CONTENTS

Foreword of the first edition

Preface

List of Abbreviations

1. **Basic Concepts and Theorems of Structural Analysis**
 1.1 Introduction
 1.1.1 Definitions
 1.1.2 Structural Analysis and Design
 1.2 General Concepts of Structural Analysis
 1.2.1 Main Steps of Structural Analysis
 1.2.2 Member Force and Displacements
 1.2.3 Member Flexibility and Stiffness Matrices
 1.3 Important Structural Theorems
 1.3.1 Work and Energy
 1.3.2 Castigliano’s Theorem
 1.3.3 Principle of Virtual Work
 1.3.4 Contragradient Principle
 1.3.5 Reciprocal Work Theorem
 Exercises

2. **Static Indeterminacy and Rigidity of Skeletal Structures**
 2.1 Introduction
 2.2 Mathematical Model of a Skeletal Structure
 2.3 Expansion Process for Determining the Degree of Statical Indeterminacy
 2.3.1 Classical Formulae
 2.3.2 A Unifying Function
CONTENTS

2.3.3 An Expansion Process 28
2.3.4 An Intersection Theorem 29
2.3.5 A Method for Determining the DSI of Structures 30

2.4 The DSI of Structures: Special Methods 33

2.5 Space Structures and their Planar Drawings 35
2.5.1 Admissible Drawing of a Space Structure 35
2.5.2 The DSI of Frames 37
2.5.3 The DSI of Space Trusses 38
2.5.4 A Mixed Planar drawing - Expansion Method 39

2.6 Rigidity of Structures 41

2.7 Rigidity of Planar Trusses 45
2.7.1 Complete Matching Method 45
2.7.2 Decomposition Method 47
2.7.3 Grid-form Trusses with Bracings 48

2.8 Connectivity and Rigidity 50
Exercises 50

3. Optimal Force Method of Structural Analysis 53

3.1 Introduction 53

3.2 Formulation of the Force Method 54
3.2.1 Equilibrium Equations 54
3.2.2 Member Flexibility Matrices 57
3.2.3 Explicit Method for Imposing Compatibility 60
3.2.4 Implicit Approach for Imposing Compatibility 62
3.2.5 Structural Flexibility Matrices 64
3.2.6 Computational Procedure 64
3.2.7 Optimal Force Method 69

3.3 Force Method for the Analysis of Frame Structures 70
3.3.1 Minimal and Optimal Cycle Bases 71
3.3.2 Selection of Minimal and Subminimal Cycle Bases 72
3.3.3 Examples 79
3.3.4 Optimal and Suboptimal Cycle Bases 81
3.3.5 Examples 84
3.3.6 An Improved Turn-Back Method for the Formation of Cycle Bases 87
3.3.7 Examples 88
3.3.8 An Algebraic Graph-Theoretical Method for Cycle Basis Selection 91
3.3.9 Examples 93

3.4 Conditioning of the Flexibility Matrices 97
3.4.1 Condition Number 98
3.4.2 Weighted Graph and an Admissible Member 101
3.4.3 Optimally Conditioned Cycle Bases 101
3.4.4 Formulation of the Conditioning Problem 103
3.4.5 Suboptimally Conditioned Cycle Bases 104
3.4.6 Examples 107
3.4.7 Formation of B_0 and B_1 matrices 109

3.5 Generalised Cycle Bases of a Graph 115
3.5.1 Definitions 115
3.5.2 Minimal and Optimal Generalized Cycle Bases 118

3.6 Force Method for the Analysis of Pin-jointed Planar Trusses 119
3.6.1 Associate Graphs for Selection of a Suboptimal GCB 119
3.6.2 Minimal GCB of a Graph 122
3.6.3 Selection of a Subminimal GCB: Practical Methods 123

3.7 Force Method of Analysis for General Structures 125
3.7.1 Flexibility Matrices of Finite Elements 125
3.7.2 Algebraic Methods 131

