Index

Academic skills, 114. See Students with disabilities
Access control, telematics, 900–901. See Information access; Security and safety
Accessibility. See Computer platforms and operating systems; Workplace computer access
Americans with Disabilities Act of 1990 (ADA), 45, 62, 74, 102, 103, 105, 138, 241, 521, 530, 533, 805, 808, 810
client fitting, 34–35
computer platforms and operating systems, 263–279
definitions, 64–65
information and communication technology (ICT), 908–912
Japan, 908
telematics, 904
transportation services:
Asia, 549–566
Europe, 536–548
U.S., 74–75, 521
universal design, 808
Access networks, 883–891
generally, 883–885
protocol reference model, 888–891
residential gateway architecture, 885–888
Accident avoidance experiments, traffic safety, 469–473
Active crash countermeasures, 464–468
Active-LeZi (ALZ) algorithm, 772–773. See Smart space algorithms
Activities of daily living (ADL), 1
cognitive disabilities, 217–219
ecologic model, 572–574
motor and physical disabilities, 5
summary chart, 130
Adaptive cruise control, collision warning systems and, 738
Aesthetics, user-centered design, 793
AFMASTER robot, 360
Africa, 58
Age level, United States, 66–67. See Demography; Elderly
AIDS, 58
Air Carrier Access Act, 530
Air transport, 530–532
Alarm(s). See Alerting systems;
Information and communication technology (ICT); Pervasive computing and monitoring
intelligent transportation systems (ITSs), 741, 743–744
telecare applications, 721–723
Alarm(s). (Continued)
visual disabilities, 175–176
Alarm-based automated medication devices, 639–640
Albrecht, Gary, 211
Alerting systems, hearing disabilities, 198–199
Algorithms. See Smart space algorithms
Alternative communication. See
Augmentative-alternative communication
(AAC) devices
Alzheimer’s disease. See Cognitive
disabilities; Dementia; Elderly
demography, 1, 66–67, 217–218
electronic and information systems, 209,
230
low-tech assistive technologies, 136–137
people with special needs (PwSN), 7
Ambient intelligence, telecare, technology
trends, 715
Ambulatory aid, low-tech assistive
technologies, 139–140
Ambulatory care, trends in, 713
Ambulatory monitoring, smart textiles,
674–676
American Association of Retired Persons
(AARP), 67, 68, 768, 805
American Medical Association (AMA), 71
American National Standards Institute (ANSI),
37–38, 200
American sign language:
augmentative-alternative communication
(AAC) devices, 301–302
wearable computer systems, 332–334
American Standard Code for Information
Interchange (ASCII), 308
Americans with Disabilities Act of 1990
(ADA), 45, 62, 74, 102, 103, 105, 138,
241, 521, 530, 533, 805, 808, 810
Amplified telephone, hearing disabilities,
199–200
Amplitude, cutaneous perception, 340–341
Animal-assisted therapy (AAT), 405–407. See
Robot therapy
Aniridia, 144–145
Antispoofing, security and safety, telematics,
897
Aphasia:
communication disabilities, 6
voice interactive systems, 292
Appliances (home):
context awareness, 588
visual disabilities, 163
Application layer, middleware architecture,
smart house design, 700
Application programming interface (API),
smart space middleware, 607–608
Architectural Barriers Act of 1968, 74–75
Arm (upper-limb prostheses), 424–432
control systems, 426–432
power systems, 424–426
ARPH robot, 368
Artificial arm, upper-limb prostheses, 424–432
control systems, 426–432
power systems, 424–426
Artificial hand, upper-limb prostheses,
422–424
Artificial limb. See Human limb prostheses
Assistive robotics, 355–374. See Mobile
platform-based robot systems; Smart
house design; Telecare; Telecare-robotics
concept; Wheelchair(s); specific assistive
robot devices
history of, 357–359
manipulator on base, 364–365
MATS robot, 369
mobile autonomous robot, 367–368
overview, 355–357, 368–371
telecare, 717–719
unifunction robots, 363–364
wheelchair-mounted, 365–367
workstation robots, 359–363
AFMASTER, 360
DeVAR and ProVAR, 362–363
MASTER1, 360
RAID, 360
RAID-MASTER, 361–362
Assistive technologies (AT), 1, 11–24.
See International perspective; Low-tech
assistive technologies; Optimal use;
Technology evaluation; United States;
Virtual companions; specific assistive
technologies and
devices
classification, 15–18, 19–24
cognitive disabilities, 23
communication disabilities, 24
hearing disabilities, 22
motor disabilities, 19–20
visual disabilities, 21
context awareness, 588
definitions, 13–14, 63–65
design methods, 18, 23–24
future prospects, 46–47
growth in, 211
INDEX

International Classification of Functioning, Disability and Health (ICF), 14
international perspective, 49–59
low-tech, 129–142
marketplace, 18
optimal use of, 29–48
overview, 12–13
rehabilitation, 804
security and safety, 624–627
United States, 61–80
workplace, 69
Assistive Technology Act of 1998, 13–14, 74, 102, 208
Association for the Advancement of Assistive Technology in Europe (AAATE), 94
ATLAS study (WHO), 205–206
Attendant-propelled wheelchair, 441
Audio:
computer platforms and operating systems, 269–270
visual disabilities, 171
workplace computer access, visual disabilities, 253–254
Audit function, research function and, technology evaluation, 834–835
Auditory warnings, intelligent transportation systems (ITSs), 741, 743–744
Augmentative-alternative communication (AAC) devices, 137, 297–316
communication assistant, 303–313
caption format standard, 312–313
design considerations, 305–311
display options, 307–309
font options, 309
speech recognition, 310–311
wireless transmission system, 306–307
generally, 303–305
user input and testing, 311–312
mobile wireless technology integration, 300–301
overview, 297–298
sign language, 301–302
target population, 298
technology transfer, 313
text messaging, 302
traditional forms, 299–300
Aura, smart space middleware, 613–614
Authentication, 896, 900
Autism:
communication disabilities, 6
diagnosis of, wearable computer systems, 328–330
voice interactive systems, 292
Automated dispensing medication devices, 640
Automated medication management, 631–644.
See Medication compliance, 631–632
devices, 638–642
alarm-based, 639–640
automated dispensing, 640
generally, 638–639
monitoring, 640
pillholders, 639
user interfaces, 640–642
noncompliance, 632–634
overview, 631
stakeholders, 634–635
user requirements, 635–638
Automatic teller machines (ATMs):
Japan, 909–912
universal design, 810
visual disabilities, 178–182
Automobile, car location, wearable computer systems, 324–328. See Intelligent transportation systems (ITSs); Traffic safety; Transportation services (Asia); Transportation services (Europe);
Transportation services (U.S.)
Autonomously guided wheelchair, 451–454
Balance, lower-limb prostheses, 432–433
Bath wheelchair, 441
Beach wheelchair, 441
Best’s disease, 159
Bickenbach, Jerome E., 81
Biosignal-based interfaces, wheelchair-based robotic system, 385–386
Blind navigation, 479–500. See Visual disabilities; Wayfinding
devices in, 484–485
factors in, 480–484
future prospects, 493–494, 497–498
global positioning system, 491–492
indoor, 492–493
infrared signage, 489–491
optical (camera or laser-based) devices, 488–489
overview, 479–480
sonar-based devices, 485–487
summary table of technology, 495–496
Bluetooth network, telematics, 879–880. See Telematics
Body-area network, telecare, technology trends, 714–715
Body location, cutaneous perception, 342
BPL (broadband powerline) access, powerline networks, telematics, 873–875
Braille:
 blind navigation, 480
 sensory substitution, 343–344
 visual disabilities, 171–172, 180
Brain damage. See Cognitive disabilities
cognitive disabilities, 219
wearable computer systems, 324–328
Brakes, manual wheelchair, 441
Broadband powerline (BPL) access, powerline networks, telematics, 873–875
Brundtland, Gro Harlem, 88
Camber angle, manual wheelchair, 441
Camera(s), telecare, technology trends, 716
Camera-based devices, blind navigation, 488–489
Cane(s):
 long, blind navigation, 484–485
 low-tech assistive technologies, 139
Caption format standard, communication assistant, 312–313
Captioning:
 hearing disability, 197–198
 wearable computer systems, 335–337
 workplace computer access, hearing disabilities, 255–256
Cardiac patients, smart textiles, 676–677
Care, cure and, 712
Caregivers, cognitive disabilities, 224–225
Care-O-Bot II walker system, 368, 514
Car location, wearable computer systems, 324–328. See Intelligent transportation systems (ITSs); Traffic safety; Transportation services (Asia); Transportation services (Europe); Transportation services (U.S.)
