Page references followed by fig indicate an illustrated figure; followed by t indicate a table.

A
AAC&U (Association of American Colleges and Universities), 2, 13, 22, 32, 61, 69, 134, 148, 179
AAC&U Integrated Learning Project, 179
ABET’s EC2000 standards, 39, 40, 133
Academic disciplines: course duplication phenomenon arising from, 30; description of, 28; disciplinary hegemony concept of, 29; discipline-based territoriality of, 28–29, 190–191; downplaying credit hours required by, 98–99; increasing specialization within, 29–30; ownership of knowledge belief in, 33–34, 38; rethinking prerequisites of, 94–95; rewriting course descriptions, 96–97. See also Faculty
“Academic plan,” 94
Academic plan assessments: description of, 150–151; direct measures of program success, 150, 156–157; indirect measures of program success, 150, 151–155
Academic Quality Improvement Process (AQIP), 42, 86–87, 101, 152
Academic Success Center (San Jose State), 201–202
Academic turf wars, 32–33, 190
Accountability of presentations, 147
Accreditation Council for Pharmacy Education (ACPE), 40, 107, 133
Accrediting Board for Engineering and Technology (ABET), 39
ACT test, 30
Adaptability: examining if it can be taught, 12–13; need for workforce creativity and, 2–6
Alexander, B., 171
Allen, M. J., 151–152, 154, 156
Alverno College, 148
Amabile, T. M., 19, 90
American Association of University Professors, 30
American Psychological Association (APA), 64–65
American revolution, 46
Anderson, R., 193
Anderson, W., 36
Angelo, T., 139
Apple Computer, 4
Applebee, A. N., 137
“Application of Learner-Based Teaching Innovations to Enhance Education in Wildlife Conservation” (Ryan and Campa), 145
Application prompts, 142–143
Applying the Science of Learning to University Teaching and Beyond (Hackel), 84
Area Concentration Achievement Test (ACAT), 156
Arizona International College (AIC), 77
Arizona University (AU), 77
Artistic and creative work projects, 149–150
Assessing Academic Programs in Higher Education (Allen), 151–152
Assessment: adding value to, 101–103; applications to learner-centered academic plans, 137–157; classroom, 128–129, 137–150; consumerist approach to, 152–153; creating culture of, 100–101; curricular implementation inclusion of, 99–103; examples of practicing, 120–122; formative, 139–143; institutional and personal benefits of, 127–128; learner-centered contexts of, 128–137; as learning-centered pedagogy domain, 68–71; as learning-centered practice, 120–122; programmatic and academic plan, 150–157; reflection form of, 70, 129; self-assessment form of, 129; summative, 144–150; Syllabus Assessment Matrix for, 105, 106b, 122; of transfer of learning, 70–71; two functions of, 68. See also Learner-centered design practices
"Assessment Projects from Hell" (Chronicle of Higher Education), 127
Association of American Colleges and Universities (AAC&U), 2, 13, 22, 32, 61, 69, 134, 148, 179
Association of State Colleges and Universities, 134
Association to Advance Collegiate Schools of Business (AACSB), 133
Atlantic, 186
Atlassian, 20
Autonomy. See Student autonomy

B
Babb, M., 61
Bandura, A., 20, 35
Banta, T., 100
Banta, T. W., 177
Baratz, S. S., 10
Barr, R., 23, 82
Barrett, H. C., 178–179, 180
Basic Principles of Curriculum and Instruction (Tyler), 26
Bean, J. C., 146
Beane, J. A., 57, 58, 59, 61
Beatty, I., 174, 175
Beauchamp, G. A., 24, 27
Becker, A. L., 74
Bernstein, B., 58, 111
Beyerlein, S. W., 129
Biggs, J. B., 35, 49, 50
Binet, A., 16
BIS programs. See Ferris State University BIS program; Miami University BIS program
Black, K. E., 177
Blackboard, 164, 170
Bloom’s Taxonomy, 123
Blumberg, P., 84
Bobbitt, F., 24, 25, 26
Boggs, G. R., 82, 92
Booth, M., 29
Bosnian female students, 54
Boston College School of Nursing virtual forensics lab, 172
Bowden, J., 35
Bransford, J. D., 15, 50, 66
Bridges, W., 4
Bronson, P., 5, 6, 10, 11
Brookfield, S., 24
Brown, A. L., 15, 50, 66
Bruffee, K. A., 36, 65, 97
Bruner, J., 35, 51, 70
Bunce, D. M., 176
Burkhardt, P., 77, 80, 82–83
Burt Hill Kosar Rittelmann Associates, 202

