses II, 5
Random effects, 66
Random number generator, 72
Rare earth elements (REE), 44, 194, 23f
Ratio-evolution diagrams, 347, 351f, 346f
Rb. See Rubidium
Rb-Sr data, 140t, 378f, 140f
Rb-Sr dating, 132, 127, 134t, 130f
Rb-Sr isochron diagram, 141f
Rb-Sr isotopic composition in atoms, 128t
of Cambrian Lontova Formation, 139t
leaching residue in, 139f
of Polaris deposit, 139t
RDAAM. See Radiation damage and accumulation model
Re. See Rhenium
Reade, Mellard, 5
Reciprocal intensity, 269f
Recoil energy, 240
Red Giant, 30–31
Reduced chi-squared statistic, 79f, 79–80
Reduced time approach, 318
REE. See Rare earth elements
Regression, 76–81, 77f–78f
Reiners, P. W., 110, 333, 323, 100, 304f, 114f
Reisberg, L., 155
Renne, P. R., 240, 233
Re-Os isochron, 161f
Re-Os isotope system, 49, 160f
Re-Os ratios, 160, 162f
Re-Os system
for basalt, 163f, 163t, 163–64
from black shales, 161t
in BSE, 153–54
of Earth mantle peridotites, 165f, 164–65
iron meteorites and, 157f
melting event and, 166t
meteorites and, 156–58
in model age approach, 164–67
model evolution lines for, 167f
for molybdenites, 158t, 158–59
Residuals, 76–77
Rhenium (Re), 151, 165f, 159t. See also Re-Os
Rhodes, E. J., 265
Rhyolites, 140
Richards, T. W., 33
Richardson chondritic meteorite, 422f
Rink, E. J., 267
Rink, W. J., 269
Rocks, 6, 62, 400–401
disequilibrium of volcanic, 381f, 380–83
mafic, 144f
plutonic, 245
silicate, 376–80
vertical velocity of, 114f
volcanic, 388f, 378–79
whole, 241
Rocky Mountain disturbance, 7
Roczen, Wilhelm Conrad, 8
Rough pumping, 61
r-process nucleosynthesis, 32f, 31–32
Rubidium (Rb), 132
Rubidium (Rb) decay, 52, 132t
Rudwick, Martin, 3, 13
Russell, Henry, 11
Rutherford, Ernest, 5, 9f, 291, 171
atomic structural model of, 17–18
nuclear structure delineation by, 18f
radioactive geochronology and, 44–45
Radioactive Transformations by, 10
radioactivity and, 9
Rutile, 334, 207
Saddle-shaped age spectrum, 246, 245f
146Sm–142Nd, 436–37
Samarium (Sm), 22, 296f, 132t. See also Sm
Sample preparation procedures, 39–40
Sample variance, 70
San Andreas fault, 378
San Joaquin basin, 121
SAR. See Single aliquot regenerative
Saturation, 264
Scaillet, S., 248
Scanning-electron microscopes (SEMS), 39, 294
Schaefler, R., 395
Scharer, U., 207, 182
Schmidt, Gerhard Carl, 8
Schmitz, M. D., 250
Schoene, B., 184, 208–9
Sea-level data, 375f
Sea-level high-latitude (SLHL), 401, 414f
Secondary cosmic rays, 409f
Secondary ion mass spectrometry (SIMS), 89, 39, 175, 48–49
electrostatic and magnetic sectors in, 56f
ionization process in, 49f
U-Th-Pb systems using, 186f, 187–88
Secondary standards, 249
Second basin property, 118
Second-order kinetic model, 269
Secular equilibrium, 30, 296f, 368f, 366–67, 171–72
Sedimentary strata, 6f, 202, 5–6, 412f
Sediment provenance, 353
Sediments, 161, 303, 245, 406–7, 137–38
Semi-infinite media, 87–88
SEMS. See Scanning-electron microscopes
Sensitive high resolution ion microprobe (SHRIMP), 187
SFSF. See Silver Fork and Superior Faults