Exercises 139
4. Optimal Displacement Method of Structural Analysis

4.1 Introduction

4.2 Formulation

4.2.1 Coordinate Systems Transformation

4.2.2 Element Stiffness Matrix using Unit Displacement Method

4.2.3 Element Stiffness Matrix using Castigliano’s Theorem

4.2.4 Stiffness Matrix of a Structure

4.2.5 Stiffness Matrix of a Structure: An Algorithmic Approach

4.3 Transformation of Stiffness Matrices

4.3.1 Stiffness Matrix of a Bar Element

4.3.2 Stiffness Matrix of a Beam Element

4.4 Displacement Method of Analysis

4.4.1 Boundary Conditions

4.4.2 General Loading

4.5 Stiffness Matrix of a Finite Element

4.5.1 Stiffness Matrix of a Triangular Element

4.6 Computational Aspects of the Matrix Displacement Method

4.6.1 Algorithm

4.6.2 Example

4.7 Optimally Conditioned Cutset Bases

4.7.1 Mathematical Formulation of the Problem

4.7.2 Suboptimally Conditioned Cutset Bases

4.7.3 Algorithms

4.7.4 Example

Exercises

5. Ordering for Optimal Patterns of Structural Matrices: Graph Theory Methods

5.1 Introduction

5.2 Bandwidth Optimisation
5.3 Preliminaries 194
5.4 A Shortest Route Tree and its Properties 196
5.5 Nodal Ordering for Bandwidth Reduction 197
 5.5.1 A Good Starting Node 198
 5.5.2 Primary Nodal Decomposition 201
 5.5.3 Transversal P of an SRT 201
 5.5.4 Nodal Ordering 202
 5.5.5 Example 202
5.6 Finite Element Nodal Ordering for Bandwidth Optimisation 203
 5.6.1 Element Clique Graph Method (ECGM) 204
 5.6.2 Skeleton Graph Method (SGM) 205
 5.6.3 Element Star Graph Method (ESGM) 208
 5.6.4 Element Wheel Graph Method (EWGM) 209
 5.6.5 Partially Triangulated Graph Method (PTGM) 211
 5.6.6 Triangulated Graph Method (TGM) 212
 5.6.7 Natural Associate Graph Method (NAGM) 214
 5.6.8 Incidence Graph Method (IGM) 217
 5.6.9 Representative Graph Method (RGM) 218
 5.6.10 Discussion of the Analysis of Algorithms 220
 5.6.11 Computational Results 221
 5.6.12 Discussions 223
5.7 Finite Element Nodal Ordering for Profile Optimisation 224
 5.7.1 Introduction 224
 5.7.2 Graph Nodal Numbering for Profile Reduction 226
 5.7.3 Nodal Ordering with Element Clique Graph (NOECG) 230
 5.7.4 Nodal Ordering with Skeleton Graph (NOSG) 230
 5.7.5 Nodal Ordering with Element Star Graph (NOESG) 232
 5.7.6 Nodal Ordering with Element Wheel Graph (NOEWG) 232
 5.7.7 Nodal Ordering with Partially Triangulated Graph (NOPTG) 232
6. **Ordering for Optimal Patterns of Structural Matrices: Algebraic Graph Theory Methods**

6.1 Introduction

6.2 Adjacency Matrix of a Graph for Nodal Ordering
 - 6.2.1 Basic Concepts and Definition
 - 6.2.2 A Good Starting Node
 - 6.2.3 Primary Nodal Decomposition
 - 6.2.4 Transversal P of an SRT
 - 6.2.5 Nodal Ordering
 - 6.2.6 Example

6.3 Laplacian Matrix of a Graph for Nodal Ordering
 - 6.3.1 Basic Concepts and Definitions
 - 6.3.2 Nodal Numbering Algorithm
 - 6.3.3 Example

6.4 A Hybrid Method for Ordering
 - 6.4.1 Development of the Method
 - 6.4.2 Numerical Results
 - 6.4.3 Discussions

Exercises

7. ** Decomposition for Parallel Computing: Graph Theory Methods**

7.1 Introduction

7.2 Earlier Works on Partitioning
 - 7.2.1 Nested Dissection
 - 7.2.2 A modified Level-Tree Separator Algorithm

7.3 Substructuring for Parallel Analysis of Skeletal Structures
 - 7.3.1 Introduction
 - 7.3.2 Substructuring Displacement Method
 - 7.3.3 Methods of Substructuring
 - 7.3.4 Main Algorithm for Substructuring
7.3.5 Examples 301
7.3.6 Simplified Algorithm for Substructuring 304
7.3.7 Greedy Type Algorithm 305

7.4 Domain Decomposition for Finite Element Analysis 305
7.4.1 Introduction 306
7.4.2 A Graph-Based Method for Subdomaining 307
7.4.3 Renumbering of Decomposed Finite Element Models 309
7.4.4 Complexity Analysis of the Graph-Based Method 310
7.4.5 Computational Results of the Graph-Based Method 312
7.4.6 Discussions on the Graph-Based Method 315
7.4.7 Engineering-Based Method for Subdomaining 316
7.4.8 Genre Structure Algorithm 317
7.4.9 Example 320
7.4.10 Complexity Analysis of the Engineering-Based Method 323
7.4.11 Computational Results of the Engineering-Based Method 325
7.4.12 Discussions 328