Campa, H., III, 145
Candy, P. C., 12
Carnegie Foundation for the Advancement of Teaching, 13–14
Carnegie Mellon’s Doherty Hall, 202
Carrithers, D., 146
Caruso, J. B., 162, 167, 168
Center for Academic Transformation (Rensselaer Polytechnic Institute), 176
Center for the Study of Higher Education (Penn State), 39
Change magazine, 23, 82
Charters, W. W., 26
Chism, N.V.N., 191
Choice: Atlassian software company’s use of, 20; creativity facilitated by, 18–21; as key to learner-centered pedagogy, 68. See also Power sharing
Chronicle of Higher Education, 127, 197
Class size, 196
Classroom Assessment Techniques: A Handbook for College Teachers (Angelo and Cross), 139
Classroom assessments: definition of, 128–129; formative, 139–143; learner-centered application of, 137–150; summative, 144–150. See also Faculty
Classroom communication systems (CCSs), 173–175
Classroom design: accommodating for limitations of, 196; class size impacting, 196; Learning Studio Research program on, 204; low-cost options for, 204–206; seating arrangements of, 193–196; Steelcase prototype for, 203–204; teacher wall concept of, 203–204; visual presentation of, 193. See also Learning environment; Physical space
Clinton, B., 54
Cocking, R. R., 15, 50, 66
Cohen, G., 36
Collaborative digital games, 172
College Learning for the New Global Century, 2, 130
College of Allied Health, 79
College of Technology, 205
College Senior Survey (HERI), 153
College Student Experiences Questionnaire, 153
Collegiate Assessment of Academic Proficiency (CAAP), 156
Colley, S. L., 76, 78, 79
Colomraro, G., 76
Colorado College, 108
Commission on Institutions of Higher Education, 41
Communication: changing vocabulary to implement changes, 93–94; language of shifting paradigms, 91–93; What if? conversations, 90–93, 135. See also Language
Community: collaboration by design of physical space, 200–202; how technology can build, 169–173; as learner-centered pedagogy domain, 65–66; as learner-centered practice key feature, 116–118
Compatibility of programs: meaning of, 76; reducing threat by emphasizing, 76–79; required for successful implementation, 82–83
Constructivist philosophy, 35–36
Consumerist approach to assessment, 152–153
Content knowledge, 28
Convergent thinking, 11
Conway, M., 36
Cool It (game), 172
Cooperative Institute Research Program (HERI), 187
Course descriptions: learner-center approach to writing, 96–97; traditional approach to, 96
Course management systems (CMSs), 164, 165, 170–171, 180
Covington, M., 36
Creating Significant Learning Experiences: An Integrated Approach to Designing College Classes (Fink), 84
Creative people: failure response by, 17–18; power of choice and opportunities taken by, 18–21
Creative thinking: divergent and convergent modes of, 11; left-brain and right-brain activity during, 10–11; three elements in interaction resulting in, 10
Creativity: context and interactions related to, 6; cultural perspective of, 7–8; definition of, 6; mindfulness of, 8; need for workforce adaptability and, 2–6; opportunities and choice components of, 18–21; reflection as key to understanding, 7; role of environment in, 6–8; role that society plays in, 9; teams and collaboration role in, 7. See also Innovation; Teaching creativity
Credit hours: changing emphasis on, 98–99; FSU BIS program flexibility toward, 163; traditional importance of, 98
Cross, P., 98, 139
Csikszentmihalyi, M., 6, 7, 9, 10, 35
Cubberley, E., 26
Cullen, R., 22, 84, 105, 193, 197
Cultural context: Bosnian female students’ experience with, 54; of postmodern education, 54–56; structures or frames of references in, 55–56
Culture: creating an assessment, 100–101; creativity from interaction of society, individual, and, 10; creativity in context of, 7–8; diversity within Israel, 7–8; respecting current institutional, 78
Culture of assessment, 100–101
Curricular change: AACP recommendations for, 40–41; accrediting bodies and, 39–42; challenge of promoting, 38–39; challenges inherent in making, 73; strategies for reducing threat of, 76–83; time has come for, 45–46, 159–160; why the need for, 1–2, 209–210. See also Curricular implementation; Curriculum reform; Education reform
Curricular implementation: adopting a Rogerian approach to, 73–76; adopting learner-centered attitudes and behaviors, 85–90; downplaying credit hours for, 98–99; engaging in conversations about the possibilities of, 90–93; focusing on structure for, 97–98; infusing assessment into, 99–103; using nonthreatening vocabulary for, 93–94; preparing faculty for, 83–85; reducing threat of change by compatibility approach to, 76–79; reducing threat through profitability, 79–83; rethinking prerequisites for, 94–95; rewriting course descriptions for, 96–97; timing issues of, 99; transition to learner-centered culture for, 92–93. See also Curricular change
Curriculum: Bruner’s description of ideal, 35; definition of, 24; historic development of vocabulary referring to, 93–94; history of development, 24–28; substituting “academic plan” for, 94; transformative, 63
The Curriculum (Bobbitt), 24
Curriculum design: Bruffee on designing around set of occurrences, 97; content knowledge as center of, 28; content versus process argument
in, 27; deep processing fostered by, 50; disconnect between learning and traditional, 14; gardener metaphor of, 14–15; instructional paradigm of, 23–24, 25, 30–39; need to nurture creativity through, 10; ownership of knowledge evidenced in, 33–34; problem-centered, 57–58; Quest University’s approach to, 97–98; Syllabus Assessment Matrix for evaluating, 105, 106; three criteria for effective, 26; Tyler Rationale approach to, 26–27; why the need for redesigning, 1–2, 209–210. See also Learner-centered curriculum design
Curriculum development: early history of, 24–28; gatekeeping model of, 85–86; impact of society on, 26; scientific method of, 25
Curriculum Integration: Designing the Core of Democratic Education (Beane), 57
Curriculum models: linear, 35–36, 51; spiral, 51, 52–53, 107–111
Curriculum reform: making the case for, 13–15; strategies for implementing, 73–104. See also Curricular change; Education reform

