Index

ABS see adsorptive bubble separation (ABS)
- active sludge and bioflocs, 205–6
- additives, live fish transport, 337

adsorptive bubble separation (ABS)
- aided flotation, 66
- categorization, 67
- classification, unit design, 67
- effectiveness, 66
- foam separation and non-foaming flotation, 67
- groups, 66, 67
- mechanisms, 67
- saltwater aquaria, 66

advanced oxidation technology (AOT)
- methods, 130–131
- redox potential, 129–30

aeration, 155–78 see also oxygen/oxygenation
- aerators, 159–65
- cascade aerators, 163
- construction, 159–65
- design, 159–65
- equilibrium, 157–8
- evaluation, 160–161
- gas theory, 157–9
- gas transfer, 158–9
- gases in water, 155–7
- gravity aerators, 161–4
- Inka aerators, 164, 165
- methods, 159–60
- packed column aerators, 161–5
- paddle wheel aerators, 164, 165
- ponds, 244
- principles, 159–60
- propeller aerators, 164, 165
- purpose, 155
- saturation, 155–7
- subsurface aerators, 161, 165
- surface aerators, 161, 165

aerobic decomposition
- C/N ratio, 116
- smell filter, 116
- temperature increase, liquid composted sludge, 116, 117
- wet composting reactor, 115, 116

afterevaluation, planning, 402

aided flotation, 39

air transport, live fish transport, 335–6

airlift pumps
- advantage, 313
- harvesting shells, 312
- oxygen/oxygenation, 330–331
- pumping fish, 311, 312

alternatives, planning, 397–8, 399–401

aluminium, pH, 44

ammonia
- monitoring, 343–4
- water quality, 33

ammonia removal, 179–88
- bacteria, 180–181
- biodrum, 183–4
- biofilters, 186
- biological removal of ammonium ion, 179–80
- chemical removal, 187–8
- denitrification, 186–7
- filters, 181–5
- flow-through system, 182–3
- ion exchangers, 187–8
- moving bed bioreactor (MBBR), 184–5
- nitrification, 180–181

© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
ammonia removal (cont’d)
 Nitrobacter bacteria, 180–181
 Nitrosomonas bacteria, 180–181
oxidizing, 179, 180
pH, 179–80
rotating biofilter (biodrum), 183–4
anaerobic decomposition
 biogas, 117
biomass growth, 117
carbon, 117
methane gas production, 117
particle-bound nitrogen, 118
steps, 117
analyses, planning, 397–9
anchors, mooring systems, 272–4
angle seat valves, pipes, 12
antifouling chemicals, 107–8
AOT see advanced oxidation technology (AOT)
aquaculture
 bubble column, 85–6
classification, 1–2
facilities
 construction, 367–93
design, 367–93
hatcheries, 367–85
juvenile production, 367–85
land-based, 367–85
planning, 394–402
protein skimmers and flotation plants, 86–90
aquaponics, 204–5
artificial substrate, egg storage/hatching, 220–221
automation
 feeding systems, 286, 289–93
instrumentation, 339
back-flushing
 depth filtration, 56–7
screens, 52–5
bacteria, ammonia removal, 179–81
ball valves, pipes, 11
band graders, size grading, 322–5
bar graders, size grading, 319–21
base station, sea cages, 5, 390–391
bead filters, ammonia removal, 185
belt graders, size grading, 321–2, 323
Bernoulli equation, water transport, 16
biodrum, ammonia removal, 183–4
biofilters, ammonia removal, 181–6
biofloc system
 C/N ratio, 207
description, 206
organic carbon sources, 207
principle, 206
protein utilization, 207
water quality, 208
biological purification, water
 autotrophic/heterotrophic organisms, 203
chemoautotrophic organisms, 204
C/N ratio, 204
green water system, 203–4
heterotrophic organisms, 204
biological removal of ammonium ion,
 179–80
biological separation, phosphorus, 41–2
biomass estimation, 350–352
boats, sea cages, 5, 392–3
breakwaters, sea cages, 263–4
bubble columns, 85–6
bubbles
 coalescence, 83
 fractionation, 89–90
gas, 80
generation methods, 80–82
size, 82–3
buildings, 357–66
 cleaning, 363–4
climatization, 364–6
design, 358–9, 363–4
environmental factors, 364–6
floors, 363
foundations, 362–3
ground conditions, 362–3
insulation, 362
load-carrying systems, 359–61
materials, 359–62
prefabricated, 362
reasons, 357
roof design, 358–9
shapes, 357–9
types, 357–9
ventilation, 364–6
walls, 363–4
Bunsen coefficient, oxygen/oxygenation,
 157, 177
buoys, mooring systems, 271–2
butterfly valves, pipes, 10, 12
cage collars, sea cages, 259–61
cameras, fish size, 350–352
carbon dioxide, monitoring, 343–4
cascade aerators, 163
cavitation, pumps, 21
centrifugal pumps, 23–8, 306–7, 309
CFF see cross-flow filtration (CFF)
characteristics curves, pumps, 26–7
characterization of the water, particles, 51
check valves, pipes, 12
chemical separation, phosphorus, 41
Chick’s law, 121
chlorine disinfection, 131–2
Index