Shale, 161
Sharp, W. D., 377
Shere, 88
Shielding depth, 400f
Shirley, S. B., 155
SHRIMP. See Sensitive high resolution ion microprobe
Siberian Traps, 303f
Sierra Nevada batholith, 349, 198
Sigurgeirsson, T., 234
Silicate rocks, 378–80
Silver, L. T., 180
Silver Fork and Superior Faults (SFSF), 284f
Simple diffusion, 88f
SIMS. See Secondary ion mass spectrometry
Sims, K. W. W., 389
Simulated mass spectrometer, 72f
Single aliquot regenerative (SAR), 260
Single crystal fusion, 243f, 242–43
Single-grain apatite, 304f, 355f, 278f, 304–5
SLHL. See Sea-level high-latitude
Sm. See Samarium
Sm/eU, 296f
Sm-Nd dating, 127, 438t, 437t, 437–40
of Archean Pikwitonei Domain, 142t
in atoms, 128t
closure temperature and, 143f
of garnet, 141–43
of granite and basalt, 137f
isochrons, 438, 439t–40
of lunar norite “77215,” 136f, 134t–36, 134t–35t
reservoir parameters of, 130f
Sm-Nd isochron, 29f, 138f
Sm-Nd isotopic composition, 128t
Sm-Nd ratio, 148, 439t, 437f
Sm to Nd system, 293
Soddy, F., 9, 19, 11, 171
Soil and sediment, 406–7
Solar masses, 31
Solar system, 145, 432f, 30–33
Sorption pumps, 61
Sparging, 156
Spatially resolved values, 103t
Spatial resolution, 185f
Spatial-temporal fields, 107
Special theory of relativity, 19–20
Speleothem records, 374, 211, 375f
Speleothem samples, 267f
Sphalerites, 139, 140f, 139t
Spiegel, C., 305, 303
Spike, 185, 42–43
Split stream LA-ICPMS, 197f
Spotila, J. A., 333
S-process nucleosynthesis, 31
Sr. See Strontium
Sri Lankan zircon, 307f
SRIM (stopping and range of ions in matter), 270
87Sr/86Sr ratio, 43, 145
Stable isotope composition, 427f
Stacey (Kelvin), 4
Stacey, J. C., 189
Standard deviation, 68, 70–71
Standard error, 70–73
Standard error of the mean, 70–71
Statistically independent, 68
Steel crushing apparatus, 40
Steiger, R. H., 174, 248–50
Stellar nucleosynthesis, 33, 34t, 30–31
Stellar winds, 32
Stelten, M. E., 386f
Steno, Nicolas, 6, 4
Step-heating age spectra, 122, 104f
Step-heating degassing experiments, 93
Step-heating experiments, 320, 343f, 323f, 313f, 323–24
apatite and, 311–14
Arrhenius trends and, 91, 104, 104f, 313f
K-sp, 106f
polycrystalline hematite and, 333f
Step-heating fraction loss, 90f, 93f, 89–92
Stock, J. D., 119–20
Stockli, D. F., 348, 333
Storage times, 382–83
Stratigraphic record, 200–202
Stratigraphic sequences, 242
Streams, 412f
86Sr/88Sr measured, 52, 51f
87Sr/86Sr measured, 52, 51f
Strontium (Sr), 130, 132, 147f, 132t. See also Sr
Strutt, Robert John, 10, 322, 291
Student’s t distribution, 74f, 73–75
Student’s t multiplier, 74t
Student’s t statistic, 74
Supernova explosions, 32
Subsurface isotherms, 108
Sulphates, 241
Sulphides, 160f, 159t, 159–60
Sun, isotope evolution of, 145f
Sunda megathrust, 376f
Taylor-Series approximation, 306
Tectonic exhumation, 352, 348–49
Tectonic mechanisms, 108
TEM. See Transmission electron microscopy
Temperature
diffusion dependence on, 85–86
thermal fields with depth and, 110f
TL glow curves and, 261f