D
“Deanware,” 180
Deci, E., 18
Deep processing: characteristics of, 48–49; description of, 47–48; how curriculum design can foster, 50; practicing new habit of, 49
Developing Learner-Centered Teaching: A Practical Guide for Faculty (Blumberg), 84
Dewey, J., 57
DeZure, D., 61
Diaz, A. J., 123
Direct measures of program success, 150, 156–157
Direct paraphrasing, 142
Discipline-based territoriality, 28–29, 190–191
Discussion boards, 166
Disorientation, 63
Divergent thinking, 11
Doll, W. W., Jr., 26, 45, 47, 53, 56, 60, 63, 74, 93, 104, 105, 107, 111, 113, 115
Doodle Jump, 1
Doyle, T., 84, 147
Driscoll, J. W., 36
Dweck, C., 16, 17, 20, 31, 36, 100

E
E-learning, 168
E-mail minute assessment, 140
EC2000 standards, 39, 40, 133
The ECAR Study of Undergraduate Students and Information Technology, 2010 (Smith & Caruso), 162, 167
Eccles, J. S., 20
Echo360, 164
.edu: Technology and Learning Environments in Higher Education (Wilen-Daugenti), 161
Education: cultural contexts of, 54–56; factory model of, 30–33; social reconstructionists view of, 64; used-care metaphor on lack of information on, 153
Education reform: call for more testing as part of, 5–6; national debates over, 5; need for, 159–160. See also Curricular change; Curriculum reform
Education technology: breaking the place-bound barrier through, 165–168; breaking time-bound barrier through, 163–165; building community through, 169–173; classroom communication systems (CCSs), 173–175; course management systems (CMSs), 164, 165, 170–171, 176–178, 180; electronic portfolios, 177–180; emerging
Education technology: (continued)
trends of, 161–163; fostering autonomy through, 168–169; lecture capture system (LCS), 164–165. See also Teaching creativity
“Educational atomism,” 34

Educational Environments (SCUP), 187
Educational games, 171–172
Edwards, R., 54
Electronic portfolios, 177–180
Elsner, P. A., 80–81
Emig, J., 137
“The End of School” (Leonard), 186
Engelbrecht, K., 192
Entity (later fixed mind-set) theory, 16–17, 31
Entwistle, N. J., 35, 50
Environment. See Learning environment
Errors and Expectations (Shaughnessy), 37
Eveline, J., 29
Expectancy value model of motivation, 20
Extrinsic motivation, 19

F
Facebook, 160, 170
Factory model of education, 30–33
Faculty: academic turf wars engaged in by, 32–33, 190; engaging in What if? conversations with, 90–93, 135; how learner-centered pedagogy can threaten, 75–76; preparing them for curricular implementation, 83–85; reducing threat of learner-centered pedagogy to, 76–83; student creativity fostered by mind-set of, 18; teacher as gardener metaphor of, 46–47. See also Academic disciplines; Classroom assessments; Teaching creativity
Failure response: by creative individuals, 17–18; as critical to fostering innovation, 89; Israeli military mind-set and, 18; link between attitude to intelligence and, 17–18

