Contents

Preface, ix

1 Introduction, 1
 1.1 Geo and chronologies, 1
 1.2 The ages of the age of the earth, 2
 1.3 Radioactivity, 7
 1.4 The objectives and significance of geochronology, 13
 1.5 References, 15

2 Foundations of radioisotopic dating, 17
 2.1 Introduction, 17
 2.2 The delineation of nuclear structure, 17
 2.3 Nuclear stability, 19
 2.3.1 Nuclear binding energy and the mass defect, 19
 2.3.2 The liquid drop model for the nucleus, 20
 2.3.3 The nuclear shell model, 22
 2.3.4 Chart of the nuclides, 23
 2.4 Radioactive decay, 23
 2.4.1 Fission, 23
 2.4.2 Alpha-decay, 24
 2.4.3 Beta-decay, 25
 2.4.4 Electron capture, 25
 2.4.5 Branching decay, 25
 2.4.6 The energy of decay, 25
 2.4.7 The equations of radioactive decay, 27
 2.5 Nucleosynthesis and element abundances in the solar system, 30
 2.5.1 Stellar nucleosynthesis, 30
 2.5.2 Making elements heavier than iron: s, r, p process nucleosynthesis, 31
 2.5.3 Element abundances in the solar system, 32
 2.6 Origin of radioactive isotopes, 33
 2.6.1 Stellar contributions of naturally occurring radioactive isotopes, 33
 2.6.2 Decay chains, 33
 2.6.3 Cosmogenic nuclides, 33
 2.6.4 Nucleogenic isotopes, 35
 2.6.5 Man-made radioactive isotopes, 36
 2.7 Conclusions, 36
 2.8 References, 36

3 Analytical methods, 39
 3.1 Introduction, 39
 3.2 Sample preparation, 39
 3.3 Extraction of the element to be analyzed, 40
 3.4 Isotope dilution elemental quantification, 42
 3.5 Ion exchange chromatography, 43
 3.6 Mass spectrometry, 44
 3.6.1 Ionization, 46
 3.6.2 Extraction and focusing of ions, 49
 3.6.3 Mass fractionation, 50
 3.6.4 Mass analyzer, 52
 3.6.5 Detectors, 57
 3.6.6 Vacuum systems, 60
 3.7 Conclusions, 62
 3.8 References, 63

4 Interpretational approaches: making sense of data, 65
 4.1 Introduction, 65
 4.2 Terminology and basics, 65
 4.2.1 Accuracy, precision, and trueness, 65
 4.2.2 Random versus systematic, uncertainties versus errors, 66
 4.2.3 Probability density functions, 67
 4.2.4 Univariate (one-variable) distributions, 68
 4.2.5 Multivariate normal distributions, 68
 4.3 Estimating a mean and its uncertainty, 69
 4.3.1 Average values: the sample mean, sample variance, and sample standard deviation, 70
 4.3.2 Average values: the standard error of the mean, 70
 4.3.3 Application: accurate standard errors for mass spectrometry, 71
 4.3.4 Correlation, covariance, and the covariance matrix, 73
 4.3.5 Degrees of freedom, part 1: the variance, 73
 4.3.6 Degrees of freedom, part 2: Student’s t distribution, 73
 4.3.7 The weighted mean, 75
 4.4 Regressing a line, 76
 4.4.1 Ordinary least-squares linear regression, 76
 4.4.2 Weighted least-squares regression, 77
 4.4.3 Linear regression with uncertainties in two or more variables (York regression), 77
 4.5 Interpreting measured data using the mean square weighted deviation, 79
 4.5.1 Testing a weighted mean’s assumptions using its MSWD, 79
 4.5.2 Testing a linear regression’s assumptions using its MSWD, 80
4.5.3 My data set has a high MSWD—what now?, 81
4.5.4 My data set has a really low MSWD—what now?, 81
4.6 Conclusions, 82
4.7 Bibliography and suggested readings, 82

5 Diffusion and thermochronologic interpretations, 83
5.1 Fundamentals of heat and chemical diffusion, 83
5.1.1 Thermochronologic context, 83
5.1.2 Heat and chemical diffusion equation, 83
5.1.3 Temperature dependence of diffusion, 85
5.1.4 Some analytical solutions, 86
5.1.5 Anisotropic diffusion, 86
5.1.6 Initial infinite concentration (spike), 86
5.1.7 Characteristic length and time scales, 86
5.1.8 Semi-infinite media, 87
5.1.9 Plane sheet, cylinder, and sphere, 88
5.2 Fractional loss, 88
5.3 Analytical methods for measuring diffusion, 89
5.3.1 Step-heating fractional loss experiments, 89
5.3.2 Multidomain diffusion, 92
5.3.3 Profile characterization, 93
5.4 Interpreting thermal histories from thermochronologic data, 94
5.4.1 “End-members” of thermochronometric date interpretations, 94
5.4.2 Equilibrium dates, 95
5.4.3 Partial retention zone, 95
5.4.4 Resetting dates, 96
5.4.5 Closure, 97
5.5 From thermal to geologic histories in low-temperature thermochronology: diffusion and advection of heat in the earth’s crust, 105
5.5.1 Simple solutions for one- and two-dimensional crustal thermal fields, 107
5.5.2 Erosional exhumation, 108
5.5.3 Interpreting spatial patterns of erosion rates, 109
5.5.4 Interpreting temporal patterns of erosion rates, 113
5.5.5 Interpreting paleotopography, 113
5.6 Detrital thermochronology approaches for understanding landscape evolution and tectonics, 116
5.7 Conclusions, 121
5.8 References, 123

