Contents

Contributor List xv
Preface xvii

Part I Fundamentals of Mixing 1

1 Mixing Theory 3
 Chris D. Rielly
 1.1 Introduction 3
 1.2 Describing Mixtures 5
 1.3 Scale of Scrutiny 6
 1.4 Quantifying Mixedness for Coarse and Fine-Grained Mixtures 8
 1.4.1 Coarse and Fine-Grained Mixtures 8
 1.4.2 Scale and Intensity of Segregation 9
 1.5 Determining the End-Point of Mixing: Comparison of Mixing Indices 15
 1.6 Continuous Flow Mixers 19
 1.6.1 Idealized Mixing Patterns 19
 1.6.2 Residence Time Distributions 21
 1.6.3 Back-Mixing and Filtering of Disturbances Using a CSTR 23
 References 24

2 Turbulent Mixing Fundamentals 27
 Suzanne M. Kresta
 2.1 Introduction 27
 2.2 The Velocity Field and Turbulence 28
 2.3 Circulation and Macro-Mixing 29
 2.4 Fully Turbulent Limits and the Scaling of Turbulence 32
 2.5 The Spectrum of Turbulent Length Scales, Injection of a Scalar
 (Either Reagent or Additive) and the Macro-, Meso- and
 Micro-Scales of Mixing 34
 2.6 Turbulence and Mixing of Solids, Liquids, and Gases 37
 2.7 Specifying Mixing Requirements for a Process 38
 2.8 Conclusions 39
 Notation 39
 Roman Characters 39
 Greek Characters 40
 References 40
3 Laminar Mixing Fundamentals
P.J. Cullen and N.N. Misra

3.1 Laminar Flows
3.2 Mixing in Laminar Flows
 3.2.1 Chaos and Laminar Chaotic Mixing
 3.2.2 Granular Chaotic Mixing
3.3 Recent Advances
References

4 Sampling and Determination of Adequacy of Mixing
Rodolfo J. Romañach

4.1 Introduction, Process Understanding, and Regulations
4.2 Theory of Sampling
4.3 Sampling of Pharmaceutical Powder Blends
4.4 Stratified Sampling Approach
4.5 Testing
4.6 Process Knowledge/Process Analytical Technology
4.7 Real Time Spectroscopic Monitoring of Powder Blending
4.8 Looking Forward, Recommendations
4.9 Conclusion
4.10 Acknowledgments
References

Part II Applications

5 Particles and Blending
Reuben D. Domike and Charles L. Cooney

5.1 Introduction
5.2 Particle Geometry
 5.2.1 Particle Size and Size Distribution
 5.2.2 Particle Shape and Shape Distribution
5.3 Particle Interactions
 5.3.1 van der Waals Forces
 5.3.2 Electrostatic Forces
 5.3.3 Adsorbed Liquid Layers and Liquid Bridges
 5.3.4 Solid Bridges
 5.3.5 Use of AFM to Measure Interparticle Forces
 5.3.6 Interparticle Friction
5.4 Empirical Investigations of Particles and Blending
 5.4.1 Blending of Powders
 5.4.2 Impact of Particle Geometry on Blending
 5.4.3 Impact of Interparticle Forces on Blending
 5.4.4 Impact of Blender Conditions on Blending
References
Contents

5.5 Simulation Techniques 95
 5.5.1 Full Physics Models Using Discrete Element Modeling 96
 5.5.2 Continuum Models 97
 5.5.3 Cellular Automata 98
References 98

6 Continuous Powder Mixing 101
Juan G. Osorio, Aditya U. Vanarase, Rodolfo J. Romañach, and Fernando J. Muzzio

6.1 Introduction 101
6.2 Overview 102
6.3 Theoretical Characterization 107
 6.3.1 Residence Time Distribution (RTD) Modeling 107
 6.3.2 Variance Reduction Ratio 108
6.4 Experimental Characterization 108
 6.4.1 Hold-Up 109
 6.4.2 Residence Time Distribution (RTD) Measurements 109
 6.4.3 Mean Strain 110
6.5 Continuous Mixing Efficiency 110
 6.5.1 Variance Reduction Ratio 110
 6.5.2 Blend Homogeneity 111
6.6 Effects of Process Parameters on Mixing Behavior and Performance 112
 6.6.1 Hold-Up 113
 6.6.2 RTD Measurements 113
6.7 Mixing Performance 118
 6.7.1 Modeling 120
 6.7.2 PAT, QbD, and Control 122
6.8 Conclusions and Continuing Efforts 124
References 125