CARMEN navigation system, 511–512
Caster flutter, manual wheelchair, 441
Cataracts, 146
Cataracts, 146
Center for Medicare Medicaid Services (CMS), 42, 63
Centers for Disease Control and Prevention, 93
Central American Free Trade Agreement (CAFTA), 10, 54
Central hearing loss, 6
Charge-coupled device (CCD) camera, eye-mouse system, 384–385
Charles Bonnet syndrome, 159
China, transportation services, 562–565
Civil rights issues. See Discrimination
Americans with Disabilities Act of 1990 (ADA), 45, 62, 74, 102, 103, 105, 138, 241, 521, 530, 533, 805, 808, 810
cognitive disabilities, 206–208
model of, 50
public transportation, 519
Vocational Rehabilitation Act of 1973, 103
Classification:
 assistive technologies (AT), 15–18, 19–24
cognitive disabilities, 230–232
disability concept, 1–2
 international Standards Organization (ISO) 9999, 118, 119–122
Client-centered approach. See User-centered design
 optimal use, 41
 usability philosophy, 856–858
Client fitting, optimal use, 32–35
Client rejection, optimal use, 32
Client training, optimal use, 31–32, 35
Clinger Act of 1996, 208
Closed-circuit television (CCTV), visual disabilities, 170
Coats’ disease, 159
Cochlear implants, 194–195
Code authorization/signature, telematics, 900
Cognitive disabilities. See Brain damage;
 Dementia; Elderly; Students with disabilities
 assistive devices, 217–236
 classification systems, 230–232
dedicated activities, 225–230
generally, 225–226
handwashing, 226
medication, 226–227
mobility, 228
social interaction, 228–230
generally, 217–218
generic orthotics, 219–225
adaptive strategies, 225
caregivers, 224–225
generally, 219–220
information organizer, 223–224
multimedia procedure assistants, 222–223
pagers, 221–222
Personal Digital Assistants (PDAs), 220–221
civil rights issues, 206–208
classification assistive technologies, 23
demography, 203–206, 211
developed world, 203–204
developing world, 204–206
distance education technology, 109–110
independence needs, 218–219
low-tech assistive technologies, compensatory considerations, 136–137
overview, 203
people with special needs (PwSN), 7
technological categories, 208–211
assistive, 208
electronic and information systems, 208–209
universal design, 209–211
traffic safety, 462
voice interactive systems, 292
wearable computer systems, 324–328
workplace computer access, 257–259
Collision warning systems, adaptive cruise control and, 738
Coloboma, 159
Colorblindness, 146–150
Comfort, telematics, 903
Common object request broker architecture (CORBA), 616, 770
Communication assistant, 303–313. See Augmentative-alternative communication (AAC) devices
caption format standard, 312–313
design considerations, 305–311
display options, 307–309
font options, 309
speech recognition, 310–311
wireless transmission system, 306–307
generally, 303–305
user input and testing, 311–312
Communication disabilities:
classification of assistive technologies, 24
cognitive disabilities, 228–230
context awareness, 587
International Standards Organization (ISO) 9999, 121
low-tech assistive technologies, 137–138
people with special needs (PwSN), 6–7
Communication performance experiments, traffic safety, 473–474
Compatibility, telematics, 903
Compliance, automated medication management, 631–632
Computer. See Interfaces; Voice interactive systems; Wearable computer systems;
Workplace computer access
cognitive disabilities, 229, 257–259
visual disabilities, 173–174
voice interactive systems, 281–296
wearable systems, 317–338
Computer platforms and operating systems, 263–279
components in, 264
current technology, 275–277
Java Swing API, 277
Microsoft Active Accessibility (MSAA), 275–276
Microsoft UI automation, 276
SWT, 277
device support, 266–275
audio, 269–270
display, 270–271
element relationships, 273
event protocols and event semantics, 273
generally, 266
introspection/discovery capability, 273
keyboard, 267
MVC design pattern, 271–272
navigation, 274–275
object model access, 272–273
pointing device, 267–269
roles and states, 273–274
generally, 266
graphical user interfaces (GUIs), 265–266
platforms, 264–265
Confidentiality. See Security and safety
smart house design, 700–702
technology evaluation, 847–848
Congenital cataract, 159
Consumer empowerment, optimal use, 44–46
Context awareness, 585–605
applications and systems, 588–590
definitions, 586–587
modeling, 590–600
analysis, 599–600
context modeling language, 598–599
generally, 590–591
markup scheme approaches, 593–594
ontology-based approaches, 594–597
requirements, 591–593
requirements analysis model, 597
overview, 585–586
role of, 587–588
smart house design, 700–702
software infrastructure, 600–603
context toolkit, 601–602
PACE middleware, 602–603
reference architecture, 600–601
Solar platform, 602
Context fabric, smart space middleware, 614
Context management layer, middleware architecture, smart house design, 700
Context management services, smart space middleware, 616–617
Context-modeling language (CML), 598–599, 603
Context processing and management, smart space middleware, 609–610
Context toolkit, context awareness, software infrastructure, 601–602
Continuity, ICF, 88–89
Continuous quality improvement (CQI), total quality management (TQM) and, 39–40
Control interfaces. See Interfaces
Convergent systems, visual disabilities, 183–185
COOL AIDE walker system, 506–509
Cooltown, smart space middleware, 614
Copy protection, security and safety, telematics, 896
CORBA (common object request broker architecture), 616, 770
Corneal dystrophy, 159
Corneal graft, 159
Cranial arteritis, 161
Crash countermeasures, traffic safety, 463–468
Cruise control, collision warning systems and, 738
Cure, care and, 712
Customer needs, design for well-being (DfW), 826–829. See Client-centered approach; Design methods; Universal design; Usability; User-centered design
Cutaneous perception, 340–343. See Sensory substitution
aging, 342–343
amplitude, 340–341
body location, 342
duration, 341
frequency, 341
rhythm, 342
waveform, 341
Data collection methods, 860–863
objective, 862–863
specific methodologies, 863
subjective, 860–862
Data over cable service interface specification (DOCSIS), telematics, 875–877
Deafblindness, visual disabilities, 175
Decoder Circuitry Act of 1990, 62
Dementia. See Alzheimer's disease; Cognitive disabilities; Elderly
demography, 1, 66–67, 217–218
low-tech assistive technologies, 136–137
people with special needs (PwSN), 7
Demilitarized zone, telematics, 897
Demography:
Alzheimer's disease, 1, 66–67, 217–218
cognitive disabilities, 203–206, 211
disability, 132
elderly, 501, 711–712, 727–728, 768, 908
Europe, 528–529
healthcare, 749–750
Japan, 908
people with special needs (PwSN), 1, 7–11
student populations, 102–103
transportation services (Asia), 550–551
visual disabilities, 143–144, 174–175
Department of Health and Human Services (HHS), 63
Department of Housing and Urban Development (HUD), 73–74
Depot (institutional) wheelchair, 441
Depression, elderly, 579–580
Design for well-being (DfW), 819–832. See Client-centered approach; Design methods; Universal design; Usability; User-centered design
design agenda, 821–824
customer needs, 826–829
overview, 819–820, 829–830
values in, 824–826
Design methods, assistive technologies, 18, 23–24. See Client-centered approach; Design for well-being (DfW); Universal design; Usability; User-centered design
DeV AR robot, 362–363, 376
Diabetic retinopathy, 150–152
Digital hearing aids, 192–193
Digital technology, visual disabilities, 171
Disability-adjusted life-years (DALYs), 53
Disability concept, 1–7. See Elderly; People with special needs (PwSN); Students with disabilities; specific disabilities
definitions and classifications, 1–2
handicap and well-being, 2
people with special needs (PwSN), 3–4
Disability resource center, students with disabilities, 104
Disability Support Services (DSS), students with disabilities, 104
Disabled People's International (DPI), 2
Discrimination. See Civil rights issues
Americans with Disabilities Act of 1990 (ADA), 45, 62, 74, 102, 103, 105, 138, 241, 521, 530, 533, 805, 808, 810
cognitive disabilities, 206–208
students, 101–102
United States, 65–66, 72–74
Discussion groups, usability data collection methods, 861
Display(s):
 communication assistant, 307–309
 computer platforms and operating systems, 270–271
 visual disabilities, 181
Distance education technology:
 accessibility barriers, 109
cognitive and learning impairments, 109–110
generally, 107–108
handouts and resources, 110–111
hearing, 109
interactive tools, 111
limitations of, 110
motor impairments, 109
universal design, 110
vision, 109
DOCSIS (data over cable service interface specification), telematics, 875–877
Domestic appliances, visual disabilities, 163
Down syndrome, 210–211
Drive-by-wire, intelligent transportation systems (ITSSs), 739
Drive-in facilities, 745
Driving abilities, client fitting, 34. See Intelligent transportation systems (ITSSs); Traffic safety; Transportation services (Asia); Transportation services (Europe); Transportation services (U.S.)