classification
 aquaculture, 1–2
 pipes, 10–11
 production units, 210–215
 sea cages, 249

cleaning
 buildings, 363–4
 closed production units, 231–2
 live fish transport, 329, 336–7
 self-cleaning, 231–2
 transfer pipeline, 377
 water inlet, 377

climatization, buildings, 364–6

closed production units, 211–13, 224–6
 cleaning, 231–2
 components, 224–6
 dead zones, 228
 design, 228–31
 drains, 235–7
 flow pattern, 231–2
 materials, 229–31
 mixing, 228
 self-cleaning, 231–2
 types, 224–6
 velocity profile, 231–2
 water exchange rate, 227–8
 water flow, 231–2
 water inlet, 233–4
 water outlet, 235–7
 water quantity, 226–7

closed sea cages, 211–13, 224–37

coaulation and flocculation
 colloid entrapment mechanism, 75
 destabilizing chemicals, 77
 equipment, 78
 mechanisms, 75, 76
 polymers, 76
 RAS, 75
 zeta potential measurement, 77

combination units, egg storage/hatching, 223
components
 closed production units, 224–6
 farms, 2–5
 instrumentation, 340
 land-based farms, 2–4
 mooring systems, 266–9
 re-use, 196–7
 sea cages, 249–50
composting of sludge, 115–17
conductivity, monitoring, 342
connections
 pipes, 12–13
 planning, 397–9
 pumps, 28–9
constructed wetlands, 132

collection see also buildings
 aeration, 159–65
 aquaculture facilities, 367–93
 heat pumps, 146–7
 instrumentation, 340
 ponds, 241–3
 re-use systems, 193–6
 sea cages, 259–66
 conveyor belt feeders, 287, 289

cooling
 chilling of water, 153–4
 heat exchangers, 138, 153–4
 reasons, 134

counting fish, instrumentation, 349–50

cross-flow filtration (CFF), 103

crowding, internal transport, 305–7

current
 measuring, 258–9
 oceanic, 258
 sea cages, 257–9, 274–80
 tidal, 258
 wind-generated, 258

DAF see dissolved air flotation (DAF)
dead fish, tanks, 390
dead zones, closed production units, 228
degree of wetting, 68
demand feeders, 287–9
denitrification, ammonia removal, 186–7
density, fish
 live fish transport, 331–2, 333–4
 re-use, 192–3
density, water, production units, 214–15
depth filtration
 back-flushing, 56–7
 filters, 55–8
design
 aeration, 159–65
 aquaculture facilities, 367–93
 buildings, 358–9, 363–4
 closed production units, 228–31
 mooring systems, 267–9
 re-use systems, 197–200
 tanks, 228–31
 water inlet, 233–4
 water intake/transfer, 367–8
 water outlet, 235–7
dewatering, sludge
 mechanical filter, 114
 particle removal system, 115
 percentage DM, 114
 sedimentation, 115
diatomite (DE) filters, 57–8
diffusers, oxygenation, 169
dip nets, internal transport, 305, 308
disc feeders, 287, 289
disinfection, 120–132
AOT, 129–31
aquaculture, 120
chemical agents and non-chemical agents, 120
Chick’s law, 121
chlorine, 131–2
degree of removal, 121
description, 120
dose–response curve, 122
ground filtration, 132
heat treatment, 131
membrane filtration, 121, 132
oxidizing potential, 121
ozone (see ozone (O₃) disinfection)
pH change, 132
photozone, 131
RAS, 120
ultraviolet light (see ultraviolet light (UV)
disinfection)
UV light and ozone, aquaculture, 121
Watson’s law, 121–2
disinfection barriers, production rooms, 383
dissolved air flotation (DAF)
design, plant, 93–5
Henry–Dalton law, 81
retention time, 82
dissolved organic matter (DOM), 40–41
ditches, pipes, 14–15
DOM see dissolved organic matter (DOM)
drainable/non-drainable ponds, 242–3
drains/drainage
closed production units, 235–7
dual drain tanks, 63, 64, 237
ponds, 242–3, 245–7
dual drain tanks, 237
particles, 63