Fast Company’s 2010 creative people list, 1
Feldman, D. H., 6, 7
Feldman, H. R., 76
Ferris State University BIS program: artwork chosen for learning space of, 192–193; assessment practice at, 121, 134; BIS Advising course of, 166; community and team building approach taken at, 118; examining learner-centered design at, 107; flexibility toward credit hours at, 163; indirect measures of program success used at, 152; learning-centered implementation at, 77–78, 79–80; power sharing approach at, 119; renovation of campus, 200; rigor of curriculum at, 112–113; “The Road to the BIS” orientation course of, 205–206. See also FSU PharmD program
Fink, L. D., 68, 84
Firefly Watch, 166
Fisher, T., 185
Florida, R., 55
Flusche, M., 191, 206
Focus groups, 154
Formative assessments: application prompts, 142–143; e-mail minute, 140; muddiest point, 139; one-minute paper, 139–140; one-sentence summaries, 141; paraphrasing, 142; word journals, 141–142
Forster, E. M., 138
Franken, R. E., 6
Freed, J. E., 135, 136, 140, 142, 143, 148
Freshman interest groups (FIGs), 87
FSU PharmD program: assessment practice at, 120, 134; automated assessment tracking program used at, 157; community building as
feature in, 116–117; course management system (CMS) used in, 176; electronic portfolio systems used at, 177–178; examining learner-centered design at, 107; learning outcomes developed by faculty at, 136; physical constraints inhibiting curricular changes at, 183; power sharing approach at, 119; relations in curriculum practice at, 116; richness of curriculum at, 114; rigor of curriculum at, 113; Tegrity system used at, 164. See also Ferris State University BIS program.

Fuschman, K., 29

G
Gaff, J. G., 32
Game-based learning, 171–173
Game design, 171
“Games for Higher Education: 2008” (Alexander), 171
Gaming, 162, 171–173
Garavalia, L. S., 13
Gardener metaphor of curriculum, 14–15
Gardiner, J., 36
Gardner, H., 6, 7, 8, 17, 35, 210
Gatekeeping model of curriculum development, 85–86
Glenn, D., 127
Goal orientation model of motivation, 20–21
Gough, N., 26
Grand Valley State University, 203
Gredler, M. E., 13

H
Hackel, M. D., 84
Hall, C. M., 10
Hammill, P. A., 23, 24, 26, 46, 56
Haney, C., 193
Harris, M., 22, 84, 105, 193, 197
Harvard Medical School’s New Research Building, 202
Havanki, K. L., 176
Haywood, K., 166
Helping Students Learn in a Learner-Centered Environment: A Guide to Teaching in Higher Education (Doyle), 84
Hennings, D. G., 193
Henry, S., 29
Heritage Village (Montcalm Community College), 199
Herman Miller. Butterfly table design by, 201; Learning Studio Research program of, 204
Higher Education Research Institute, 153, 187
Higher Learning Commission (HLC) [North Central Association], 41, 42, 86
History Learning Project (Indiana University), 123
The Horizon Report (2011), 170, 171
Hounsell, D., 35
How to Make a Curriculum (Bobbitt), 24
HSGPA, 30
Huba, M. E., 135, 136, 140, 142, 143, 148
Hunkins, F. P., 23, 24, 26, 46, 56
Hunt, T. C., 25
Hunter, M., 26
Hutchings, P., 127, 128, 148

