# CONTENTS

Note from the Series Editor xi  
Foreword xiii  
Preface xv  

1 Introduction  
References, 4  

2 Introduction to the Physics of Charging and Discharging  6  
2.1 Physical Concepts, 6  
2.1.1 Plasma, 6  
2.1.2 Penetration, 8  
2.1.3 Charge Deposition, 10  
2.1.4 Conductivity and Grounding, 11  
2.1.5 Breakdown Voltage, 11  
2.1.6 Dielectric Constant, 12  
2.1.7 Shielding Density, 12  
2.1.8 Electron Fluxes (Fluences) at Breakdown, 12  
2.2 Electron Environment, 13  
2.2.1 Units, 14  
2.2.2 Substorm Environment Specifications, 15  
2.3 Modeling Spacecraft Charging, 16  
2.3.1 The Physics of Surface Charging, 17  
2.3.2 The Physics of Dielectric Charging, 19  
2.4 Discharge Characteristics, 19  
2.4.1 Dielectric Surface Breakdowns, 21  
2.4.2 Buried (Internal) Charge Breakdowns, 22  
2.4.3 Spacecraft-to-Space Breakdowns, 22  
2.5 Coupling Models, 23  
2.5.1 Lumped-Element Modeling, 23  
2.5.2 Electromagnetic Coupling Models, 23  
References, 24
CONTENTS

3 Spacecraft Design Guidelines 26
  3.1 Processes, 26
    3.1.1 Introduction, 26
    3.1.2 Design, 27
    3.1.3 Analysis, 28
    3.1.4 Testing and Measurement, 28
    3.1.5 Inspection, 29
  3.2 Design Guidelines, 29
    3.2.1 General ESD Design Guidelines, 29
    3.2.2 Surface ESD Design Guidelines, Excluding Solar Arrays, 40
    3.2.3 Internal ESD Design Guidelines, 41
    3.2.4 Solar Array ESD Design Guidelines, 44
    3.2.5 Special Situations ESD Design Guidelines, 54

References, 59

4 Spacecraft Test Techniques 62
  4.1 Test Philosophy, 62
  4.2 Simulation of Parameters, 63
  4.3 General Test Methods, 64
    4.3.1 ESD-Generating Equipment, 64
    4.3.2 Methods of ESD Applications, 68

References, 75

5 Control and Monitoring Techniques 76
  5.1 Active Spacecraft Charge Control, 76
  5.2 Environmental and Event Monitors, 76

References, 77

6 Material Notes and Tables 79
  6.1 Dielectric Material List, 79
  6.2 Conductor Material List, 80

References, 82

A Nomenclature 83
  A.1 Constants and Measurement Units, 83
  A.2 Acronyms and Abbreviations, 84
  A.3 Defined Terms, 89
  A.4 Variables, 92
  A.5 Symbols, 93
B  The Space Environment 95

B.1  Introduction to Space Environments, 95
    B.1.1  Quantitative Representations of the Space Environment, 95
    B.1.2  Data Sources, 99

B.2  Geosynchronous Environments, 102
    B.2.1  Geosynchronous Plasma Environments, 102
    B.2.2  Geosynchronous High-Energy Environments, 104

B.3  Other Earth Environments, 110
    B.3.1  MEO, 110
    B.3.2  PEO, 111
    B.3.3  Molniya Orbit, 112

B.4  Other Space Environments, 112
    B.4.1  Solar Wind, 112
    B.4.2  Earth, Jupiter, and Saturn Magnetospheres Compared, 113

References, 119

C  Environment, Electron Transport, and Spacecraft Charging Computer Codes 122

C.1  Environment Codes, 122
    C.1.1  AE8/AP8, 122
    C.1.2  CRRES, 122
    C.1.3  Flux Model for Internal Charging (FLUMIC), 123
    C.1.4  GIRE/SATRAD, 123
    C.1.5  Handbook of Geophysics and the Space Environment, 123
    C.1.6  L2 Charged Particle Environment (L2-CPE), 123
    C.1.7  MIL-STD-1809, Space Environment for USAF Space Vehicles, 123
    C.1.8  Geosynchronous Plasma Model, 124
    C.1.9  Others, 124

C.2  Transport Codes, 124
    C.2.1  Cosmic Ray Effects on MicroElectronics 1996 (CREME96), 124
    C.2.2  EGS4, 125
    C.2.3  Geant4, 125
    C.2.4  Integrated TIGER Series (ITS), 125
    C.2.5  MCNP/MCNPPE, 126
    C.2.6  NOVICE, 126
    C.2.7  NUMIT, 126
CONTENTS

C.2.8 SHIELDOSE, 127
C.2.9 SPENVIS/DICTAT, 127
C.2.10 TRIM, 127
C.2.11 Summary, 128

C.3 Charging Codes, 128
C.3.1 Environment Work Bench (EWB), 128
C.3.2 Multi-Utility Spacecraft Charging Analysis Tool (MUSCAT), 128
C.3.3 Nascap-2k and NASCAP Family of Charging Codes, 129
C.3.4 SEE Interactive Spacecraft Charging Handbook, 129
C.3.5 Spacecraft Plasma Interaction System (SPIS), 129

References, 130

D Internal Charging Analyses

D.1 The Physics of Dielectric Charging, 132
D.2 Simple Internal Charging Analysis, 134
D.3 Detailed Analysis, 135
D.4 Spacecraft Level Analysis, 136
  D.4.1 Dose-to-Fluence Approximation, 136

References, 137

E Test Methods

E.1 Electron-Beam Tests, 138
E.2 Dielectric Strength/Breakdown Voltage, 139
E.3 Resistivity–Conductivity Determination, 140
E.4 Simple Volume Resistivity Measurement, 141
E.5 Electron-Beam Resistivity Test Method, 142
E.6 NonContacting Voltmeter Resistivity Test Method, 143
E.7 Dielectric Constant, Time Constant, 144
E.8 Vzap Test [MIL-STD-883G, Method 3015.7 Human Body Model (HBM)], 145
E.9 Transient Susceptibility Tests, 146
E.10 Component/Assembly Testing, 148
E.11 Surface Charging ESD Test Environments, 148
E.12 System Internal ESD Testing, 148

References, 149

F Voyager SEMCAP Analysis

References, 151

G Simple Approximations: Spacecraft Surface Charging Equations

References, 154
H Derivation of Rule Limiting Open-Circuit Board Area 156
   Reference, 158

I Expanded Worst-Case Geosynchronous Earth Environments
   Descriptions 159
   References, 161

J Key Spacecraft Charging Documents 162
   J.1 U.S. Government Documents, 162
      J.1.1 DoD, 162
      J.1.2 NASA, 164
   J.2 Non-U.S. Government Documents, 166
      J.2.1 American Society for Testing and Materials (ASTM), 166
      J.2.2 European Cooperation for Space Standardization (ECSS)/European Handbooks, 166
      J.2.3 European Space Research and Technology Centre, 167
      J.2.4 Japanese Aerospace Exploration Agency (JAXA), 167
      J.2.5 Other, 167

K List of Figures and Tables 168

Index 173