EBPR see enhanced biological phosphorus removal (EBPR)

echo sounding, biomass estimation, 351–2
ecosystem, ponds, 239
effluent, water quality, 33–5
egg storage/hatching, 216–23
artificial substrate, 220–221
bottom-lying eggs, 219–23
combination units, 223
hatching cabinets, 221–3
hatching cylinders, 221–3
hatching troughs, 219–20
incubators, 217–18
intensive/extensive production units, 216–17
pelagic eggs, 217–19
water flow, 218
ejector pumps, 309–12
electrostatic/sterically stabilized particles, 77
embankment ponds, 241–3
energy
content, waste, 38–9
loss, water transport, 16–18
pumps, 22–3
requirement, heating, 134–5
enhanced biological phosphorus removal (EBPR), 41
environmental factors
buildings, 364–6
sea cages, 251–9
environmental forces
mooring systems, 280–283
sea cages, 274–80
environmental impact, production units, 215
equilibrium
aeration, 157–8
oxygenation, 166
escaped fish, water quality, 34
evaluation
aeration, 160–161
afterevaluation, 402
oxygen/oxygenation, 168–9
planning, 399
excavated ponds, 241–3
extensive/intensive production units, 210–213
facilities, aquaculture see aquaculture, facilities
faeces, particles, 33, 34, 51
feed blowers, 287, 288
feed dispensers, 287, 289
feeding equipment
feed handling, 384
land-based farms, 4
sea cages, 4
feeding systems, 286–98
automatic feeders, 289–93
automation, 286
cell wheel, 290, 291
central, 294–5
control units, 292, 293
conveyor belt feeders, 287, 289
demand feeders, 287–9
disc feeders, 287, 289
distribution mechanisms, 290–291
dynamic, 296–7
electric current, 292–3
feed blowers, 287, 288
feed control, 295–6
feed control systems, 296
feed dispensers, 287, 289
feed hopper, 291
feeding robots, 295
requirements, 286–7
screws, 290
sea cages, 389
selection, 286
spreading of feed, 291–2
types, 287–95
vibrators, 291
feed storage, production rooms, 383
fermentation and biogas production, 117–18
filters
ammonia removal, 181–7
back-flushing, 52–5
bead, 185
biofilters, 181–6
depth filtration, 55–8
diatomite (DE), 57–8
efficiency, 62–3
examples, 186
fuller’s earth, 57
granular, 185
granular medium, 55–8
hydraulic loads, 62
hydrocyclones, 59–60
integrated treatment systems, 60–61
management, 185–6
mechanical, 52–5
media, biofilters, 183
mesh sizes, 55
nitrification, 180–185
particles, 51–9
purification efficiency, 62–3
settling/gravitation, 58–60
swirl separators, 59–60
vacuuming, 52–5
fish counting, instrumentation, 349–50
fish cradles, size grading, 316–18
fish density, re-use, 192–3
fish feeding department, production rooms, 380
fish metabolism
carbohydrate, 38
description, 37
divisions, 37
energy budget, 38–9
excretion products, 37
fat, 38
metabolic end products, 37, 38
phosphorus, 38
protein, 37, 38
fish screws, 312, 313
fish size, instrumentation, 350–352
fixtures
head loss, 18–19
pipes, 12
fixing point, mooring systems, 269–70
flat outlets, water outlet, 235–7
floors, buildings, 363
flotation plant
chemical pretreatment, 93
DAF, 93
low-density materials removal, 92
flow pattern
closed production units, 231–2
heat exchangers, 144
flow-through system, ammonia removal, 182–3
fluid bed/active sludge, ammonia removal, 184–5
foam
breakers, 85
bubble size distribution, 84
description, 83
fractionation (see protein skimming)
stability, 84–5
surfactant layers, 83, 84
wet and dry, 83
food to microorganism (F/M) ratio, 205
forces calculations, sea cages, 274–80
fouling
air bubbling, 108
antifouling chemicals, 107–8
biofouling, 107
groups, 107
hydraulic back-flushing, 107
periodic pulsing, 107
quartz glass pipes, 124
silt density index (SDI), 108
surface and pore fouling, 107
frameworks, sea cages, 259–61
freshwater/salt water, production units, 214–15
fry production ponds, 240–241
fuller’s earth, filters, 57
function test, planning, 399, 402
future trends, 5–6
gas bubble, 80
gas concentrations, water quality, 33
gases in water, 155–7 see also aeration; oxygen/ oxygenation
TGP, 342–3
gas/oil burners, 137–8
grading boxes, size grading, 318
grading grids, size grading, 319, 320, 326
grading machines (graders), size grading, 319–25
granular filters, ammonia removal, 185
granular medium filters, 55–8
gravitation/settling filters, 58–60
gravity aerators, 161–4
ground conditions, buildings, 362–3
ground filtration, 132
groundwater, water inlet, 373–4
growth, size grading, 300–301
Hagen–Poiseuille equation, 110
harvesting fish, size grading, 304
hatcheries
land-based, 367–85
production rooms, 378–80
hatching cabinets, egg storage/hatching, 221–3
hatching cylinders, egg storage/hatching, 221–3
hatching troughs, egg storage/hatching, 219–20
head loss
monitoring, 346–7
water transport, 16–19
heat exchangers
cooling, 138, 153–4
flow pattern, 144
fouling, 145
heat transfer, 138–9
materials, 144–5
NTU, 140
pipes, 143–4
plate exchangers, 141–3
several-stroke exchangers, 141–3
shell and tube exchangers, 143
size, 140–141
specific pressure drop, 140–141
types, 143–4
heat pumps, 146–9
coefficient of performance, 148
construction, 146–7
function, 146–7
installation, 148–9
log pressure–enthalpy (p–H) diagram, 147–8
maintenance, 149
management, 149
reasons, 146
heating, 134–53
coefficient of performance (COP), 148–52, 154
composite heating systems, 149–53
energy requirement, 134–5
heaters, 136–8
heat exchangers, 138–46
heat pumps, 146–9
immersion heaters, 136–7
methods, 135–6
oil/gas burners, 137–8
reasons, 134
Henry’s law, oxygenation, 166
heterotrophic bacteria, 205–6
high-pressure pumps, 29
horizontal transport, 314–15
hydrocyclones, filters, 59–60
hydrophilic molecules, 68–9
hydrophobic molecules, 68–70
hydroxides, pH adjustment, 47–8
Index
ice, sea cages, 259
immersion heaters, 136–7
impellers, pumps, 28–9
importance, aquaculture engineering, 5–6
impurities, water
classification, 39
organic matter, 40
size, 40
volatile suspended solids (VSS), 40
IMTA see integrated multitropic aquaculture (IMTA)
incubators, egg storage/hatching, 217–18
infectious pancreatic necrosis (IPN), 38
injection systems, oxygenation, 166–72
Inka aerators, 164, 165
inset layout ponds, 246, 247
instrumentation, 339–56 see also monitoring
automation, 339
biomass estimation, 350–352
components, 340
conductivity, 342
construction, 340
fish counting, 349–50
fish size, 350–352
head loss, 346–7
live fish transport, 332, 334
nitrogen saturation, 342–3
oxygen content, 341–2
pH, 342
physical conditions measuring, 344–9
salinity, 342
saturometer, 342–3
temperature, 341
TGP, 342–3
water flow, 344–7
water level, 347–9
water pressure, 347
water quality, 340–344
insulation, buildings, 362
integrated aquaculture
definition, 203
multitropic (see integrated multitropic aquaculture (IMTA))
integrated multitropic aquaculture (IMTA), 203, 204
integrated treatment systems, particles, 60–61
intensive/extensive production units, 210–213
egg storage/hatching, 216–17
interactions, water quality, 33
internal transport, 4, 299–316 see also size grading
crowding, 305–7
dip nets, 305, 308
equipment, 305–16
external energy, 305
fish handling, 299–305, 384–5, 397
horizontal transport, 314–15, 384–5