Dry eye, 160
Duration, cutaneous perception, 341
Dynamic balance, lower-limb prostheses, 432–433
Dyscalculia, communication disabilities, 6–7
Dyslexia, communication disabilities, 6
Economic factors, 67
Education, 68. See Students with disabilities
Education for All Handicapped Children’s Act of 1975, 102
Elderly, 569–584. See Alzheimer’s disease; Cognitive disabilities; Dementia;
Information and communication technology (ICT); Intelligent transportation systems (ITSSs); Virtual companions
context awareness, 587–588
cutaneous perception, 342–343
demography, 501, 711–712, 727–728, 768, 908
ecologic model, 572–574
example, 579–580
facet model, 574–579
healthcare workers, 711–712
information and communication technology (ICT), 907–920
Japan, 908
mobility, 501–502
overview, 569–570, 581–583
people with special needs (PwSN), 1
pervasive computing and monitoring, 570–571
research and development, 571–572
robot therapy, 405–418
security and safety, 624–627
traffic safety, 459–463 (See Traffic safety)
universal design, 807–811
usability testing, 863–864
user-centered design, 790–793
virtual companions, 645–671
Electrocardiography (ECG), smart textiles, 674–676
Electronic and information technology (EIT), cognitive disabilities, 208–209
Electronic assistive technology (EAT). See Virtual companions
Electronic data security, telematics, 901
Electronic mail, cognitive disabilities, 229
Electronic purse, visual disabilities, 183–185
Electronic textiles. See Smart textiles
Electronic toll collection, 745
Electronic travel aids, blind navigation, 484, 485
Emergency services, telematics, 902
Emerging technologies, 65, 75–76
EMG interface. See Interfaces
powered wheelchair, 446
upper-limb prostheses, 427–430
wheelchair-based robotic system, 395–396
Employment. See Workplace; Workplace computer access; Workstation robots
cognitive disabilities, 218–219
low-tech assistive technologies, 141
Employment. (Continued)
- students with disabilities, 113
- United States, 67–68
- work assistant mobile robot, 389–392, 397–399
Encryption algorithms/hashing, telematics, 898–899
End-user residence subsystem, telecare-robotics concept, 729
Energy consumption, telematics, 903
Engelberger, Joe, 368
Engineering and Physical Sciences Research Council (EPSRC, UK), 821
Episode discovery (ED) algorithm, mining sequential patterns, 771–772
Ergonomics:
- intelligent transportation systems (ITSs), 744–745
- universal design, 814
- usability philosophy, 856–858
E-textiles. See Smart textiles
Ethical concerns, technology evaluation, 847–848
Ethnography, user-centered design, 788
Europe. See International Classification of Functioning, Disability and Health (ICF)
- demography, 528–529
- standardization, 916
European Commission (EC), 14
European Union, 10
Evaluation. See Technology evaluation
Expressive language disorder, communication disabilities, 6
Eye. See Visual disabilities
Eye-mouse system, wheelchair-based robotic system, 383–385, 394–395
Fabrics. See Smart textiles
Facet model, elderly, 574–579
Fair Housing Act of 1988, 45, 73–74, 808
Family members, client training, 31
Fare payment, public transportation, 533
Federal Communications Commission (FCC), 75
Firewall protection, telematics, 897
Fitting, optimal use, 32–35
Fixed mobile convergence, telematics, 893–894
Floors, smart floor, 706–709
FM systems, hearing disabilities, 197
Focus groups:
- research design, technology evaluation, 846
universal design, 811–813
- usability data collection methods, 861
Follow-up care, 31, 35
Font options, communication assistant, 309
Food and Drug Administration (FDA), 36, 37, 66, 194
Food preparation, visual disabilities, 164
Frequency, cutaneous perception, 341
FRIEND robot, 376
Gaia, smart space middleware, 613
Gastroesophageal reflux disease (GERD) diagnosis, 334–335
Gator Tech Smart House, 614, 695–709. See Smart house design
Gears, powered wheelchair, 447
General Agreement on Trade and Tariffs (GATT), 53–54
Genetic eye disease, 160
Genetic therapy, 12
George Mason University (Fairfax, Virginia), 105–107, 113–114
Giant cell arteritis, 161
Glaucoma, 152–153
Global positioning system (GPS):
- blind navigation, 480–481, 491–492
- cognitive disabilities, 228
- visual disabilities, 169
Grab bars, low-tech assistive technologies, 138–139
Grade of service, telematics, 902–903
Graphical user interfaces (GUIs), 251, 252.
See Computer platforms and operating systems; Interfaces; Voice interactive systems
computer platforms and operating systems, 265–266
voice interactive systems, 281–282
Graphics, tactile, visual disabilities, 172, 187
Grapshprehension, upper-limb prostheses, 422–424
Grateful acceptance, defined, 29
Guide 71 (ISO/IEC), 917–918
Guide dogs:
- blind navigation, 484–485
- public transportation (U.S.), 534
Guido walker, 503–505
Hand, upper-limb prostheses, 422–424
Handicap. See Elderly; People with special needs (PwSN); specific disabilities
International Classification of Functioning, Disability and Health (ICF), 2–3
well-being and, disability concept, 2
Handrails, low-tech assistive technologies, 138–139
Handwashing, cognitive disabilities, 226
Handwriting, low-tech assistive technologies, 138
Handy robot, 365
Hashing, telematics, 898–899
HA Vi (Home Audio Video Interoperability), telematics, 881
Head-shoulder interface, wheelchair-based robotic system, 386, 395
Head-up displays, intelligent transportation systems (ITSs), 740–741
Healthcare. See Automated medication management; Home health technologies; Smart textiles
cost awareness, 588
demography, 749–750
home health technologies, 749–766
telemedics, 903–904
trends in, 711–713
Healthcare workers, shortage of, 711–712, 728
Health insurance, 43
Health-related quality of life (HRQL),
technology assessment, 845. See Quality of
life
Hearing disabilities:
assistance devices, 191–202
alerting and warning systems, 198–199
personal systems, 191–195
telecommunications, 199–201
wide-area systems, 195–198
classification of assistive technologies, 22
distance education technology, 109
intelligent transportation systems (ITSs), 743–744
low-tech assistive technologies, 136, 137
people with special needs (PwSN), 6
universal design, 810
voice interactive systems, 289–290
wearable computer systems, 332–334
workplace computer access, 254–256
Hemianopsia, 160
Heumann, Judith, 53
High-degree myopia, 160
HIV-AIDS, 58
Hoist, robotic, mobile platform-based robot
systems, 386–389, 396–397
Holter monitoring, 675
Home appliances:
context awareness, 588
visual disabilities, 163
Home-area networks, telematics, 870–871. See Telematics
Home Audio Video Interoperability (HA Vi), telematics, 881
Homecare delivery. See Assistive technologies (AT); Home health technologies; Smart house design; Telecare; Telecare-robotics concept; Wheelchair(s)
Home health technologies, 749–766
overview, 749–751, 763–764
PlaceLab, 751–757
described, 752–753
design goals, 755–756
generally, 751–752
MITes sensor kit research, 761–763
rationale for, 753–755
study structure, 756–757
sensor kits, 757–764
generally, 757–759
MITes, 759–761
MITes health research, 761–763
Home modification, United States, 68
HomePlug 1.0, 873
HomePlug AV, 873
Home residential gateway, telematics, 868–869. See Telematics
HomeRF wireless technology, telematics, 880
Hong Kong, transportation services, 562–565
Housing, smart, visual disabilities, 166. See Smart house design
Human activity assistive technology (HATT) model, 848
Human assistance, 12
Human limb prostheses, 419–436
lower-limb, 432–433
overview, 419
upper-limb, 420–432
arms, 424–432
control systems, 426–432
power systems, 424–426
design, 421–422
generally, 420
prehension/grasp, 422–424
Human-robot interfaces, wheelchair-based robotic system, 383–386. See Interfaces
IBM WebSphere voice server, 294–295
IEEE 1394, telematics, 881–882
INDEX

Illumination, public transportation, 533
IMP (intelligent mobility platform) walker, 509–511
Inclusive design:
 user-centered design, 788–789
 visual disabilities, 176–178
Income, United States, 67
INDEPENDENCE IBOT 3000 Transporter (IBOT) wheelchair, 449–450
India, transportation services, 552–553
Individuals with Disabilities Education Act of 1997, 111
Individuals with Disabilities in Education Act of 1990 (IDEA), 102
Individuals with Disabilities in Education Improvement Act of 2004 (IDEA), 102