7 Dispersion of Fine Powders in Liquids: Particle Incorporation and Size Reduction 129
Gül N. Özcın-Taşkin

7.1 Particle Incorporation into Liquids 129
 7.1.1 Wetting 130
 7.1.2 Stirred Tanks for Particle Incorporation 132
 7.1.3 In-Line Devices Used for Particle Incorporation 140
7.2 Break Up of Fine Powder Clusters in Liquids 143
 7.2.1 Mechanisms of Break Up 146
 7.2.2 Process Devices for Deagglomeration\Size Reduction of Agglomerates 147
References 150
8 Wet Granulation and Mixing
Karen P. Hapgood and Rachel M. Smith

8.1 Introduction 153
8.2 Nucleation 154
 8.2.1 Drop Penetration Time 156
 8.2.2 Dimensionless Spray Flux 158
 8.2.3 Nucleation Regime Map 160
8.3 Consolidation and Growth 162
 8.3.1 Granule Consolidation 162
 8.3.2 Granule Growth Behaviour 164
 8.3.3 Granule Growth Regime Map 165
8.4 Breakage 167
 8.4.1 Single Granule Strength and Deformation 167
 8.4.2 In-Granulator Breakage Studies 170
 8.4.3 Aiding Controlled Granulation via Breakage 172
8.5 Endpoint Control 174
 8.5.1 Granulation Time 175
 8.5.2 Impeller Power Consumption 176
 8.5.3 Online Measurement of Granule Size 176
 8.5.4 NIR and Other Spectral Methods 177
References 178

9 Emulsions
Andrzej W. Pacek

9.1 Introduction 183
9.2 Properties of Emulsions 185
 9.2.1 Morphology 185
 9.2.2 Volumetric Composition 185
 9.2.3 Drop Size Distributions and Average Drop Sizes 186
 9.2.4 Rheology 191
9.3 Emulsion Stability and Surface Forces 195
 9.3.1 Surface Forces 195
 9.3.2 Emulsion Stability 199
9.4 Principles of Emulsion Formation 203
 9.4.1 Low Energy Emulsification 204
 9.4.2 High Energy Emulsification 205
9.5 Emulsification Equipment 216
 9.5.1 Stirred Vessels 216
 9.5.2 Static Mixers 218
 9.5.3 High Shear Mixers 219
 9.5.4 High-Pressure Homogenizers 223
 9.5.5 Ultrasonic Homogenizers 225
9.6 Concluding Remarks 226
10 Mixing of Pharmaceutical Solid-Liquid Suspensions

Mostafa Barigou and Frans L. Muller

10.1 Introduction
10.1.1 Linking Solid-Liquid Processing to Critical Quality Attributes
10.1.2 Material Properties and Composition
10.1.3 Impact of Blending and Homogenization
10.1.4 Impact of Turbulence
10.1.5 Impact of Heat Transfer

10.2 Scale-Up of Operations Involving Solid Suspensions
10.2.1 The Nature of Suspensions
10.2.2 Scale-Up and Scale-Down Rules
10.2.3 Identification of Agitator Duties
10.2.4 Solid-Liquid Unit Operations

10.3 General Principles of Solid-Liquid Suspensions
10.3.1 Rheological Behaviour of the Continuous Phase
10.3.2 Rheology of Suspensions
10.3.3 Terminal Velocity of Particles
10.3.4 Turbulence

10.4 Solids Charging
10.4.1 Charging to Batch Vessels
10.4.2 Charging Difficult Powders

10.5 Solid Suspension
10.5.1 States of Solid Suspension
10.5.2 Prediction of Minimum Speed for Complete Suspension

10.6 Solid Distribution
10.6.1 Agitator Speed
10.6.2 Homogeneity
10.6.3 Geometry
10.6.4 Practical Guidelines

10.7 Blending in Solid-Liquid Systems
10.7.1 Mixing Time
10.7.2 Viscoplastic Slurries Yield Stress and Cavern Formation

10.8 Mass Transfer
10.9 Size Reduction, Deagglomeration and Attrition
10.9.1 Breaking Particles through Turbulent Forces
10.9.2 Breaking Particles through Impact

Nomenclature
Greek symbols
References
Part III Equipment

11 Powder Blending Equipment 289

David S. Dickey

11.1 Introduction 289
11.2 Blending Mechanisms 290
11.3 Blend Time 290
11.4 Fill Level 291
11.5 Segregation 291
11.6 Powder Processing Difficulties 292
11.7 Blender Classification 292
 11.7.1 Tumble Blenders 293
 11.7.2 Rotating Element Blenders 298
 11.7.3 Granulators 303
 11.7.4 Other Blenders – Mullers and Custom Blenders 304
11.8 Continuous Blenders 305
11.9 Blender Selection 306
11.10 Equipment Specifications 307
 11.10.1 Materials of Construction 309
 11.10.2 Electrical Classification 309
 11.10.3 Drives and Seals 309
References 310