Index

methods, 305–16
negative effects, 304–5
pipes, 314–15
planning, 397
pumps, 305–11
reasons, 299–300, 384
transport tanks, 313–14
vertical transport, 305–14, 384–5, 386
voluntary movement, 315–17, 385, 386
ion exchangers, ammonia removal, 187–8
IPN see infectious pancreatic necrosis (IPN)

jointing, pipes, 12–13
juvenile production, aquaculture facilities, 367–85

Kozeny–Carman equation, 110

lakes, water inlet, 368–70
land-based aquaculture facilities, 367–85
land-based farms
 components, 2–4
 site selection, 395
land transport, live fish, 329–30
layout
 planning, 397–8, 400–401
 ponds, 246, 247
legal issues, sea cages, 251
levee ponds, 241–3
level graders, size grading, 324, 325
lighting systems, sea cages, 389
lime
 pH adjustment, 45–7
live fish transport, 328–38
 additives, 337
 air transport, 335–6
 bags/cans, 336
 changing water, 331
 cleaning, 329, 336–7
 density, fish, 330, 333–4
 instrumentation, 332, 334
land transport, 329–32
oxygen/oxygenation, 330–331
preparation, 328–9
sea transport, 332–5
stopping procedures, 332
tanks, 329–30
vehicles, 329
well boats, 332, 333
load-carrying systems, buildings, 359–361
lye, pH adjustment, 47–8