I
IBM Global Services, 5
IDEA Center’s Student Rating of Instruction (SRI), 177
“Illusion of comprehension,” 9, 103
The Importance of Physical Space in Creating Supportive Learning Environments (Chism), 191
Incremental theory of intelligence, 16, 17, 31
Indiana University at Kokomo, 201
Indiana University Center for Postsecondary Research and Planning, 153
Indiana University’s History Learning Project, 123
Indirect measures of program success, 150, 156–157
Innovation: breaking the place-bound barrier through technological, 165–168; breaking the time-bound barrier through technological, 163–165; building community through technological, 169–173; classroom communication systems (CCSs), 173–175; course management systems (CMSs), 164, 165, 170–171, 180; electronic portfolios, 177–180; emerging technological trends, 161–163; failure response as critical to fostering, 89; fostering autonomy through technological, 168–169. See also Creativity
Inspired College Teaching (Weimer), 84
Institutional scaffolding, 14
Instructional paradigm: curriculum design and, 30–33; description of, 23–24; “educational atomism” of, 34; factory view of education characterizing, 25; five underlying assumptions of, 35–39; “ownership” of space in silo effect of, 190; view of knowledge in, 31–32
Instructional paradigm assumptions: credits time with a role in learning, 37; curriculum needs to be linear, 35–36, 51; that error is negative, 37–38; that everyone learns in the same way, 36–37; that knowledge is an entity to be owned, 38
Instructional Resource Center (IRC), 197
Integrated learning: characteristics of, 58–60; creating institutional scaffolding for, 14; definition of, 58; interdisciplinary versus, 61; multidisciplinary versus, 61; Opportunities to Connect project on, 14; postmodernism and curriculum design approach to, 60–63; progressive movement origins of, 57–58
Integrated Learning Project (AAC&U), 179
Intel, 4
Intelligence: entity (later fixed mind-set) theory on, 16–17, 31; incremental theory on, 16, 17, 31; IQ tests for measuring, 16, 31; link between response to failure and attitude about, 17–18
Intentionality, 8
Interdisciplinary learning, 61
Interdisciplinary Resource Center (IRC), 197–198
Internet: changes brought about through, 159; learner-centered environments promoted through, 167; social networking sites, 161. See also Technology
Intrinsic motivation, 19
Intrinsic rewards, 21
IQ tests, 16, 31
Israeli culture, 7–8
Israeli military: creative thinking facilitated by experience of, 7–8; response to failure fostered in the, 18

J
Jencks, C., 57
Jensen, E., 192
Job security: creativity and adaptability required for, 4–5; as thing of the past, 4
Johnson, L., 166, 170, 171, 172
Jones, E. A., 83, 177
Judson, E., 173–174, 175
Just-in-time learning, 168

K
Katz, S. N., 132
Kelly, R., 100
Klein, J. T., 61
Kliwer, J. R., 76
Knowledge: content, 28; four ideologies on education and type of, 27–28; instructional paradigm view of, 31–32; ownership of, 33–34, 38; paradigm of modernism on, 23; prior, 49; self-directed, 12; traditional taxonomy of, 93. See also Learning
Knowles, M., 12