Indoor blind navigation, 492–493
Inductance plethysmography, smart textiles, 685–686
Information access. See Security and safety telecare, 717, 720–721, 724
telematics, 900–901
 visual disabilities, 169–174, 176
Information and communication technology (ICT), 907–920. See Alarm(s); Pervasive computing and monitoring accessibility, 908–912
 Japan, 908
 overview, 907
 policy implications, 918–919
 standardization, 912–918
Information organizer, 223–224
Information systems:
 cognitive disabilities, 208–209
 public transportation:
 Europe, 542
 U.S., 532–534
Infrared (IR) systems:
 hearing disability, 197
 orientation, 168–169
 signage, blind navigation, 489–491
In-home mobility support, telematics, 894. See Smart house design
Inspections, usability data collection methods, 861–862
Institutional (depot) wheelchair, 441
Integrated care, care trends, 712
Intellectual disabilities, students with disabilities, 111–114
Intelligent environment, defined, 768–769
Intelligent home, telematics, 869–870. See Smart house design; Telematics
Intelligent monitoring systems. See Elderly Intelligent transportation systems (ITSs), 737–747. See Traffic safety collision warning systems and adaptive cruise control, 738
drive-by-wire, 739
ergonomics, 744–745
head-up displays, 740–741
hearing disabilities, 743–744
in-vehicle navigation systems, 742
lane-keeping assistance, 738
multifunction controls, 743
nonvisual warnings, 741
overview, 737–738
parking aids, 739–740
telematics, 742–743
universal design, 810
Interactive digital television, visual disabilities, 185
Interactive Workspaces, smart space middleware, 614–615
Intercity public transportation (U.S.), 528
Interfaces. See Computer platforms and operating systems; Telematics; Voice interactive systems
 application programming interface (API), 607–608
 automated medication management, 640–642
 human–robot interfaces, wheelchair-based robotic system, 383–386, 394–396
 ordinary and extraordinary human-machine interaction concept, 790
 powered wheelchair, 443–447
 upper-limb prostheses, EMG interface, 427–430
 usability, 856
Internal acceptance, defined, 29
International Classification of Functioning, Disability and Health (ICF), 2, 52, 57, 65, 81–100. See World Health Organization (WHO)
 applications, 93–96
 assistive technologies, 14
 handicap, 2–3
 International Standards Organization (ISO) 9999, 121–122
 overview, 83
 perspective of, 81–82
 principles of, 84–90, 833
interactional model, 86–87
multidimensionality, 84–86
neutrality, 89–90
spectrum continuity, 88–89
universality, 87–88
structure of, 90–93
International Classification of Impairment, Disease, and Handicap (ICIDH), 2, 52, 83, 85, 805
International disability policy research (IDPR), 49. See International perspective
International perspective, 49–59. See United States
demand side, 50–51
Japan, 907–920
overview, 49–50
people with special needs (PwSN), 10–11
policy framework, 55–57
research areas, 57–58
supply side, 51–54
International Standards Organization (ISO) 1999, user-centered design, 787
International Standards Organization (ISO) 9241, usability, 855, 858
International Standards Organization (ISO) 9999, 13, 15–18, 63, 117–126
application areas, 124
classification system, 118, 119–122
coding system, 119
future prospects, 124–125
history of, 122–124
overview, 117
scope of, 118
International Standards Organization (ISO) 13407, usability, 857
International Statistical Classification of Diseases and Related Health Problems (ICD-10), 83
Internet:
cognitive disabilities, 210
smart space middleware, 612–617
telecare, technology trends, 716–717
visual disabilities, 174, 187
workplace computer access, 240–241
Internet residential gateway, 869. See Telematics
Telematics
Interoperability:
context modeling requirements, 592–593
smart space middleware, 610
Interviews:
research design, technology evaluation, 846
usability data collection methods, 860–861
user-centered design, 796
Introspection/discovery capability, computer platforms and operating systems, 273
Intrusion detection system, telematics, 899
In-vehicle navigation systems, intelligent transportation systems (ITSs), 742
IP replay, hearing disabilities, 201
IPSEC NAT traversal, telematics, 898
IST-MATS robot, 376
Japan, 64. See International Classification of Functioning, Disability and Health (ICF)
elderly, 908
transportation services, 560–562
Java Swing API, 277
Jini architecture, smart space middleware, 611–612
Joystick, powered wheelchair, 443–445
KARES II robot, 368, 376, 377–386, 392–396. See Wheelchair-based robotic system
Keyboard. See Interfaces
augmentative-alternative communication (AAC) devices, 302
computer platforms and operating systems, 267
Keypads, visual disabilities, 181–182
Knops, Harry, 64
Knowledge layer, middleware architecture, smart house design, 700
Konnex (KNX), telematics, 881
Korea, transportation services, 557
Labor force, United States, 67–68. See Employment; Workplace
Laissez-faire model, 50
Lane-keeping assistance, intelligent transportation systems (ITSs), 738
Language disorders, cognitive disabilities, 7
Laser-based devices:
blind navigation, 488–489
Pearl robotic walking assistant, 511–514
Learning impairments, distance education technology, 109–110. See Students with disabilities
Leisure:
low-tech assistive technologies, 140
students with disabilities, 114
Lifespan design, 805
Lifestyle, care trends, 713
Lighting:
 public transportation (U.S.), 533
 visual disabilities, 170–171
Limb prostheses. See Human limb prostheses
Literacy, workplace computer access, 258
Living laboratories. See Home health technologies
Long cane, blind navigation, 484–485
Loudness control, hearing aids, 193
Lower-limb prostheses, 432–433
Low-tech assistive technologies, 129–142
 assessment and selection considerations, 132–134
 availability/affordability, 134
 desired tasks and activities, 133
 device characteristics, 134
 environment and context, 134
 functional limitations, 132–133
 residual abilities and skills, 133
 compensatory considerations, 134–141
 cognitive disabilities, 136–137
 communication disabilities, 137–138
 employment, 141
 hearing disabilities, 136
 mobility, 138–140
 physical limitations, 135
 recreation and leisure, 140
 visual disabilities, 135–136
 overview, 129–132
Mace, Ron, 64
Macular degeneration, 153–154
Macular dystrophy, 160
Macular hole, 160
Magnetic induction, hearing disabilities, 196
Malaysia, transportation services, 553–555
Managed and unmanaged services, telematics, 893
Manipulator on base robotic, 364–365
Manual wheelchair, 440–442
MANUS robot, 366–367, 376
Maps, visual disabilities, 168
Marketplace:
 assistive technologies, 18
 international perspective, 50–54
Markhov decision process (MDP), smart space algorithms, 774–776
Markup scheme, context modeling requirements, 593–594
Maslow model of needs, people with special needs (PwSN) concept, 3–4
MASTER1 robot, 360
Matching Person and Technology (MPT) tool, 845
Matching requirements:
 International Classification of Functioning, Disability and Health (ICF), 94–95
 optimal use, 32
 MATS robot, 369
 MavHome, 614, 767–769, 777–781. See Smart space algorithms
Maximal policy model, 50
Mechanical system, powered wheelchair, 447–449
Medicaid, 43, 62, 63, 71–72
Medical records, telecare, information access, 720–721
Medicare, 42, 63, 70–71
Medication. See Automated medication management
cognitive disabilities, 226–227
visual disabilities, 164–165
Mercosur (Mercado Comun del Sur), 54
Microsoft Active Accessibility (MSAA), 275–276
Microsoft Speech Server, 293–294, 295
Microsoft UI automation, 276
Middleware architecture (smart house design), 698–700. See Smart space middleware application layer, 700
collection management layer, 700
knowledge layer, 700
physical layer, 698
sensor platform layer, 699
service layer, 699–700
Minimum description length (MDL), mining sequential patterns, 772
Mining sequential patterns, smart space algorithms, 771–772
Mixed receptive-expressive language disorder, communication disabilities, 6
Mobile autonomous robot, 367–368
Mobile phones. See Mobile telephones
Mobile platform-based robot systems, 375–403. See Assistive robotics; Wheelchair-mounted assistive robots
 overview, 375–377
 robotic hoist, 386–389
 user trials, 392–399