materials
 buildings, 359–62
 closed production units, 229–31
 heat exchangers, 144–5
 net bags, 262–3
 pipes, 7–9
 sea cages, 260, 261
MBR see membrane bioreactor (MBR)
membrane bioreactor (MBR)
 back-wash water, drum filters, 112
 bacterial and viral reduction, 112
 description, 99
 principle, 100
membrane filtration, 99–112
 advantages and disadvantages, 99
 aquaculture, 112
 automation, 108
 construction/morphology, 105–6
 description, 99
 design and dimensioning, plants, 108–12
 filter classification, 101–3
 flow, 106
 flow pattern, 103–4
 fouling, 107–8
 impurities separation, 100
 macrofiltration, 100
 materials, 106–7
MBR (see membrane bioreactor (MBR))
 module, 101
PDMS plant components, 101
permeate/product, 100
shape/geometry, 104–5
TMP (see transmembrane pressure (TMP))
 mesh sizes, filters, 55
metabolic energy, 39
metal ions, pH, 33, 44
microfiltration (MF), 101–2
microorganisms, water quality, 33–5
microscreens, particles, 52–5
monitoring, 339–56 see also instrumentation
 ammonia, 343–4
 carbon dioxide, 343–4
 components, 352–3
 conductivity, 342
 control, 355
 head loss, 346–7
 land-based farms, 4
 maintenance, 355
 nitrate, 343–4
 nitrogen saturation, 342–3
 oxygen content, 341–2
 pH, 342
 physical conditions, 344–9
PLC, 353–4
regulation equipment, 355
salinity, 342
sensors, 352–4
Index

monitoring (cont’d)
- systems, 352–5
- temperature, 341
- TGP, 342–3
- warning equipment, 354–5
- water flow, 344–7
- water level, 347–9
- water pressure, 347
- water quality, 340–344
- water velocity, 344–7

monoculture, 203
Moody diagram, water transport, 17
mooring, pipes, 13–14
mooring systems
- anchors, 272–4
- buoys, 271–2
- calculations, 280–283
- components, 266–9
- control, 283
- design, 267–9
- environmental forces, 280–283
- fixing point, 269–70
- mooring lines, 270–271, 281–3
- sea cages, 266–74
- size, 280–283
- types, 267–9

nanofiltration (NF), 101–2
natural organic matter (NOM), 40
negative effects, handling fish, 304–5
net bags
- materials, 262–3
- sea cages, 262–3, 387–9, 391–2
net handling, sea cages, 391–2
net positive suction head (NPSH), pumps, 21–2, 27
NFF see normal flow filtration (NFF)
nitrate, monitoring, 343–4
nitrification
- ammonia removal, 180–185
- filters, 181–5
Nitrobacter bacteria, ammonia removal, 180–181
nitrogen saturation, monitoring, 342–3
Nitrosomonas bacteria, ammonia removal, 180–181
normal flow filtration (NFF), 103
NPSH, see net positive suction head (NPSH)
number of transfer units (NTU), heat exchangers, 140
nutrient loop closure, 201
nutrients, water quality, 34

ocean sea cages, 264–6
oceanic current, 258
oil/gas burners, 137–8
on-growing production, 385–93
- ponds, 240–241
- production rooms, 381

ORP see oxidation–reduction potential (ORP)
oxidation–reduction potential (ORP), 129–30
oxidizing
- ammonia removal, 179, 180
oxygen/oxygenation, 165–77 see also aeration
- airlift pumps, 330–331
- Bunsen coefficient, 157, 177
- compressed oxygen gas, 173
- diffusers, 169
- equilibrium, 166
- evaluation, 168–9
- examples, 169–72
- gas transfer, 166
- Henry’s law, 166
- increasing equilibrium concentration, 166
- injection systems, 166–72
- liquid oxygen (LOX), 173–5
- live fish transport, 330–331
- monitoring oxygen content, 341–2
- on-site oxygen production, 175, 176
- oxygen cones, 169–71
- oxygen gas characteristics, 172
- oxygen sources, 172–7
- oxygen wells, 171–2
- packed column, 169, 170
- principles, 166–7
- PSA, 175
- purpose, 155
- saturation, 155–7
- sea cages, 172
- solubility, 177
- sources, 172–7
- supply, 330–331
- systems, 166–72
- theory, 166
- water quality, 33

ozone (O₃) disinfection
- content measurement, 128–9
- design specification, 126–7
- dose, 127
- function, 125, 126
- mode of action, 125
- toxicity, 127, 128