L
LaGuardia Community College, 179
Lane Community College, 89–90
Langer, E., 8, 10, 35, 55, 88
Langer, J. A., 137
Language: referring to “curriculum,” 93–94; rethinking “prerequisite,” 94–95; of shifting paradigms, 91–93. See also Communication
Lasley, T. J., II, 25
Lattuca, L., 1, 39, 94
Leading the Learner-Centered Campus (Harris & Cullen), 22, 84, 105, 193, 197
Leamnson, R., 35
Learner-centered assessment: establishing student learning outcomes using, 132–137; monitoring change through, 128–132
Learner-centered attitudes: “model best practices” by adopting, 85; process of adopting behavior and, 85–90
Learner-centered curriculum design: characteristics and vision of, 63–71; Doll’s four characteristics of, 60; integrative learning feature of, 60–63; rewriting course descriptions for, 96–97. See also Curriculum design
Learner-centered design practices: community as key feature of, 65–66, 116–118; examining five models of, 107; power sharing, 18–21, 65, 66–68, 118–120; recursion or spiraling, 51, 52–53, 107–111; relations within curriculum, 53–56, 115–116; revisiting an existing program as, 122–125; richness of curriculum, 47–50, 113–115; rigor of curriculum, 56–60, 111–113; Syllabus Assessment Matrix for evaluation, 105, 106t, 122. See also Assessment
Learner-centered environment: class size impacting, 196; classroom design for, 193–196, 203–206; community and collaboration by design of, 202–203; four features of, 15; low-cost options for, 204–206; renovating for symbolic impact of, 197–199; rethinking our use of, 185–189; seating arrangements for, 193–196; sharing power with students in, 18–21, 203–204; visual elements and silent messages of, 192–196; what research tells us about realigning to, 191–196
Learner-centered ideology, 27
Learner-centered pedagogy: adopting Rogerian approach to implementing, 73–76; APA principles on, 65; assessment domain of, 65, 68–71; choice as part of, 20–21; community domain of, 65–66; how faculty can be threatened by, 75–76; making learning relevant to student, 21; paradigm of, 23–24; preparing faculty for implementation of, 83–85; sharing of power domain of, 20, 65, 66–68; strategies for reducing threat of, 76–83
Learner-Centered Teaching: Five Key Changes in Practice (Weimer), 84
Learners: entity (later fixed mind-set) theory on, 16–17; incremental theory on, 16, 17
Learning: creating institutional scaffolding for integrated, 14; deep processing of, 47–49; disconnect between traditional curriculum and, 14; game-based,
Learning: (continued)
171–173; how self-efficacy impacts, 16; integrated, 14, 57–63; just-in-time, 168; Opportunities to Connect project on integrating types of, 14; reflection role in, 70; self-directed, 12; shallow processing of, 48. See also Knowledge
A Learning College for the 21st Century (O’Banion), 80
Learning environment: creativity and role of, 6–8; Israeli culture and military, 7–8; learner-centered, 15–21; physical spaces as, 184–185; self-directed learning to adapt to changes in, 12; teaching behaviors fostering creative, 11–12. See also Classroom design; Physical space
The Learning Paradigm College (Tagg), 23
Learning Studio Research program, 204
“Learning through teaching” activity, 151
Lecture capture system (LCS), 164–165
Leggett, E. L., 16, 21
Leonard, G., 186
Levine, A., 76, 166
Licht, B. G., 36
Light, R., 121
Light, S. A., 150–151
Linear curriculum model, 35–36, 51
Livingstone, J. A., 13
McConnell, D., 168, 170–171
Mediasite, 164
Merryman, A., 5, 6, 10, 11
Mezirow, J., 55, 63
Miami University BIS program: examining learner-centered practices at, 107; recursion practiced at, 110–111; relations in curriculum practice at, 116; rigor of curriculum at, 112
Michael, D. G., 82, 92
Middendorf, J., 123
Miller, M., 168–169
Miller, R., 50
Mindfulness, 8, 88
“Model best practices,” 85
Modernism: curriculum design from perspective of, 46–47; paradigm of, 23; postmodern view versus, 46; worldview of, 46
Monotcalm Community College (Michigan), 199
Moran, M., 28
Moskus, J., 89–90
Mosteller, F., 139
Motivation: cognitive view of, 20; how sharing power increases, 19; intrinsic versus extrinsic, 19; Svinicki’s amalgamated theory of, 20–21, 52. See also Self-determination; Student autonomy
Muddiest point assessment, 139
Multidisciplinary learning, 61
Museum of Science (Boston), 166
National Association of Boards of Pharmacy, 157
National Chengchi University (Taiwan), 11
National Council for Liberal Education and America’s Promise, 130
National Education Commission on Time and Learning, 163
National Leadership Council, 69
National Leadership Council for Liberal Education and America’s Promise, 2, 3–4, 9, 69
National League for Nursing, 40
National Survey of Student Engagement (NSSE), 153
New Research Building (Harvard Medical School), 202
Newell, G., 138
Newsweek, 5
Nezlec, J., 18
North American Pharmacist Licensure Examination, 157
Nygren, K., 13

O
O’Banion, T., 45, 80, 81, 98, 159–160, 163, 186, 200
Oleanna (play), 90
One-credit course, 150
One-minute paper, 139–140
One-sentence summaries, 141
Opportunities to Connect (AAC&U), 14, 22
Ownership of knowledge belief, 33–34, 38

P
Pace, D., 123
Palomar College, 82
Paradigms: influence on physical spaces by, 189–191; instructional, 23–25, 30–39, 190; language of shifting, 91–93; learner-centered, 23; modernism, 23; realigning learning space with new, 191–196
Paraphrasing, 142
Pedagogy: learner-centered, 20–24, 63–71, 73–83; social-centered, 64; social reconstructionists, 64
Penn State’s Center for the Study of Higher Education, 39
Perfect, T., 36
Performance: autonomy, mastery, and purpose impact on, 21; choice and creative, 19–20; rewards and, 19
Peter D. Hart Research Associates, 2
Pew Charitable Trust, 176
Pew Higher Education roundtable, 80
PharmD. See FSU PharmD program; WesternU PharmD program
Physical space: community and collaboration by design of, 200–202; influence of the instructional paradigm on, 189–191; as learning environments, 184–185; low-cost options for, 204–206; principle of sharing power applied to designing, 203–204; renovating for symbolic impact, 197–199; rethinking our use of, 185–189; visual elements and silent messages of, 192–196; what research tells us about realigning new paradigm of, 191–196. See also Classroom design; Learning environment
Piaget, J., 35
Pike, K. L., 74
Pink, D., 20, 21
Plucker, M., 7
Portfolios: as assessment tool, 148–149; electronic, 177–180
Portland State University, 179
Postmodernism: examining curriculum from perspective of, 46–71; integrative learning bridging curriculum theory and, 60–63; modernism view versus, 46
Postmodernism curriculum design: characteristics of, 46–47; disorientation element of, 63; integrative learning feature of, 60–63; learner-centered curriculum and features of, 63–71; recursion of, 51–53; relations inherent in, 53–56; richness of, 47–50; rigor of, 56–60
Powell-Focht Bioengineering building (UCSD), 202
Power sharing: creativity facilitated by, 18–21; design of learning spaces and, 203–204; as key learner-center practice, 118–120; learner-centered pedagogy fostering, 20, 65, 66–68; student motivation increased by, 19. See also Choice