 KARES II, 392–396
robotic hoist, 396–397
wheelchair-based robotic system, 377–386
generally, 377–381
human-robot interfaces, 383–386
robotic arm, 382–383
wheelchair-mounted assistive robots, 377–386
work assistant for manufacturing, 389–392, 397–399
Mobile telephones. See Telephone
universal design, 809–810
visual disabilities, 183
Mobile wireless technology,
augmentative-alternative communication (AAC) integration, 300–301. See Telematics
Mobility. See Motor disabilities
cognitive disabilities, 228
elderly, 501–502
low-tech assistive technologies, 138–140
visual disabilities, 167–169
Mobility aids, blind navigation, 484, 485
Model-view-controller (MVC) design pattern, computer platforms and operating systems, 271–272
Monitoring:
automated medication devices, 640
context awareness, applications and systems, 588–590
pervasive computing and monitoring, 570–571
smart textiles, 674–676
telecare applications, 721–723
video, technology trends, 716
Motor disabilities:
classification of assistive technologies, 19–20
distance education technology, 109
low-tech assistive technologies, 134–135
people with special needs (PwSN), 4–5
traffic safety, 462
voice interactive systems, 290–291
workplace computer access, 242–250
Motors, powered wheelchair, 447
MOVAID robot, 367–368
MoVAR robot, 367
Multidimensionality, ICF, 84–86
Multifunction controls, intelligent transportation systems (ITSs), 743
Multimedia procedure assistants, 222–223
MVC (model-view-controller) design pattern, computer platforms and operating systems, 271–272
Myoelectric control, upper-limb prostheses, 427
MySpoon robot, 363–364
National Center for Accessible Transportation (NCAT), 519
National Center for Medical Rehabilitation Research (NCMRR), 65
National Health Interview Survey on Disability (NHIS-D), 132
National Institute on Disability and Rehabilitation Research (NIDRR), 65, 66, 68
National Institutes of Health (NIH), 65, 66
National Science and Technology Policy Organization and Priorities Act of 1976, 61, 62
National Science Foundation (NSF), 821, 824
Naturally occurring retirement communities (NORCs), 807
Navigation, computer platforms and operating systems, 274–275
Navigation systems, in-vehicle, intelligent transportation systems (ITSs), 742
Needs:
design for well-being (DfW), 823–824
people with special needs (PwSN) concept, 3–4
policy models, 50–51
research and development, elderly, 571–572
telematics, 904
Negative policy model, 50
Networks. See Telematics
Neuroelectric control, upper-limb prostheses, 427–430
Neutrality, ICF, 89–90
Ninja project, smart space middleware, 614
Noise reduction, hearing aids, 193–194
Noncompliance, automated medication management, 632–634
Nongovernmental organizations (NGOs), 10
Nonvisual warnings, intelligent transportation systems (ITSs), 741
North American Free Trade Agreement (NAFTA), 10, 54
Nursing home residents, 502
Nystagmus, 155–157
Objective data collection methods, usability, 862–863
Object-role-modeling (ORM), 598–599
Observational studies, research design, technology evaluation, 846–847
Observations, usability data collection methods, 862
Office of Equity and Diversity Services (George Mason University), 105–107
Office of Vocational Rehabilitation (OVR), 43
Older Americans Act of 1965, 14, 63, 72–73
OnStar, telematics, 742–743
Ontology-based approaches, context modeling requirements, 594–597
Open Services Gateway Initiative (OSGi), telematics, 882–883
Operating systems. See Computer platforms and operating systems
Optical (camera or laser-based) devices, blind navigation, 488–489
Optimal use, 29–48
(client-centered approach, 41
client fitting, 32–35
client rejection, 32
client training, 31–32
consumer empowerment, 44–46
future prospects, 46–47
matching requirements, 32
overview, 31
participatory action design (PAD), 35–36
quality assurance, 37–38
reimbursement and payment, 41–44
service delivery models, 40–41
total quality management (TQM) and continuous quality improvement (CQI), 39–40
Ordinary and extraordinary human-machine interaction concept, user-centered design, 790
Organization for Economic Cooperation and Development (OECD), 51
Orientation:
cognitive disabilities, 228
visual disabilities, 167–169, 187
Orientation and mobility (OM) training, 482
Orphan technology, 64
OSGi (Open Services Gateway Initiative), telematics, 882–883
OSGi Service Platform, smart space middleware, 612, 616
Over-the-road buses, public transportation (U.S.), 529–530
Oxygen project, smart space middleware, 613
PACE middleware, context awareness, 602–603. See Smart space middleware
Packaging, visual disabilities, 164
Pagers, 221–222
PAMM walking aid system, 505–506
Parking aids, intelligent transportation systems (ITSs), 739–740
Parkinson’s disease, voice interactive systems, 292
Paro (seal robot), robot therapy, 407–409. See Robot therapy
Participatory action design (PAD), 35–36, 788. See User-centered design
Passenger ferry service, public transportation (U.S.), 526, 530
Passenger rail, public transportation (U.S.), 528–529
Payment, optimal use, 41–44
People with special needs (PwSN). See Disability concept; Elderly; specific disabilities
assistive technologies, 11–24
demography, 1, 7–11
disability concept, 3–4
impairment types, 4–7
(cognitive disabilities, 7
communication disabilities, 6–7
hearing, 6
motor and physical disabilities, 4–5
vision, 5
user-centered design, 790–793
Personal Digital Assistants (PDAs), 65, 113, 130, 209, 220–221, 308, 492
Personalization, telematics, 903
Personal transportation. See Intelligent transportation systems (ITSs); Traffic safety; Transportation services (Asia); Transportation services (Europe); Transportation services (U.S.)
Pervasive computing and monitoring. See Alarm(s); Information and communication technology (ICT)
defined, 76
elderly, 570–571
Philippines, transportation services, 556–557
Phoneline networks, existing communications infrastructure, telematics, 871
Physical disabilities, people with special needs (PwSN), 4–5. See Elderly; Motor disabilities; specific physical disabilities
Physical layer, middleware architecture, smart house design, 698
Piecemeal approach model, 50
Piezoresistive sensors, smart textiles, 684–685
Pill holders, automated medication devices, 639
Pin arrays, sensory substitution, 344–346
PlaceLab, 751–757
described, 752–756
design goals, 755–756
generally, 751–752
MITes sensor kit research, 761–763
rationale for, 753–755
study structure, 756–757
Platforms. See Computer platforms and operating systems
Plethysmography, smart textiles, 684–686
Pneumography, smart textiles, 686–687
Positioning systems:
cognitive disabilities, 228
visual disabilities, 169
Posterior vitreous detachment, 161
Poverty, United States, 67
Powered wheelchair, 443–450
innovations, 449–450
interfaces, 443–447
mechanical system, 447–449
motors and gears, 447
Powerline networks (telematics), 871–875
broadband powerline (BPL) access, 873–875
generally, 871–873
HomePlug 1.0, 873
HomePlug AV, 873
Prehension/grasp, upper-limb prostheses, 422–424
Pressure sore prevention, wearable computer systems, 330–332
Printed receipts, visual disabilities, 182
Privacy. See Security and safety
smart space middleware, 610–611
technology evaluation, 847–848
telecare, 723–724
telematics, 901–902
Proactive healthcare. See Home health technologies
ProPHET decisionmaking, smart space algorithms, 774–776
Proposal writing, research design, technology evaluation, 836–838
Prostheses. See Human limb prostheses
Prosthetic design, 804
Protocol reference model, access networks, 888–891
ProVAR robot, 362–363, 377
Psychosocial Impact of Assistive Device Scale (PIADS), 845
Public terminals, visual disabilities, 178–182
Pushrim-activated power-assisted wheelchair (PAPAW), 449
Qualitative data, research design, technology evaluation, 846
Qualitative-quantitative combined study design, technology evaluation, 840–842
Qualitative study design, technology evaluation, 838–840
Quality assurance:
continuous quality improvement (CQI), total quality management (TQM) and, 39–40
optimal use, 37–40
Quality function deployment (QFD), 827
Quality of life:
ecologic model, 572–574
facet model, 574–579
technology assessment, 845
Quality-of-service requirements (telematics), 891–894
fixed mobile convergence, 893–894
generally, 891–892