Tera-Wasserburg diagram, 184, 177, 179f, 197f, 178f
Terrestrial mantle peridotite, 155f
Tetley, N., 237
Th. See Thorium
Theophilus (of Antioch), 3
Theoretical Tc profiles, 103f
Thermal fields, 110f, 107–8
Thermal ionization, 47, 51f
Thermal ionization mass spectrometers (TIMS), 42, 371, 186f, 185–87
Thermal neutron flux, 277
Thermochronologic data
closure temperature in, 100f, 97–101
date evolution in, 95f
dates reset in, 96–97
end members in, 94, 94f
equilibrium dates in, 95
IRSL and, 266f
orogen-scale trends in, 350–53
paleodepth compared to, 348f
PRZs in, 95–96
wallrock samples in, 97f
Thermochronology, 2, 116–17
Thermodynamics, 86, 83
Thermoluminescence (TL), 284
analysis of, 260–62
applications of, 265–66
considerations in, 264–65
dose measurements in, 262
dose-rate measurements of, 262–64
fundamentals of, 269–60
glow curves of, 261f
Thermometry, of minerals, 197
Thick-lens ion source, 50f
Thomson, J. J., 17, 11, 18f
Thomson, S. N., 352, 350
Thomson, William. See Kelvin (Lord)
230Th disequilibrium, 183f
Thorium (Th)
alpha-decay of, 285
decay chain, 33, 35t
disequilibrium of, 182
in minerals, 176f
solar abundance of, 292
valence state of, 176f
Th-Ra ages, 389f
Th-Ra isochron diagram, 379f
Th-Ra magma differentiation, 383f
Ti-in-zircon, 195f
Time-of-flight (TOF), 118, 53–54
Time of Re-depletion, 166
Timescales, 4, 3, 212
TIMS. See Thermal ionization mass spectrometers
TINClc (track in cleavage), 280
TINT (track in track), 280
Tirone, T., 101–2
Tissot, F. L., 175f
Titanite, 333, 205–6
Titterington, D. M., 78
TL. See Thermoluminescence
Todd, Margaret, 11
TOF. See Time-of-flight
Topographic shielding, 409f
Toyoda, S., 269
Trace element analyses, 196–97
Tracer isotopes, 185
Track-length analysis, 280–81, 282f–83f
Transmission electron microscopy (TEM), 271
Trapped-charge dating methods, 260
Travers, Morris, 10, 291
TAD approach, 167
Tree rings, 405f
Trinquier, A., 427f
Tripathy-Lang, A., 307
Trueness, 65–66
Trull, T. W., 314
Tuff, Bishop, 199
Tungsten (W), 46, 434f. See also 182W/184W ratio
Trueness, 65–66
Turbo pumps, 62
Turner, G., 240, 243, 237
40Ar/39Ar dating method and, 234, 234f
multidomain diffusion by, 104f, 103–5
U. See Unified atomic mass unit
U. See Uranium
U-fission reactor, 234–35
U-He system, 10
UHP. See Ultrahigh pressure
UHV. See Ultrahigh vacuum
Ultrahigh pressure (UHP), 206
Ultrahigh vacuum (UHV), 60
Ultraviolet (UV) laser, 48
Uncertainty, 81, 66–68
correlation, 68–69
eclipse, 78f, 69f
in (U-Th)/He dating, 307–8
of mean, 69–76
propagated in ages and, 251f
regression with variables and, 77–79
in U-Th-Pb decay, 173f
weighted mean, 75f, 75–76
Unified atomic mass unit (u), 20
Univariate distributions, 68, 69f
Untreated mollusc, 268f
U-Pb dating, 49, 171, 388f, 10–11
carbonate geochronology by, 209–11
LA-ICPMS measuring, 208f
rutile and, 207
zircon and, 200f
U-Pb geochronology
baddelevite reconstructions in, 211–12
for carbonate speleothem, 211f
crustal magmatism from, 197–98
U-Pb geochronology (cont’d)