Prados, J., 39

Prerequisites: idea of, 94; rethinking our learning, 94–95

Presentation assessment, 146–147

Prior knowledge, 49

Problem-based learning: Chinese education turning to, 5; creativity increased through, 11

Problem-centered curriculum, 57–58

Professional Organizational Development (POD) Network, 84

Proficiency Profile/Measure of Academic Proficiency and Progress (MAPP), 156

Profitability of programs: adding value to assessment to increase, 101–103; meaning of, 76; reducing threat by emphasizing, 79–83; required for successful implementation, 82–83

Program to Evaluate and Advance Quality (PEAQ), 41–42

Programmatic assessments: description of, 150–151; direct measures of program success, 150, 156–157; indirect measures of program success, 150, 151–155

Progress logs, 155

Prosser, M., 50

Purpose, 21

Pušenjak, I., 1

Quest University (Canada): assessment practice at, 121–122, 130–131; examining the learner-centered design at, 107; foundation programs (years 1 and 2), 109ff., 110; power-sharing approach at, 119–120; Question proposal element of education at, 109ff., 110; recursion practiced at, 108–110; relations in curriculum practice at, 115–116; richness of curriculum at, 114; structure of curriculum design at, 97–98

Raisch, C. D., 25

Ramsden, P., 35, 49, 50

Recursion practice: examining models of practice, 107–111; spiral curriculum design of, 51, 52–53

Reflection: as form of assessment, 129; learning role of, 70

Reflective essays, 154–155

Relations within curriculum: learner-centered practice of, 115–116; postmodernism curriculum design using, 53–56

Rensselaer Polytechnic Institute, 176

Research projects, 149–150

Response to failure: by creative individuals, 17–18; Israeli military mind-set and, 18

Rewards: performance and, 19; performance improved by intrinsic, 21

Richness: definition of, 113–114; as learner-centered practice, 113–115; of postmodernism curriculum design, 47–50

Rigor: description of, 56; as learner-centered design practice, 111–113; of postmodernism curriculum design, 56–60

“The Road to the BIS” orientation course, 205–206

“Roadmap to 2015: Preparing Competent Pharmacists and Pharmacy Faculty for the Future” (AACP), 40

Rogerian argument: description of, 74; implementing learner-centered curriculum with, 74–76

Rogers, C., 74, 103, 104

Rogers, S., 29
Role-playing games, 171
Rosenthal, R., 10
Rubrics: presentation assessment, 147;
Syllabus Assessment Matrix, 105, 106r, 122
Ryan, M. R., 145