in-home mobility support, 894
managed and unmanaged services, 893
user involvement, 893
Virtual Private Network (VPN), 892–893
Quantitative data, research design, technology evaluation, 845
Quantitative study design, technology evaluation, 838
Quebec User Evaluation Satisfaction 2.0 (QUEST) with Assistive Technology, 845
Questionnaires:
usability data collection methods, 861
user-centered design, 796
Radabaugh, Mary Pat, 317
RAID-MASTER robot, 361–362
RAID robot, 361, 376, 377
Raised-paper diagrams, sensory substitution, 343–344
Randomization types, research design, technology evaluation, 843–844
Randomized controlled trials (RCTs), 66
RAPTOR robot, 376
Reading machine, visual disabilities, 172
Recreation, low-tech assistive technologies, 140
Reference architecture, context awareness, software infrastructure, 600–601
Rehabilitation, 12
assistive technology, 804
telecare, 723
voice interactive systems, 292
Rehabilitation Act of 1998, 208, 858–859
Rehabilitation and therapy, voice interactive systems, 292
Rehabilitation Engineering Society of North America (RESNA), 37–38
Reimbursement, optimal use, 41–44
Relay services, hearing disabilities, 200–201
Reluctant acceptance, defined, 29
Remote caregiver operation center subsystem, telecare-robotics concept, 730–731
Requirements analysis model, context modeling, 597
Research design (technology evaluation), 836–847
focus groups, 846
generally, 836
interviews, 846
materials and procedures, 844–846
qualitative data, 846
quantitative data, 845
observational studies, 846–847
proposal writing, 836–838
qualitative-quantitative combined study design, 840–842
qualitative study design, 838–840
quantitative study design, 838
randomization types, 843–844
sampling types, 842–843
subjects and participants, 842
Research & development (R&D), 65–66, 69–70, 571–572
Research function, audit function and, technology evaluation, 834–835
Research process, technology evaluation, 835
Research subjects and participants, research design, technology evaluation, 842
Residential gateway architecture:
access networks, 885–888
telematics, 868–869 (See Telematics)
Residual abilities and skills, low-tech assistive technologies, 133
Retinal detachment, 161
Retinitis pigmentosa (RP), 157–159
Retinopathy of prematurity, 161
Rhythm, cutaneous perception, 342
Road intersection accidents, traffic safety, 468
Robotic arm, wheelchair-based robotic system, 382–383, 393–394
Robotic hoist, mobile platform-based robot systems, 386–389, 396–397
Robotics, telecare, 717–719
Robotic walkers. See Walker systems
Robots. See Assistive robotics; Mobile platform-based robot systems;
Workstation robots; specific robots
Robot therapy, 405–418
applications and evaluation, 409–415
overview, 405–407
seal robot (Paro), 407–409
Rubber-tired vehicles, public transportation (U.S.), 523–524
Runtime querying, context modeling requirements, 592
Safety. See Security and safety
SALSA middleware, 615
SALT standards, voice interactive systems, 295
Sampling types, research design, technology evaluation, 842–843
Scalability, smart space middleware, 611
Scenarios, usability data collection methods, 862
Schloss, Irving P., 61
School districts, 43
Scooters, low-tech assistive technologies, 139–140
Screens, visual disabilities, 181. See Display(s)
Seal robot (Paro), robot therapy, 407–409. See Robot therapy
Security and safety, 619–629
automated medication management, 636–637
concepts, 620–621
elderly, 624–627
future prospects, 627–628
overview, 619
privacy needs, 622–623
safety needs, 624
security needs, 621–622
smart space middleware, 610–611
technology evaluation, 847–848
telecare, 723–724, 734–735
telematics, 894–902
 access control, 900–901
 antispoofing, 897
 authentication, 900
 authentication requirements and copy protection, 896
 code authorization/signature, 900
 demilitarized zone, 897
 electronic data security, 901
 encryption algorithms/hashing, 898–899
 firewall protection, 897
generally, 894–896
 intrusion detection system, 899
 IPSEC NAT traversal, 898
 main applications, 896–897
 privacy, 901–902
 URL filtering, 898
 Virtual Private Network (VPN)
capabilities, 898
 virus protection, 899
 trust needs, 623–624
 virtual companions, 655–656
Security services gateway, 869. See Telematics
Self-care, trends in, 712–713
Sensor development, telecare, technology trends, 713–714
Sensor kits:
generally, 757–759
 home health technologies, 757–764
 MITes, 759–761
Sensor platform, smart house design, 702–703
Sensor platform layer, middleware architecture, smart house design, 699
Sensors, smart textiles, 678–681
Sensory substitution, 343–349. See Cutaneous perception
 Braille and raised-paper diagrams, 343–344
 pin arrays, 344–346
 vibrotactile displays, 346–349
Sensory translation rules, blind navigation, 482–483
Sequential patterns, mining, smart space algorithms, 771–772
Service animals. See Guide dogs
Service delivery models, optimal use, 40–41
Service layer, middleware architecture, smart house design, 699–700
Service-oriented architecture (SOA), smart space middleware, 610
Set-top box gateway, 869. See Telematics
Shopping, 165–166
Signage, infrared, blind navigation, 489–491
Signals, visual disabilities, 175–176
Sign language:
 augmentative-alternative communication (AAC) devices, 301–302
 wearable computer systems, 332–334
SIMBAD project, pervasive computing and monitoring, 570
Smart environments. See Context awareness;
 Elderly; Security and safety; Smart house design; Smart space algorithms
Smart floor, smart house design, 706–709
Smart house design, 695–709. See Context awareness; Smart space algorithms;
 Telecare; Telecare-robotics concept;
 Telematics; Wheelchair(s)
 context-awareness, 588, 700–702
 middleware architecture, 698–700
 application layer, 700
 context management layer, 700
 knowledge layer, 700
 physical layer, 698
 sensor platform layer, 699
 service layer, 699–700
overview, 695–696
sensor platform, 702–703
smart floor, 706–709
smart plugs, 703–706
 technologies, 696–698
 virtual companions, 647
virtual companions, 439–440, 450–454
Smart plugs, smart house design, 703–706
Smart space algorithms, 767–783
 case study, 776–777
 living environment applications, 777–781
 MavHome, 768–769
 motivation, 767–768
overview, 767
 technologies, 771–776
 active-LeZi (ALZ) algorithm, 772–773
 mining sequential patterns, 771–772
 ProPHeT decisionmaking, 774–776
Smart space middleware, 607–618. See Middleware architecture (smart house design)
 context processing and management, 609–610
device interaction and integration, 608–609
 interoperability, 610
Smart space middleware (Continued)
overview, 607–608
scaleability, 611
security and privacy, 610–611
standards and technology, 611–613
Jini architecture, 611–612
OSGi Service Platform, 612
Universal Plug and Play (UPnP), 612
web services, 612–613
systems, 613–617
Smart textiles, 673–692. See Wearable computer systems
ambulatory monitoring, 674–676
chronic disease:
at-risk individuals, 677
at-risk professionals, 677–678
cardiac patients, 676–677
variables monitored, 678
future prospects, 690
overview, 673–674, 690–691
sensors, 678–681
transducer, 682–684
WEALTHY system example, 687–689
wearable systems, 684–687
SMARTwheel, 34
SOCAM, smart space middleware, 614
Social interaction:
cognitive disabilities, 228–230
context awareness, 588
Social rights model, 50. See Civil rights issues; Discrimination
Social Security Act of 1935, 70
Social Security Disability Insurance (SSDI), 63, 70, 71
Software engineering, context modeling requirements, 592, 598–599
Software infrastructure, context awareness, 600–603
Solar platform, context awareness, software infrastructure, 602
Sonar-based devices, blind navigation, 485–487
Spectrum continuity, ICF, 88–89
Speech disorders:
communication disabilities, 6
low-tech assistive technologies, 137
voice interactive systems, 291–292
Speech output, visual disabilities, 181
Speech recognition:
communication assistant, 310–311
visual disabilities, 173
voice interactive systems, 284–286
Spoofing, security and safety, telematics, 897
Sports wheelchair, 441
Standards and standardization. See Information and communication technology (ICT); specific standards and codes
information and communication technology (ICT), 907–920
usability, 858–859
visual disabilities, 178