7.5 Substructuring: Force Method 330
7.5.1 Algorithm for the Force Method Substructuring 330
7.5.2 Examples 333

7.6 Substructuring for Dynamic Analysis 336
7.6.1 Modal Analysis of a Substructure 336
7.6.2 Partitioning of the Transfer Matrix $\mathbf{H}(\omega)$ 338
7.6.3 Dynamic Equation of the Entire Structure 338
7.6.4 Examples 342

Exercises 346
8. Decomposition for Parallel Computing: Algebraic Graph Theory Methods 349

8.1 Introduction 349

8.2 Algebraic Graph Theory for Subdomaining 350
 8.2.1 Basic Definitions and Concepts 350
 8.2.2 Lanczos Method 354
 8.2.3 Recursive Spectral Bisection Partitioning Algorithm 359
 8.2.4 Recursive Spectral Sequential-Cut Partitioning Algorithm 362
 8.2.5 Recursive Spectral Two-way Partitioning Algorithm 362

8.3 Mixed Method for Subdomaining 363
 8.3.1 Introduction 363
 8.3.2 Mixed Method for Graph Bisection 364
 8.3.3 Examples 369
 8.3.4 Discussions 371

8.4 Spectral Bisection for Adaptive FEM; Weighted Graphs 371
 8.4.1 Basic Concepts 372
 8.4.2 Partitioning of Adaptive FE Meshes 374
 8.4.3 Computational Results 376

8.5 Spectral Trisection of Finite Element Models 378
 8.5.1 Criteria for Partitioning 378
 8.5.2 Weighted Incidence Graphs for Finite Element Models 380
 8.5.3 Graph Trisection Algorithm 381
 8.5.4 Numerical Results 387
 8.5.5 Discussions 389

8.6 Bisection of Finite Element Meshes using Ritz and Fiedler Vectors 389
 8.6.1 Definitions and Algorithms 390
 8.6.2 Graph Partitioning 390
 8.6.3 Determination of Pseudo-Peripheral Nodes 391
 8.6.4 Formation of an Approximate Fiedler Vector 391
 8.6.5 Graph Coarsening 392
8.6.6 Domain Decomposition using Ritz and Fiedler Vectors 393
8.6.7 Illustrative Example 393
8.6.8 Numerical Results 397
8.6.9 Discussions 401
Exercises 401

9. Decomposition and Nodal Ordering of Regular Structures 403

9.1 Introduction 403
9.2 Definitions of Different Graph Products 404
 9.2.1 Boolean Operations on Graphs 404
 9.2.2 Cartesian Product of Two Graphs 404
 9.2.3 Strong Cartesian Product of Two Graphs 407
 9.2.4 Direct Product of Two Graphs 409
9.3 Eigenvalues of Graphs Matrices for Different Products 410
 9.3.1 Kronecker Product 410
 9.3.2 Cartesian Product 411
 9.3.3 Strong Cartesian Product 414
 9.3.4 Direct Product 417
 9.3.5 Second Eigenvalues for Different Graph Products 419
9.4 Eigenvalues of \mathbf{A} and \mathbf{L} Matrices for Cycles and Paths 421
 9.4.1 Computing λ_2 for Laplacian of Regular Models 424
 9.4.2 Algorithm 425
9.5 Numerical Examples 426
 9.5.1 Examples for Cartesian Product 426
 9.5.2 Examples for Strong Cartesian Product 430
 9.5.3 Examples for Direct Product 431
9.6 Spectral Method for Profile Reduction 433
 9.6.1 Algorithm 433
 9.6.2 Examples 433
9.7 Non-Compact Extended p-Sum 435
Exercises 436

Appendix A Basic Concepts and Definitions of Graph Theory 437
A.1 Introduction 437
A.2 Basic Definitions 437
A.3 Vector Spaces Associated with a Graph 445
A.4 Matrices Associated with a Graph 448
A.5 Directed Graphs and their Matrices 456
A.6 Graphs Associated with Matrices 458
A.7 Planar Graphs: Euler’s Polyhedron Formula 459
A.8 Maximal Matching in Bipartite Graphs 462

Appendix B Greedy Algorithm and its Applications 465
B.1 Axiom System for a Matroid 465
B.2 Matroids Applied to Structural Mechanics 467
B.3 Cocycle Matroid of a Graph 470
B.4 Matroid for Null Basis of a Matrix 471
B.5 Combinatorial Optimisation: the Greedy Algorithm 472
B.6 Application of the Greedy Algorithm 473
B.7 Formation of Sparse Null Bases 474

References 477

Index 495

Index of Symbols 505