6 Rb–Sr, Sm–Nd, and Lu–Hf, 127
6.1 Introduction, 127
6.2 History, 127
6.3 Theory, fundamentals, and systematics, 128
6.3.1 Decay modes and isotopic abundances, 128
6.3.2 Decay constants, 128
6.3.3 Data representation, 129
6.3.4 Geochemistry, 131
6.4 Isochron systematics, 133
6.4.1 Distinguishing mixing lines from isochrons, 136
6.5 Diverse chronological applications, 137
6.5.1 Dating diagenetic minerals in clay-rich sediments, 137
6.5.2 Direct dating of ore minerals, 138
6.5.3 Dating of mineral growth in magma chambers, 140
6.5.4 Garnet Sm–Nd and Lu–Hf dating, 141
6.6 Model ages, 143
6.6.1 Model ages for volatile depletion, 144
6.6.2 Model ages for multistage source evolution, 146
6.7 Conclusion and future directions, 148
6.8 References, 148

7 Re–Os and Pt–Os, 151
7.1 Introduction, 151
7.2 Radioactive systematics and basic equations, 151
7.3 Geochemical properties and abundance in natural materials, 154
7.4 Analytical challenges, 154
7.5 Geochronologic applications, 156
7.5.1 Meteorites, 156
7.5.2 Molybdenite, 158
7.5.3 Other sulfides, ores, and diamonds, 159
7.5.4 Organic-rich sediments, 161
7.5.5 Komatiites, 161
7.5.6 Basalts, 163
7.5.7 Dating melt extraction from the mantle—Re–Os model ages, 164
7.6 Conclusions, 167
7.7 References, 167

8 U–Th–Pb geochronology and thermochronology, 171
8.1 Introduction and background, 171
8.1.1 Decay of U and Th to Pb, 171
8.1.2 Dating equations, 173
8.1.3 Decay constants, 173
8.1.4 Isotopic composition of U, 174
8.2 Chemistry of U, Th, and Pb, 176
8.3 Data visualization, isochrons, and concordia plots, 176
8.3.1 Isochron diagrams, 176
8.3.2 Concordia diagrams, 177
8.4 Causes of discordance in the U–Th–Pb system, 178
8.4.1 Mixing of different age domains, 180
8.4.2 Pb loss, 180
8.4.3 Intermediate daughter product disequilibrium, 182
8.4.4 Correction for initial Pb, 183
8.5 Analytical approaches to U–Th–Pb geochronology, 184
 8.5.1 Thermal ionization mass spectrometry, 185
 8.5.2 Secondary ion mass spectrometry, 187
 8.5.3 Laser ablation inductively coupled plasma mass spectrometry, 188
 8.5.4 Elemental U–Th–Pb geochronology by EMP, 188
 8.6 Applications and approaches, 188
 8.6.1 The age of meteorites and of Earth, 188
 8.6.2 The Hadean, 192
 8.6.3 P–T–t paths of metamorphic belts, 194
 8.6.4 Rates of crustal magmatism from U–Pb geochronology, 197
 8.6.5 U–Pb geochronology and the stratigraphic record, 200
 8.6.6 Detrital zircon geochronology, 202
 8.6.7 U–Pb thermochronology, 204
 8.6.8 Carbonate geochronology by the U–Pb method, 209
 8.6.9 U–Pb geochronology of baddeleyite and paleogeographic reconstructions, 211
 8.7 Concluding remarks, 212
 8.8 References, 212

9 The K–Ar and 40Ar/39Ar systems, 231
 9.1 Introduction and fundamentals, 231
 9.2 Historical perspective, 232
 9.3 K–Ar dating, 233
 9.3.1 Determining 40Ar*, 233
 9.3.2 Determining 40K, 234
 9.4 40Ar/39Ar dating, 234
 9.4.1 Neutron activation, 234
 9.4.2 Collateral effects of neutron irradiation, 237
 9.4.3 Appropriate materials, 240
 9.5 Experimental approaches and geochronologic applications, 242
 9.5.1 Single crystal fusion, 242
 9.5.2 Intragain age gradients, 243
 9.5.3 Incremental heating, 243
 9.6 Calibration and accuracy, 248
 9.6.1 40K decay constants, 248
 9.6.2 Standards, 249
 9.6.3 So which is the best calibration?, 250
 9.6.4 Interlaboratory issues, 252
 9.7 Concluding remarks, 252
 9.7.1 Remaining challenges, 252
 9.8 References, 253