packed column aerators, 162, 163, 166
packed column oxygenation, 169, 170
paddle wheel aerators, 164, 165
parallel layout ponds, 246, 247
particles
- characterization of the water, 51
- definitions, 50–51
- dual drain tanks, 63–4
- faeces, 33, 34, 51
- filters, 52–60
- integrated treatment systems, 60–61
Index

local ecological solutions, 64
microscreens, 52–5
removal, 50–65
removal methods, 51–61
screens, 52–5
TS, 50
TSS, 50
water quality, 33–5
wave calculations, 251–3
particulate organic matter (POM), 40
pathogens, water quality, 33–5
PDMS see pressure-driven membrane separation (PDMS)
pelagic eggs, egg storage/hatching, 217–19
pH
 adjustment, 45
 adjustment examples, 45–8
 aluminium, 44
 ammonia removal, 179–80
 definitions, 43–4
 hydroxides, 47–8
 lime, 45–7
 low, 44
 lye, 47–8
 metal ions, 33, 44
 monitoring, 342
 problems, 44
 sea water, 47
 sodium hydroxide, 47–8
 water quality, 33
 water sources, 44–5
phosphorus removal
 biological separation, 41–2
 chemical separation, 41
 physical separation, 41
 principles, 41
photoautotrophic organisms, 204–5
photozone disinfection, 131
physical conditions, monitoring, 344–9
physical separation, dissolved phosphorus, 41
pipes
 classification, 10–11
 connections, 12–13
 ditches, 14–15
 fittings, 12
 head loss, 16–19
 heat exchangers, 143–4
 internal transport, 314–15
 jointing, 12–13
 materials, 7–9
 mooring, 13–14
 pressure class, 9–10
 production rooms, 381–3
 transfer pipeline, 376–7
 vacuum, 9–10
valves, 11–12
water flow, 15–16
water hammer, 9
water inlet, 376–7
water transport, 7–15
planning
 afterevaluation, 402
 alternatives, 397–8, 399–401
 analyses, 397–9
 aquaculture facilities, 394–402
 connections, 397–8, 399
 detailed, 399
 evaluation, 399
 function test, 399, 402
 internal transport, 397
 layout, 397–8, 400–401
 process, 394–5
 production plan, 395–7
 room programme, 397
 site selection, 395
 size grading, 397
 plastic sea cages, 264
 polyculture, 203, 205
polyphosphate-accumulating organisms (PAOs), 41
POM see particulate organic matter (POM)
ponds, 239–47
 aeration, 244
 construction, 241–3
 drainable/non-drainable, 242–3
 drainage, 245–7
 ecosystem, 239
 embankment, 241–3
 excavated, 241–3
 fry production, 240–241
 inset layout, 246, 247
 layout, 246, 247
 levee, 241–3
 on-growing production, 240–241
 parallel layout, 246, 247
 production units, 210–211, 213–14, 224–37, 239–47
 radial layout, 246, 247
 series layout, 246, 247
 site selection, 243–4
 size, 243
 types, 241–3
 water inlet, 245
 water outlet, 245–7
 water supply, 244
 watershed, 241–3
pressure class, pipes, 9
pressure-driven membrane separation (PDMS)
 description, 100
 filter categories, 101
 permeate flux, 110
 plant components, 101
Index