paleogeographic reconstructions in, 211–12
speleothem records and, 211
stratigraphic record of, 200–202
titanite for, 205–6
U-Pb isotopic gradients, 208f
U-Pb system, 200f, 203f, 176f
U-Pb thermochronology, 205f, 210f, 207–9, 204–5
U-Pb zircon, 198f, 198–99
Uranium (U). See also U-Pb; U-Th
alpha-decay of, 285
beta-activity of, 9f
decay, 33
decay chains, 34t–35t
F, for, 297f
isotopic composition, 174–75
isotopic variability of, 174
in minerals, 176t
neutron critical mass in, 24
solar abundance of, 292
isotopic composition, 174–75
isotopic variability of, 174
lead associated with, 11f
in minerals, 176t
uranium, effective (eU)
correlations, 332f, 321f
fractional age bias and, 306f
relationship, 309f
233U/238U ratio, 51
238U, 173–74
Uranium-238 decay, 274f, 273–74
238U/235U
decay chains for, 366f
deviations from, 174
measured values of, 175f
238U decay chains, 366f
Uranium-bearing salts, 8, 8f
238U, 173–74
(U-Th)/He dating, 346
AFT date and, 352f, 320f
alpha-ejection and, 301
analysis
alpha-stopping distances in, 295–306
conventional, 294
date calculation in, 306
grain selection in, 294
He measurement in, 294–95
U-Th-Sm measurement in, 295
analysis of, 294–310
analytic approaches to, 306–7
of apatite and zircon, 319f, 299f, 303–5
of apatite He concentration, 315f
background of, 291–92
daughter product mobility in, 310
He/He thermochronometry and, 351f
intracrystalline He zonation and, 322f
of magmatic zircon, 354f
minerals used for, 297f
model thermal histories and, 345f
radios isotopic dates and, 355
reproducibility and uncertainty in, 307–8
single-grain apatite and, 355f, 304f
of Sri Lankan zircon, 307f
of volcanic eruptions, 354–55
of zircon, 299f, 319f, 307f, 303–5,
353f–54f
U series, 365
age data of, 386f
age equations and, 373f
analytical techniques in, 369–70
chemical separations in, 370
decay chains in, 367–69
half-life and, 366f
isochron diagram, 378f
isotopic analyses in, 370–71
U series dating
carbonates
age equations, 373f, 372–74
cave deposits, 374–77
crystal ages, 387
eruption dating of, 387–89
initial disequilibrium, 372
marine, 374
from Mount St. Helens, 383–85
pedogenic, 377–78
in silicate rocks, 378–80
of volcanic crystals, 383–87
volcanic rock disequilibrium, 381f, 380–83
from Yellowstone, 386f, 385–87
equations and, 373f, 372–74
Ussher, James, 3
U-Th, 389f, 183f
U-Th ages, 389f, 388f
U-Th isochron diagram, 384f
U-Th parent daughter pairs, 367f
U-Th-Pb decay, 174
benefits of, 171
crystal ages of, 376
chemistry of, 176
isotopes of, 172f
uncertainties in, 173f
U-Th-Pb system
analysis types of, 186f
analytical approach to, 184
concentration levels measured of, 188
cordbounds diagrams of, 177–78
discordance in, 178–80
isochron diagrams of, 176–77
LA-ICPMS used on, 186f
precise timescales sought in, 212
SIMS used on, 186f, 187–88
spatial resolution and, 183f
TIMS measuring, 185–87
Index

U-Th-Sm measurement, 295–96
UV. See Ultraviolet laser
Vacuum systems, 60–62
Valley, J. W., 271