12 Fluid Mixing Equipment Design 311

David S. Dickey

12.1 Introduction 311
12.2 Equipment Description 312
 12.2.1 Laboratory Mixers 312
 12.2.2 Development Mixers 313
 12.2.3 Portable Mixers 313
 12.2.4 Top-Entering Mixers 315
 12.2.5 High-Shear Dispersers 318
 12.2.6 High Viscosity Mixers 319
 12.2.7 Multi-Shaft Mixers 319
 12.2.8 Bottom-Entering Mixers 320
 12.2.9 Glass-Lined Mixers and Vessels 321
 12.2.10 Side-Entering Mixers 322
 12.2.11 Vessel Geometry 322
 12.2.12 Baffles 323
12.3 Measurements 323
 12.3.1 Power 324
 12.3.2 Torque 326
 12.3.3 Tip Speed 327
 12.3.4 Blend Time 327
12.4 Mixing Classifications 328
 12.4.1 Liquid Mixing 328
12.4.2 Solids Suspension 330
12.4.3 Gas Dispersion 332
12.4.4 Viscous Mixing 333

12.5 Mechanical Design 334
12.5.1 Shaft Design 334
12.5.2 Shaft Seals 335
12.5.3 Materials of Construction 336
12.5.4 Surface Finish 337
12.5.5 Motors 338
12.5.6 Drives 339

12.6 Static Mixers 339
12.6.1 Twisted Element 339
12.6.2 Structured Element 339
12.6.3 Basic Design 340

12.7 Challenges and Troubleshooting 341
12.7.1 Careful Observations 341
12.7.2 Process Problems 341

Nomenclature 342
Greek 343
References 343

13 Scale-Up 345
David S. Dickey

13.1 Introduction 345

13.2 Similarity and Scale-Up Concepts 346
13.2.1 Dimensional Analysis 346
13.2.2 Similarity 347
13.2.3 Applied Scale-Up 349

13.3 Testing Methods 350

13.4 Observation and Measurement 352

13.5 Scale-Up Methods 354
13.5.1 Scale-Up with Geometric Similarity 354
13.5.2 Example of Geometric Similarity Scale-Up 358
13.5.3 Scale-Up Without Geometric Similarity 359
13.5.4 Example of Non-Geometric Scale-Up 361
13.5.5 Scale-Up for Powder Mixing 364

13.6 Summary 367
Nomenclature 367
Greek 368
References 368

14 Equipment Qualification, Process and Cleaning Validation 369
Ian Jones and Chris Smalley

14.1 Introduction 369

14.2 Blending Equipment Commissioning and Qualification 370
14.2.1 Outline of the Verification Approach 370
14.2.2 Requirements Phase 371
14.2.3 Specifications and Design Review Phase 373
14.2.4 Verification Phase 375

14.3 Blending and Mixing Validation 380
 14.3.1 Why do You Need to Validate Pharmaceutical Blends/Mixes? 382
 14.3.2 When do You Need to Validate Blending/Mixing? 384
 14.3.3 Components of Blending/Mixing Validation 385
 14.3.4 What to Validate 386

14.4 Blending Cleaning Validation 389
 14.4.1 Cleaning Development Studies 389
 14.4.2 Cleaning Validation 395

14.5 Conclusion 398
14.6 Acknowledgements 399
References 399

Part IV Optimization and Control 401

15 Process Analytical Technology for Blending 403
Nicolas Abatzoglou

15.1 Introduction 403
 15.1.1 The Role of PAT in Pharmaceutical Manufacturing:
 Is PAT Really New? 404
 15.1.2 Why PAT is Feasible 405
 15.1.3 Where PAT can be Applied in Pharmaceutical Manufacturing 406
 15.1.4 The Regulatory Framework 406

15.2 Chemometrics and Data Management 408
 15.2.1 PAT Data Management and Interpretation 409

15.3 Near-Infrared Spectroscopy (NIRS) 412
15.4 Raman Spectroscopy (RS) 419
15.5 Image Analysis 422
15.6 LIF Spectroscopy 424
15.7 Effusivity 426
15.8 Other Potential Sensor Technologies 426
15.9 Comments on PAT in Liquid Formulation Mixing 427
References 427

16 Imaging Fluid Mixing 431
Mi Wang

16.1 Introduction 431
16.2 Point Measurement Techniques 433
16.3 Photographic Imaging 435
16.4 Digital Particle Image Velocimetry 439
16.5 Magnetic Resonance Imaging 443
16.6 Positron Emission Particle Tracking Imaging 444
16.7 Electrical Process Tomography 446
References 452
17 Discrete Element Method (DEM) Simulation of Powder Mixing Process 459
 Ali Hassanpour and Mojtaba Ghadiri
 17.1 Introduction to DEM and its Application in Pharmaceutical
 Powder Processing 459
 17.2 DEM Simulation of Powder Mixing 461
 17.3 Validation and Comparison with the Experiments 468
 17.4 Concluding Remarks 474
 References 475

Index 479