pressure, pumps, 28–9
pressure swing adsorption (PSA), oxygen/oxygenation, 175
production control, size grading, 301–3
production plan, 395–7
production rooms, 378–83
production systems, 201
production units see also closed production units
aims, 210
classification, 210–215
closed, 211–13, 224–37
closed sea cages, 211–13, 224–37
design, 210–214
environmental impact, 215
freshwater/salt water, 214–15
fully controlled/semi-controlled, 213
intensive/extensive, 210–213
land-based farms, 4
ponds, 210–213, 224–37, 239–47
raceways, 210–213, 224–37
sea cages, 211–15
tanks, 211–13, 224–37
tidal basin, 211–14
water density, 214–15
programmable logic controller (PLC), monitoring, 353–4
propeller aerators, 164, 165
propeller pumps, 24
protein skimmers and flotation plants
bubble fractionation, 89–90
design and operation, DAF, 93–5
dimensioning, 92
factors, efficiency, 87–9
flotation plant, 92–3
inlet/effluent aquaculture, 86–7
ozone, 89
principles and design, 90–92
protein skimming
ABS (see adsorptive bubble separation (ABS))
attribution and removal mechanisms
bubbles, 71
collision, particle and rising bubble, 72–3
colloid and particle removal rate, 73–8
DAF, 71
diffusion, 71
surface-active substances, 78–80
bubble column, aquaculture, 85–6
bubbles (see bubbles)
definition, 66
foam (see foam)
gas concentration, water, 85
protein skimmers and flotation plants (see protein skimmers and flotation plants)
surface tension, cohesion and adhesion, 68–70
surfactants, 70–71
pumping stations, water inlet, 374–6
pumps
airlift, 311–13, 330–331
cavitation, 21
centrifugal, 23–8, 306–7, 309
characteristics curves, 26–7
connections, 28–9
costs, 23
definitions, 19–22
ejector, 309–12
energy, 22–3
fish screws, 312, 313
high-pressure, 29
impellers, 28–9
internal transport, 305–11
NPSH, 21–2, 27
performance, 26–8
pressure, 28–9
propeller, 24
pump height, 19–21
regulation, water flow, 29–31
re-use, 191, 197–200
RPM, 30
throttling, 31
types, 19–20
vacuum-pressure, 309, 310
water flow, 28–31
water inlet, 374–6
water transport, 19–31
working point, 27–8
purification efficiency
filters, 62–3
re-use, 193
raceways
production units, 210–213, 224–37
size grading, 325
tidal basin, production units, 210–214
radial layout ponds, 246, 247
RAS see recirculating aquaculture systems (RAS)
recirculating aquaculture systems (RAS), 99, 112
recovery, 111
re-use, 190–200
advantages, 190–191
centralized, 198–9
components, 196–7
construction, systems, 193–6
definitions, 191–3
degree of, 191–2, 195–6
density, fish, 192–3
design, systems, 197–200
disadvantages, 191
effectiveness, 195–6
mass flow, 193
pumps, 191, 197–200
Index

purification efficiency, 193
theoretical models, 193–6
waste handling, 194–5
water, live fish transport, 336–7
water flow, 192–6
water requirements, 193–4
re-use, water, 201–2
reverse osmosis (RO), 101–2
Reynolds number, water transport, 17
river, water inlet, 370–373
roller graders, size grading, 321, 322
room programme, planning, 397
rotating biofilter (biodrum), ammonia removal, 183–4
RPM, pumps, 30
salinity, monitoring, 342
salt water/freshwater, production units, 215
saturation, aeration/oxygenation, 155–7
saturometer, instrumentation, 342–3
screens, particles, 52–5
screws
 feeding systems, 290
 fish screws, internal transport, 312, 313
SDI see silt density index (SDI)
sea cages, 4–5, 249–85
 base station, 5, 390–391
 boats, 392–3
 breakwaters, 263–4
 cage collars, 259–60, 261
 classification, 249
 components, 249–50
 conditions, 250
 construction, 259–66
 current, 257–9, 274–80
 environmental factors, 251–9
 environmental forces, 274–80
 examples, 264–6
 feeding systems, 389
 forces calculations, 274–80
 frameworks, 259–60, 261
 ice, 259
 legal issues, 251
 lighting systems, 389
 materials, 260, 261
 mooring systems, 266–9
 net bags, 262–3, 387–9, 391–2
 net handling, 391–2
 ocean, 264–6
 on-growing production, 385–93
 plastic, 264
 production units, 145–9
 site selection, 250–251, 387, 395
 steel, 264, 265
 water quality, 250–251
waves, 251–7, 274–80
wind, 274–80
sea transport
density, fish, 333–4
instrumentation, 334
live fish transport, 332–5
well boats, 332, 333
sea, water inlet, 370, 371
sea water, pH adjustment, 47
self-cleaning, closed production units, 231–2
self-grading, size grading, 326
semi-intensive aquaculture, 2
sensors, monitoring, 352–4
separation technology
categories, 39
chemicals, 39
description, 39
disinfection, 39
impurities, 39–41
phosphorus removal, 41–2
series layout ponds, 246, 247
settling/gravitation filters, 58–60
silt density index (SDI), 108
site selection
 land-based farms, 395
 planning, 395
 ponds, 243–4
 sea cages, 250–51, 387, 395
size grading, 326
 band graders, 322–5
 bar graders, 319–21
 belt graders, 321–3
 energy supply, 316–26
 equipment, 316–26
 fish cradles, 316–18
 grading boxes, 318
 grading grids, 319, 320, 326
 grading machines (graders), 319–25
 growth, 300–301
 harvesting fish, 304
 land-based farms, 4
 level graders, 324, 325
 manual, 316
 methods, 316–26
 planning, 397
 production control, 301–3
 raceways, 325
 reasons, 300–304
 roller graders, 321, 322
 sea cages, 5, 325
 self-grading, 326
 tilt graders, 318–19
 voluntary grading, 326
in water, 325–6
Index