10 Radiation-damage methods of geochronology and thermochronology, 259
 10.1 Introduction, 259
 10.2 Thermal and optically stimulated luminescence, 259
 10.2.1 Theory, fundamentals, and systematics, 259
 10.2.2 Analysis, 260
 10.2.3 Fundamental assumptions and considerations for interpretations, 264
 10.2.4 Applications, 265
 10.3 Electron spin resonance, 266
 10.3.1 Theory, fundamentals, and systematics, 266
 10.3.2 Analysis, 267
 10.3.3 Fundamental assumptions and considerations for interpretations, 268
 10.3.4 Applications, 269
 10.4 Alpha decay, alpha-particle haloes, and alpha-recoil tracks, 270
 10.4.1 Theory, fundamentals, and systematics, 270
 10.5 Fission tracks, 273
 10.5.1 History, 273
 10.5.2 Theory, fundamentals, and systematics, 273
 10.5.3 Analyses, 274
 10.5.4 Fission-track age equations, 276
 10.5.5 Fission-track annealing, 278
 10.5.6 Track-length analysis, 280
 10.5.7 Applications, 281
 10.6 Conclusions, 284
 10.7 References, 285

11 The (U–Th)/He system, 291
 11.1 Introduction, 291
 11.2 History, 291
 11.3 Theory, fundamentals, and systematics, 292
 11.4 Analysis, 294
 11.4.1 “Conventional” analyses, 294
 11.4.2 Other analytical approaches, 306
 11.4.3 Uncertainty and reproducibility in (U–Th)/He dating, 307
 11.5 Helium diffusion, 310
 11.5.1 Introduction, 310
 11.5.2 Apatite, 311
 11.5.3 Zircon, 322
 11.5.4 Other minerals, 332
 11.5.5 A compilation of He diffusion kinetics, 334
 11.6 4He/3He thermochronometry, 342
 11.6.1 Method requirements and assumptions, 346
 11.6.2 Applications and case studies, 348
 11.6.2.1 Tectonic exhumation of normal fault footwalls, 348
 11.6.2.2 Paleotopography, 349
 11.6.2.3 Orogen-scale trends in thermochronologic dated, 350
 11.7 References, 351
viii Contents

11.7.4 Detrital double-dating and sediment provenance, 353
11.7.5 Volcanic double-dating, precise eruption dates, and magmatic residence times, 353
11.7.6 Radiation-damage-and-annealing model applied to apatite, 355
11.8 Conclusions, 355
11.9 References, 356
12 Uranium-series geochronology, 365
12.1 Introduction, 365
12.2 Theory and fundamentals, 367
 12.2.1 The mathematics of decay chains, 367
 12.2.2 Mechanisms of producing disequilibrium, 369
12.3 Methods and analytical techniques, 369
 12.3.1 Analytical techniques, 369
12.4 Applications, 372
 12.4.1 U-series dating of carbonates, 372
 12.4.2 U-series dating in silicate rocks, 378
12.5 Summary, 389
12.6 References, 390
13 Cosmogenic nuclides, 395
13.1 Introduction, 395
13.2 History, 395
13.3 Theory, fundamentals, and systematics, 396
 13.3.1 Cosmic rays, 396
 13.3.2 Distribution of cosmic rays on Earth, 396
 13.3.3 What makes a cosmogenic nuclide detectable and useful, 397
 13.3.4 Types of cosmic-ray reactions, 398
 13.3.5 Cosmic-ray attenuation, 399
 13.3.6 Calibrating cosmogenic nuclide-production rates in rocks, 400
13.4 Applications, 401
 13.4.1 Types of cosmogenic nuclide applications, 401
 13.4.2 Extraterrestrial cosmogenic nuclides, 401
 13.4.3 Meteoric cosmogenic nuclides, 402
13.5 Conclusion, 415
13.6 References, 416
14 Extinct radionuclide chronology, 421
14.1 Introduction, 421
14.2 History, 422
 14.3 Systematics and applications, 423
 14.3.1 26Al–26Mg, 423
 14.3.2 53Mn–53Cr chronometry, 425
 14.3.3 107Pd–107Ag, 428
 14.3.4 182Hf–182W, 430
 14.3.5 I–Pu–Xe, 433
 14.3.6 146Sm–142Nd, 436
 14.4 Conclusions, 441
14.5 References, 441

Index, 445