voice interactive systems, 292–296
Standing poles, low-tech assistive technologies, 138–139
Stargardt’s macular dystrophy, 161
Static balance, lower-limb prostheses, 432–433
Steel-tired vehicles, public transportation (U.S.), 524–526
Stroke, cognitive disabilities, 7
Students with disabilities, 101–116. See Brain damage; Cognitive disabilities
application process case study, 105–107
access, 106
assistive technology initiative, 106
consultation and screening, 106
text access, 106–107
Web access, 107
distance education technology, 107–111
accessibility barriers, 109
cognitive and learning impairments, 109–110
generally, 107–108
handouts and resources, 110–111
hearing, 109
interactive tools, 111
limitations of, 110
motor impairments, 109
universal design, 110
vision, 109
intellectual disabilities, 111–114
overview, 101–102
rights and services, 102–105
intellectual disabilities, 111–114
problems, 101–102
organizational structure, 103–105
Subjective data collection methods, usability, 860–862
Supplementary Security Income (SSI), 63, 71
Supply side, international perspective, 51–54
Surgery, 11
Sweden, accessibility, 277
Tactile displays, 339–352
cutaneous perception, 340–343
aging, 342–343
amplitude, 340–341
body location, 342
duration, 341
frequency, 341
rhythm, 342
waveform, 341
overview, 339–340, 349–351
sensory substitution, 343–349
Braille and raised-paper diagrams, 343–344
pin arrays, 344–346
vibrotactile displays, 346–349
visual disabilities, 172, 187
workplace computer access, visual disabilities, 254
Taiwan, transportation services, 558–560
Tape recorders, visual disabilities, 171
TAURO robot, 368
Technology Act of 1988, 74
Technology evaluation, 833–853
audit and research functions, 834–835
ethical concerns, 847–848
overview, 833–834
research design, 836–847
focus groups, 846
generally, 836
interviews, 846
materials and procedures, 844–846
qualitative data, 846
quantitative data, 845
observational studies, 846–847
proposal writing, 836–838
qualitative-quantitative combined study design, 840–842
qualitative study design, 838–840
quantitative study design, 838
randomization types, 843–844
sampling types, 842–843
subjects and participants, 842
research process, 835
Technology Related Assistance for Individuals with Disabilities Act of 1988 (Tech Act), 13–14, 63, 74, 101–102, 129, 208, 218
Technology transfer, augmentative-alternative communication (AAC) devices, 313
Telecare, 76, 711–725. See Smart house design; Telecare-robotics concept applications, 721–723
care trends, 711–713
information access, 720–721
innovation, 719
overview, 711
security and safety, 723–724
technology trends, 713–719
ambient intelligence, 715
body-area network, 714–715
information access, 717
Internet, 716–717
robotics, 717–719
sensor development, 713–714
video, 716, 717
virtual reality, 717
wireless connectivity, 714
Telecare-robotics concept, 727–736. See Telecare
end-user residence subsystem, 729
functional characteristics, 734
overview, 727–729
remote caregiver operation center subsystem, 730–731
scenarios, 731–734
technical characteristics, 734–735
Telecommunications Act of 1996, 62, 75
Telecommunications relay service (TRS), hearing disabilities, 200
Telehealth, 76
Telematics, 867–906. See Interfaces
access, 904
access networks, 883–891
generally, 883–885
protocol reference model, 888–891
residential gateway architecture, 885–888
comfort, 903
compatibility, 903
emergency services, 902
energy consumption, 903
existing communications infrastructure, 871–883
data over cable service interface specification (DOCSIS), 875–877
phoneline networks, 871
powerline networks, 871–875
broadband powerline (BPL) access, 873–875
generally, 871–873
HomePlug 1.0, 873
HomePlug AV, 873
wireless networks, 878–883
Bluetooth network, 879–880
generally, 878–879
Home Audio Video Interoperability (HAVi), 881
HomeRF wireless technology, 880
Telematics (Continued)
IEEE 1394, 881–882
Konnex (KNX), 881
OSGi (Open Services Gateway Initiative), 882–883
UMTS/satellite interoperability, 879
ZigBee Alliance, 880–881
grade of service, 902–903
healthcare services, 903–904
intelligent transportation systems (ITSs), 742–743
overview, 867
personalization, 903
quality-of-service requirements, 891–894
fixed mobile convergence, 893–894
generally, 891–892
in-home mobility support, 894
managed and unmanaged services, 893
user involvement, 893
Virtual Private Network (VPN), 892–893
security and safety, 894–902
access control, 900–901
antispoofing, 897
authentication, 900
authentication requirements and copy protection, 896
code authorization/signature, 900
demilitarized zone, 897
electronic data security, 901
encryption algorithms/hashing, 898–899
firewall protection, 897
generally, 894–896
intrusion detection system, 899
IPSEC NAT traversal, 898
main applications, 896–897
privacy, 901–902
URL filtering, 898
Virtual Private Network (VPN) capabilities, 898
virus protection, 899
trends, 867–871
generally, 867–868
home-area networks, 870–871
intelligent home, 869–870
residential gateway architecture, 868–869
user needs, 904
Telephone. See Mobile telephones
hearing disabilities, 196, 199–200
low-tech assistive technologies, 137
visual disabilities, 178–182, 183
Telesign, wearable computer systems, 332–334
Television:
captioning, hearing disability, 197–198
closed-circuit television, visual disabilities, 170
Interactive digital television, visual disabilities, 170
visual disabilities, 166
warning systems, hearing disability, 198–199
Television Decoder Circuitry Act, 198
Temporal arteritis, 161
Textiles. See Smart textiles
Text messaging, AAC devices, 302
Text-to-speech synthesis, voice interactive systems, 282–284
Thailand, transportation services, 558
Theaters, user-centered design, 797–799
Therapy. See Robot therapy
robot therapy, 405–418
voice interactive systems, 292
Thyroid eye disease, 161
Ticket to Work and Work Incentives Improvement Act of 1999, 72
TIDE-MOVAID robot, 376
TIDE-RAID robot, 376
Tinnitus, 6
Toll collection, electronic, 745
Tongue-controlled powered wheelchair, 445–446
Total quality management (TQM), continuous quality improvement (CQI) and, 39–40
Touch screens, visual disabilities, 181–182
Trade-Related Aspects of Intellectual Property Rights (TRIPPS), 54
Traffic safety, 459–477. See Intelligent transportation systems (ITSs);
Transportation services (Asia);
Transportation services (Europe);
Transportation services (U.S.)
countermeasure applications, 474–475
countermeasure studies, 468–477
accident avoidance experiments, 469–473
communication performance experiments, 473–474
road intersection accidents, 468
peak countermeasures, 463–468
elderly, 459–463
overview, 475–476
statistics on, 459, 460–462
universal design, 810
Training, optimal use, 31–32
Transducer, smart textiles, 682–684
Transgenerational design, 805
Transient ischemic attack (TIA), cognitive disabilities, 7
Transnational organizations, 51–54
Transportation services (Asia), 549–566. See Intelligent transportation systems (ITSs); Traffic safety
 China, 562–565
demography, 550–551
 India, 552–553
 Japan, 560–562
 Korea, 557
 Malaysia, 553–555
 overview, 549
 Philippines, 556–557
 Taiwan, 558–560
 Thailand, 558
 Vietnam, 557–558
Transportation services (Europe), 535–548. See Intelligent transportation systems (ITSs); Traffic safety
 accessibility policy, 536–537
definitions, 538–539
 legislation, 538, 539–545
 local measures, 545–548
 member state role, 543–545
 overview, 535–536
Transportation services (U.S.), 519–534. See Intelligent transportation systems (ITSs); Traffic safety
 information systems, 532–534
 infrastructure, 521
 overview, 519–520
 system features, 520
 types of, 521–532
 air transport, 530–532
 intercity modes, 528
 over-the-road buses, 529–530
 passenger ferry service, 526, 530
 passenger rail, 528–529
 rubber-tired vehicles, 523–524
 steel-tired vehicles, 524–526
 surface modes, 528
 urban modes, 521–522
 vehicle accommodation, 522
 universal design, 810
Trust management services, smart space middleware, 617
Trust needs, security and safety, 623–624
 Y system,D
 200, 810, 813
UMTS/satellite interoperability, telematics, 879
Unification robots, 363–364
United Nations, 10, 51–52, 206
United States, 61–80. See International perspective; Transportation services (U.S.)