sludge, 114–18
 composting (see aerobic decomposition)
dewatering, 114–15
fermentation and biogas production (see anaerobic decomposition)
lime addition, 118
stabilization, 115
utilization, 118
sludge volume index (SVI), 206
sodium hydroxide, pH adjustment, 47–8
stabilization, sludge, 115
steel sea cages, 264, 265
steric stabilization, 74, 77
stopping procedures, live fish transport, 332
subsurface aerators, 161, 165
superficial velocity, 92
surface aerators, 161, 165
surface energy
teflon and mercury, 68
water, 68, 70
surfactants
 concentration, 71
critical micelle concentration (CMC), 71
definition, 70
hydrophobic molecules, 70
surfactant–particle combination, 80
Sverdrup–Munk–Bretsneider (SMB) method, waves, 255–6
SVI see sludge volume index (SVI)
swell, waves, 257
swirl separators, filters, 59–60
tanks, 224–37
dead fish, 390
design, 228–31
dual drain, 63–4, 237
internal transport, 313–14
live fish transport, 329–30
production units, 211–13, 224–38
transport, 313–14
temperature, monitoring, 341
throttling, pumps, 31
tidal current, 258
tilt graders, size grading, 318–19
TMP see transmembrane pressure (TMP)
total gas pressure (TGP), monitoring, 342–3
total solids (TS), particles, 50
total suspended solids (TSS)
definition, 40
particles, 50
tower outlets, water outlet, 235–7
transfer pipeline, water inlet, 376–7
transmembrane pressure (TMP)
definition, 100
trends, future, 5–6
triple way valves, pipes, 12
ultrafiltration (UF), 101–2
ultraviolet light (UV) disinfection
design, 123–4
dose, 125
function, 122
mode of action, 122–3
particles, problem, 125
specification, design, 124
vacuum, pipes, 9–10
vacuum–pressure pumps, 309, 310
vacuuming, screens, 52–5
valves, pipes, 11–12
velocity, water, monitoring, 344–7
velocity profile, closed production units, 231–2
ventilation, buildings, 364–6
video cameras, fish size, 350–352
volatile suspended solids (VSS), 40
voluntary grading, size grading, 326
voluntary movement, internal transport, 315–17, 385, 386
walls, buildings, 363–4
waste handling
 land-based farms, 4
 re-use, 194–5
water density, production units, 214–15
water flow
closed production units, 231–2
egg storage/hatching, 218
monitoring, 344–7
pumps, 28–31
re-use, 193–6
water transport, 15–16
water hammer, pipes, 9
water inlet
 aquaculture facilities, 368–74
 cleaning, 377
 closed production units, 233–4
 groundwater, 373–4
 lakes, 368–70
 land-based farms, 2–4
 pipes, 376–7
 ponds, 245
 production rooms, 381–2
 pumping stations, 374–6
 pumps, 374–6
 river, 370–373
 sea, 370, 371
 transfer pipeline, 376–7
water quality, 32–3
wells, 373–4
water intake/transfer, design, 367–8
water level, monitoring, 347–9
water outlet
 closed production units, 235–7
 flat outlets, 235–7
 ponds, 245–7
 production rooms, 382–3
 tower outlets, 235–7
 treatment, 383–4
 water quality, 33–5
water pressure, monitoring, 347
water quality, 32–6
 ammonia, 33
 effluent, 33–5
 escaped fish, 34
 gas concentrations, 33
 inlet water, 32–3
 instrumentation, 340–344
 interactions, 33
 microorganisms, 33–5
 monitoring, 340–344
 nutrients, 34
 outlet water, 33–5
 oxygen, 33
 particles, 33–5
 pathogens, 33–5
 pH, 33
 sea cages, 250–251
water supply
 ponds, 244
 production rooms, 381–2
water transport, 7–31
 energy loss, 16–18
 head loss, 16–19
 pipes, 7–15
 pumps, 19–31
 water flow, 15–16
water treatment, 35–6, 377–8
 land-based farms, 2–3
 production rooms, 383
water treatment process
 separation technology (see separation technology)
water velocity, monitoring, 344–7
watershed ponds, 241–3
Watson’s law, 121–2
waves
 breaking, 253–4
 calculations, 251–3, 279–80
 creating, 254–7
 diffraction, 253–4
 reflecting, 253–4
 sea cages, 251–7, 274–80
 SMB method, 255–6
 swell, 257
 terminology, 251
 wind, 254–7
wells, water inlet, 373–4
wind
 calculations, 280
 current, 258
 sea cages, 274–80
 waves, 254–7
working point, pumps, 27–8