Variable 40K/Ge, 236–37
Variable regression, 77–79
Variance, 73, 68
Vermmeesch, P., 81, 79, 307, 248
Vertical cutoff rigidity, 398f
Vertical displacement, 93f
Vertically mixed soil, 410–11
Vertical neutron fluence, 236f
Vertical rock velocity, 114f
Vertical transect approach, 113, 348, 112f
Villa, I. M., 240
VIM. See International Vocabulary of Basic and General Terms in Metrology
Visible-light haloes, 272f
Volatile depletion, 144–46
Volcanic crystals, 383–87
Volcanic eruptions
(U-Th)/He dating of, 354–55
precise dates of, 353–55
Volcanic flows, 404f
Volcanic rock disequilibrium, 381f, 380–83
Volcanic rocks, 388f, 378–79
Volcanic systems, 200f, 199–200
Volpe, A. M., 383–84
Von Weizsacker, C. F., 20, 232
W. See Tungsten
182W/184W ratio, 432f
Wagner, G. A., 272
Walcott, Charles, 6f, 5–6
Walker, R. J., 155
Walker, R. M., 273–74
Wallrock samples, 97f
Wanke, H., 234
Wasatch Front, 284f, 281–84
Wasserburg, G. J., 180
Wassuk Mountains, 348f
Watson, E. B., 341, 207, 325–26
Waveforms, with isotherms, 109f
Wave lengths, 117f
Weathering, 410f
Weighted least squares, 76, 77f
Weighted-least squares regression, 77, 78f
Weighted mean, 75f, 75–76
Welch–Satterthwaite formula, 75
Wendt, L., 79
Wet-chemical techniques, 45
Wertherill concordia diagrams, 179f
Whole number rule, 46
Whole rock, 241
Whole-rock analysis, 62
Wien, Wilhelm, 45
Willey Table, 40
Willett, S. D., 111, 115f, 112f
Williams, H. S., 6
Williams, I. S., 192, 192f
W isotopic composition, 434f
Wolf, R. A., 320, 294
Wolf’s thermal history, 322f
Wood, A., 232
Wotzlaw, J.-F., 250
Xenon (Xe), 24, 434, 422
Xenon isotopes, 436f, 422f, 434f–35f
Xenotime, 182
Yamada, R., 280, 281f
Yellowstone carbonates, 386f, 385–87
York, D., 78–79
York regression, 77–79
Z. See Protons
Zaitsev, A. N., 174
Zeitler, P. K., 313f
Zero-damage zircon-structure phosphate isomorphs, 330
Zero-daughter concentration, 102
Zeroing, 265, 264, 268–69
Zero initial daughter, 373
ZFT. See Zircon fission-track
Zhang, Y., 86
Zircon, 322
ablation pits in, 41f
from Acasta Gneiss, 192f
anisotropic diffusion of, 324–28
apatite crystals and, 294f
Archean, 272f
atomic structure of, 310f
cathodoluminescence images of, 181f
closure temperature of, 331f, 330f
crystallization data set, 200f
crystal morphologies for, 300f
dating methods of, 204
detrital geochronology of, 204f, 202–4
from Fish Canyon Tuff, 308
fission-track dating of, 281–82
grains, 353f
in granite, 146
growth history of, 179f
Hadean Earth and, 193
(U-Th)/He dating of, 319f, 307f, 299t, 303–5, 353f–54f
He diffusion and, 324f
Jack Hills, 195f, 274f, 193–94
juvenile, 203–4
LA-ICPMS dating of, 204f
lattice, 330f
Zircon (cont’d)
magmatic, 354f
magmatic systems and, 197–98
Mount Narryer, 194
Pb incompatible with, 180
Pb-Pb date and, 184f
radiation damage in, 341f, 328–32
spot age, 386f

Sri Lankan, 307f
step-heating experiments, 323f, 323–24
Ti-in-zircon and, 195f
U-Pb, 198f, 198–99
U-Pb dates and, 200f
U-Th in, 183f
Zircon fission-track (ZFT), 284f
Zoroasters, 3