 access, 74–75
 age level, 66–67
 benefits, 70–72
 cognitive disabilities, 207
 context of, 62
definitions and classifications, 63–65
discrimination, 65–66, 72–74
economic factors, 67
emerging technologies, 75–76
employment, 67–68
overview, 61–62
 science and technology, 69–70
studies of, 63
trends in, 68–69
 universal design, 75
United States Department of Health and Human Services (HHS), 63
United States Department of Housing and Urban Development (HUD), 73–74
United States Food and Drug Administration (FDA), 36, 37, 66, 194
Universal design, 803–818
 assistive technologies, 24, 64
cognitive disabilities, 209–211
distance education technology, 110
discrimination, 65–66
elderly, 807–811
future prospects, 813–815
methods, 811–813
overview, 803–806
 tools, 806–807
United States, 75
 usability philosophy, 857–858
 wearable computer systems, 321–322
workplace computer access, 241–242
Universality, ICF, 87–88
Universal Mobile Telecommunications System (UMTS), 176
Universal Plug and Play (UPnP), smart space middleware, 612
Unmanaged and managed services, telematics, 893
UPnP (Universal Plug and Play), smart space middleware, 612
Upper-extremity impairments, workplace computer access, 242–250
Upper-limb prostheses, 420–432
 arms, 424–432
Upper-limb prostheses, (Continued)
control systems, 426–432
power systems, 424–426
design, 421–422
generally, 420
prehension/grasp, 422–424
Urban public transportation (U.S.), 521–522
URL filtering, telematics, 898
URMAD robot, 367
Usability, 855–866. See Client-centered approach; User-based testing;
User-centered design
criteria in, 859
data collection methods, 860–863
ojective, 862–863
specific methodologies, 863
subjective, 860–862
elderly, 863–864
interfaces, 856
norms and standards, 858–859
overview, 855–856
philosophies in, 856–858
workplace, 864–865
User-based testing. See Client-centered approach
communication assistant, 311–312
usability data collection methods, 862–863
User-centered design, 787–802. See Client-centered approach
aesthetics, 793
disabled user involvement in design process, 793–795
inclusive design, 788–789
methology, 795–799
interviews, 796
mutuality, 795–796
questionnaires, 796
theater use, 797–799
ordinary and extraordinary human-machine interaction concept, 790
overview, 787–788
people with special needs, 790–793
universal design, 811–813
User involvement, telematics, 893
User needs, telematics, 904
User profile management, security and safety, 626–627, 628
Utilities gateway, 869. See Telematics
Uveitis, 162
Veterans Administration (VA), 43, 65, 70
Vibrating signals, visual disabilities, 175–176
Vibrotactile displays, sensory substitution, 346–349
Video, telecare, 716, 717, 722–723
Video relay service (VRS), hearing disabilities, 201
Vietnam, transportation services, 557–558
Virtual communities, context awareness, 588
Virtual companions, 645–671
assistive interaction, 665–666
dependability, 647–649
design, 649–652
framework evaluation, 652–657
method, 652–653
prototype implementation, 653–654
refinement, 656–657
testing, scenario-based, 654–656
as metaphor, 647
needs assessment, 657–668
overview, 645–646
Virtual Private Network (VPN), telematics, 892–893, 898
Virtual reality:
telecare, Internet, 717
visual disabilities, 187–188
Virus protection, telematics, 899
Visitable concept, universal design, 808–809
Visual disabilities, 143–162. See Blind navigation; Wayfinding
assistive devices, 163–189
convergent systems, 183–185
domestic appliances, 163
food preparation, 164
future prospects, 185–188
inclusive design, 176–178
information access, 169–174
medicines, 164–165
mobility and orientation, 167–169
multiple impairments, 174–176
packaging, 164
public terminals, 178–182
shopping, 165–166
smart housing, 166
television, 166
classification of assistive technologies, 21
demography, 143–144, 174–175
distance education technology, 109, 110–111
Guido walker, 503–505
low-tech assistive technologies, 135–136
pathologies, 144–162
aniridia, 144–145
Best’s disease, 159
cataracts, 146
Charles Bonnet syndrome, 159
Coats’ disease, 159
coloboma, 159
colorblindness, 146–150
congenital cataract, 159
corneal dystrophy, 159
corneal graft, 159
diabetic retinopathy, 150–152
dry eye, 160
genetic eye disease, 160
glaucoma, 152–153
hemianopsia, 160
high-degree myopia, 160
macular degeneration, 153–154
macular dystrophy, 160
macular hole, 160
nystagmus, 155–157
posterior vitreous detachment, 161
retinal detachment, 161
retinitis pigmentosa (RP), 157–159
retinopathy of prematurity, 161
Stargardt’s macular dystrophy, 161
temporal arteritis, 161
thyroid eye disease, 161
uveitis, 162
people with special needs (PwSN), 5
traffic safety, 462
universal design, 810
user-centered design, 791–792
voice interactive systems, 287–289
workplace computer access, 250–254
Vocational assistive mobile robot system, work assistant mobile robot, 389–392,
397–399
Vocational Rehabilitation Act Amendments of 1998, 103
Vocational Rehabilitation Act of 1973, 103,
105
Voice carryover (VCO) systems, hearing disabilities, 200–201
Voice interactive systems, 281–296. See Interfaces
assistive technologies, 286–292
generally, 286
hearing disabilities, 289–290
motor disabilities, 290–291
rehabilitation and therapy, 292
speech impairment, 291–292
visual disabilities, 287–289
IBM WebSphere voice server, 294–295
Microsoft Speech Server, 293–294, 295
overview, 281–282
SALT and VXML standards, 295
speech recognition, 284–286
standards, 292–296
text-to-speech synthesis, 282–284
Volume control, hearing aids, 193
Voting machines, universal design, 810
VPN (Virtual Private Network capabilities), telematics, 898
VXML standards, voice interactive systems, 295
Walkers, low-tech assistive technologies, 139
Walker systems, 501–518
Care-O-bot II, 514
COOL AIDE, 506–509
future prospects, 514–515
Guido, 503–505
IMP (intelligent mobility platform), 509–511
overview, 501–503
PAMM walking aid system, 505–506
Pearl robotic walking assistant, 511–514
Walking chairs, 450
WALKY robot, 367, 376, 377
Warning systems, hearing disabilities, 198–199. See Alarm(s); Information and
communication technology (ICT); Pervasive computing and monitoring
Waveform, cutaneous perception, 341
Wayfinding, 228. See Blind navigation
WEALTHY system, 687–689
Wearable computer systems, 317–338. See Smart textiles
autism diagnosis, 328–330
captioning, 335–337
cognitive disabilities, 324–328
design issues, 319–321
design process factors, 322–324
gastroesophageal reflux disease diagnosis, 334–335
overview, 317–319
pressure sore prevention, 330–332
sign language, 332–334
smart textiles, 684–687
user needs, 321–322
Web Content Accessibility Guidelines, 241
Web services, smart space middleware, 612–617
Well-being. See Design for well-being (DfW) defined, 571
Well-being. (Continued)
 ecologic model, 572–574
 facet model, 574–579
 handicap and, disability concept, 2
Wheelchair(s), 439–457
 manual, 440–442
 powered, 443–450
 innovations, 449–450
 interfaces, 443–447
 mechanical system, 447–449
 motors and gears, 447
 pressure sore prevention, wearable computer systems, 330–332
 quality assurance, 37–38
 smart house design, 439–440, 450–454
Wheelchair-based robotic system, 377–386
 generally, 377–381
 human-robot interfaces, 383–386
 robotic arm, 382–383
 user trials, 392–396
Wheelchair-mounted assistive robots, 365–367. See Wheelchair-based robotic system
 Wide-area assistive listening, 195–198
Wireless connectivity, telecare, technology trends, 714
Wireless networks (telematics), 878–883
 Bluetooth network, 879–880
 generally, 878–879
 Home Audio Video Interoperability (HAVi), 881
 HomeRF wireless technology, 880
 IEEE 1394, 881–882
 Konnex (KNX), 881
 OSGi (Open Services Gateway Initiative), 882–883
 UMTS/satellite interoperability, 879
 ZigBee Alliance, 880–881
Wireless transmission system, communication assistant, 306–307
Work assistant mobile robot, 389–392, 397–399
Workers’ Compensation, 43
Workplace. See Employment
 United States, 67–68, 69
 usability, 864–865
 work assistant mobile robot, 389–392, 397–399
Workplace computer access, 239–261
 cognitive disabilities, 257–259
 future prospects, 259–260
 hearing disabilities, 254–256
 legislation, 240–241
 overview, 239–240
 universal design, 241–242
 upper-extremity impairments, 242–250
 visual disabilities, 250–254
Workstation robots, 359–363
 AFMASTER, 360
 DeVAR and ProVAR, 362–363
 MASTER1, 360
 RAID, 360
 RAID-MASTER, 361–362
World Bank, 10, 51, 52–53
World Health Organization (WHO), 1, 2–3, 10, 14, 15–18, 51, 52, 53, 57, 65, 81, 121, 143, 205, 805, 823, 833. See International Classification of Functioning, Disability and Health (ICF)
World Trade Organization (WTO), 10, 51, 53–54
World Wide Web Accessibility Initiative (WAI), 210
Writing, low-tech assistive technologies, 138
Yarns, biomonitoring smart textiles, 678–681
Zero configuration technology, 770
ZigBee Alliance, telematics, 880–881
Zola, Irving, 88