S
Saljö, R., 35, 47
San Jose State’s Academic Success Center, 201–202
SAT test, 30
Sawada, A., 173–174, 175
Schaefer, K. M., 92
Schapiro, S. R., 13
Schicho, M. S., 25, 27, 28, 64
Scholar academic ideology, 27
Schön, D., 70, 130
Schunk, D. H., 13
Scientific management, 24
Seamans Center (University of Iowa), 198–199
Seating arrangements: modular or pod-configuration, 195f, 196;
seminar style, 194f, 195; three different, 193–195f
Self-assessment, 129
Self-determination: creativity facilitated by choice and, 18–21;
self-confidence and self-esteem fostered by, 21. See also Motivation
Self-directed learning: as educational goal versus instructional method, 12;
as form as self-regulation, 12; importance of, 12
Self-efficacy, 16
Self-regulation: definition of, 13;
self-directed learning as form of, 12
Senior, D., 7, 18
Shallow processing, 48
Sharing power. See Power sharing
Shaughnessy, M., 37
Sheinomy, L., 18
Shenk, D., 16, 18
Shopkow, L., 123
Silo effect, 190
Singer, S., 7, 18
Singleton, J., 76
Skinner, B. F., 26
Smith, P., 76
Smith, R., 166
Smith, S. D., 162, 167, 168
Social cognitive model of motivation, 20
Social cognitive theory, on motivation, 20
Social efficiency ideology, 27
Social networking, 161
Social reconstruction ideology, 27
Social reconstructionists, 64
Society: creativity from interaction of culture, individual, and, 10; Csikszentmihalyi on creativity and role of, 9–10; impact on curriculum development by, 26
Society for College and University Planning (SCUP), 187, 191, 197, 206
Sommer, R., 193
Space. See Physical space
Spiral curriculum model: description of, 51, 52–53; learner-centered design practice of recursion or, 107–111
Standardized testing debate, 5–6
Stark, J., 1, 94
Stead, D. R., 139–140
Steelcase (furniture design), 203–204
Steelcase University Learning Center (SULC), 203–204
Strauss, L. C., 39
Student autonomy: curriculum designed to develop, 57; fostering through education technology, 168–169; performance improved through, 21; response to failure and, 17–18; role of teachers’ beliefs in, 18. See also Motivation
Student Rating of Instruction (SRI) [IDEA Center], 177
Students: choice provided to, 18–21, 68; contemporary approach to determining potential of, 30; declining test scores on creativity by, 5; four areas of preparation for, 2–3; “illusion of comprehension” by, 9, 103; sharing power with, 18–21, 65, 66–68
Sukhbaatar, J., 39
Sum, P. E., 150–151
Summative assessments: artistic and creative work projects, 149–150; portfolios, 148–149; presentations, 146–147; research projects, 149–150; written works, 144–146
Sun Microsystems, 4
Survey instruments, 153–154
SurveyMonkey, 177
Svinicki, M. D., 9, 20, 36, 48, 49, 52, 67, 75, 103
Syllabus Assessment Matrix, 105, 106, 122
Sylwester, R., 35

T
Tagg, J., 23, 31, 34, 37, 50, 82, 98
Taiwan’s National Chengchi University, 11
Taxonomy of knowledge, 93
Taylor, F. W., 24, 26
Teacher as gardener metaphor, 46–47
Teacher wall concept, 203–204
Teaching creativity: behaviors that foster creative environment, 11–12; examining feasibility of, 6–12; intentionality role in, 8. See also Creativity; Education technology; Faculty
Technology: changes brought about through, 159; educational tools available through, 160–161. See also Education technology; Internet
Tegrity, 164, 165
Terenzini, P. T., 39
Territoriality (academic discipline), 28–29, 190–191
Thompson, J., 192
Tierney, W. G., 27, 77
TracDat, 178
Transformative curriculum, 63
Tufts University, 166
Turf wars, 32–33, 190
Twigg, C., 176
“Twin sins of design,” 62
Twitter, 165–166
Tyler, R., 26
Tyler Rationale, 26–27

U
University of California, San Diego, 202
University of Georgia, 11
University of Iowa, 198
University of Massachusetts Physics Education Research Group, 174–177
University of Minnesota–Twin Cities, 185
University of Oklahoma, 11
University of Pennsylvania, 188
University of Wisconsin-Madison, 172
Used-care metaphor, 153
Usher, R., 54

V
VandenPlas, J. R., 176
Volkwein, J. F., 39
von Glaserfeld, E., 35

W
Waldmann, S., 61
Wasserman, J., 129
Web 2.0 technologies, 161
Weigel, V. B., 167
Weigle Information Commons (University of Pennsylvania), 188
Weimer, M., 84, 96
Weinstein, C. S., 193
West, M. L., 160, 169–170
Western University (WesternU):
 examining learner-centered design
 at, 107; recursion practiced at, 108;
 renovation of campus, 201; “visible
 sense of community” at, 117–118
WesternU PharmD program: assessment practice at, 120–121; community building as feature in, 117; recursion practiced at, 108; richness of curriculum at, 114; technology-enhanced lecture hall of, 196
Wharton, C., 187
What if? conversations, 90–93, 135
White, E. K., 189–190
White, J., 57
“Why redesign curricula?,” 1–2, 209–210
Wigfield, A. L., 20
Wikis, 166
Wilken-Daugenti, T., 161, 162
Willingham, D., 35, 48, 143
Willis, H., 166
The Wingspread Group on Higher Education, 22, 30
Woolfolk, A. E., 193
Word journals, 141–142
Workforce: call for creativity and adaptability in, 2–6; four areas of preparation for, 2–3
Workforce performance, IBM Global Services survey on, 4–5
Write to Learn movement, 137–138
“Writing as a Mode of Learning” (Emig), 137
Written works assessment, 144–146

Y
Yearwood, E., 76
Yee, R., 188
Young, R. E., 74, 75, 103

Z
Zimbardo, P. G., 193
Zimmerman, B. J., 13
Zull, J., 35
Zygmont, D., 92