Contents

Preface XXI

List of Contributors XXVII

1 Lasers: Fundamentals, Types, and Operations 1
Subhash Chandra Singh, Haibo Zeng, Chunlei Guo, and Weiping Cai
1.1 Introduction of Lasers 1
1.1.1 Historical Development 1
1.1.2 Basic Construction and Principle of Lasing 2
1.1.3 Einstein Relations and Gain Coefficient 2
1.1.4 Multilevel Systems for Attaining Condition of Population Inversion 3
1.1.5 Threshold Gain Coefficient for Lasing 4
1.1.6 Optical Resonator 5
1.1.7 Laser Modes 7
1.2 Types of Laser and Their Operations 8
1.2.1 Solid Laser 8
1.2.1.1 Doped Insulator Laser 8
1.2.1.2 Semiconductor Laser 13
1.2.2 Gas Laser 15
1.2.2.1 Atomic Gas Laser; He:Ne Laser 16
1.2.2.2 Ion Laser: Argon Ion Laser 17
1.2.2.3 Molecular Laser 18
1.2.3 Liquid Laser 21
1.3 Methods of Producing EUV/VUV, X-Ray Laser Beams 22
1.3.1 Free Electron Lasers (FEL) 22
1.3.2 X-Ray Lasers 24
1.3.3 EUV/VUV Lasers through Higher Harmonic Generation 25
Contents

1.4 Properties of Laser Radiation 26
1.4.1 Monochromaticity 26
1.4.2 Directionality 28
1.4.3 Coherence 28
1.4.4 Brightness 29
1.4.5 Focusing of Laser Beam 29
1.5 Modification in Basic Laser Structure 30
1.5.1 Mode Locking 30
1.5.1.1 Basic Principle of Mode Locking 30
1.5.1.2 Mode Locking Techniques 31
1.5.2 Q-Switching 32
1.5.3 Pulse Shaping 33
References 34

2 Introduction of Materials and Architectures at the Nanoscale 35
Subhash Chandra Singh, Haibo Zeng, Chunlei Guo, Ram Gopal, and Weiping Cai
2.1 Origin and Historical Development 35
2.2 Introduction 36
2.3 Band Theory of Solids 37
2.4 Quantum Confinement 41
2.5 Defects and Imperfections 44
2.5.1 Point Defect 45
2.5.2 Line Defects 45
2.5.3 Planar Defects 45
2.5.4 Volume or Bulk Defects 47
2.6 Metal, Semiconductor, and Insulator Nanomaterials 48
2.6.1 Metal Nanoparticles and Their Size-/Shape-Dependent Properties 48
2.6.2 Semiconductor Nanoparticles and Their Size-Dependent Properties 52
2.6.3 Insulator Nanoparticles 53
2.7 Various Synthesis Methods of Nanoscale Materials 53
2.8 Various Techniques of Materials Characterization 54
2.8.1 Light Beam Characterization Techniques (200–1000 nm) 54
2.8.2 Infrared (IR) Characterization (1000–200 000 nm) 55
2.8.3 X-Ray-Beam-Based Characterization Methods 55
2.8.4 Electron-Beam-Based Characterization Methods 56
2.8.5 Nuclear Radiation and Particle-Based Spectroscopy 57
2.9 Self-Assembly and Induced Assembly, Aggregation, and Agglomeration of Nanoparticles 58
2.10 Applications of Lasers in Nanomaterial Synthesis, Modification, and Characterization 59
2.11 Summary and Future Prospects 64
References 65
Part I Nanomaterials: Laser Based Processing Techniques 67

3 Laser–Matter Interaction 69

3.1 High-Intensity Femtosecond Laser Interactions with Gases and Clusters 69
Alan M. Heins and Chunlei Guo

3.1.1 Introduction 69
3.1.2 Laser–Atom Interactions 69
3.1.3 Laser–Molecule Interactions 72
3.1.4 High-Pressure Atomic Physics 73
3.1.5 Strongly Coupled Plasmas 74
3.1.6 Clusters 74
3.1.7 Laser–Cluster Production 75
3.1.8 Laser–Cluster Interaction 76
3.1.9 Aerosol Monitoring 77
3.1.10 Atmospheric Effects 78
3.1.11 Conclusion and Outlook 79

References 80

3.2 Laser-Matter Interaction: Plasma and Nanomaterials Processing 85
Subhash Chandra Singh

3.2.1 Introduction 85
3.2.2 Influences of Laser Irradiance on Melting and Vaporization Processes 85
3.2.3 Influence of Laser Pulse Width and Pulse Shape 90
3.2.4 Influences of Laser Wavelength on Ablation Threshold and Plasma Parameters 94
3.2.5 Influences of Background Gas Pressure on the Plasma Characteristic and Morphology of Produced Materials 94
3.2.6 Double Pulse Laser Ablation 99
3.2.7 Electric- and Magnetic-Field-Assisted Laser Ablation 99
3.2.8 Effect of Laser Polarization 101
3.2.9 Conclusions 102
Acknowledgments 103
References 103

4 Nanomaterials: Laser-Based Processing in Gas Phase 105

4.1 Synthesis and Analysis of Nanostructured Thin Films Prepared by Laser Ablation of Metals in Vacuum 105
Rashid Ashirovich Ganeev

4.1.1 Introduction 105
4.1.2 Experimental Details 106
4.1.3 Results and Discussion 106
4.1.4 Conclusions

Acknowledgments 114

References 114

4.2 Synthesis of Nanostructures with Pulsed Laser Ablation in a Furnace 117

Rusen Yang and Jung-Il Hong

4.2.1 General Consideration for Pulsed Laser Deposition: an

4.2.1.1 One-Dimensional Nanostructure 117

4.2.2 Thermal-Assisted Pulsed Laser Deposition 120

4.2.2.1 Furnace System 122

4.2.2.2 Laser Ablation Setup 123

4.2.2.3 Experimental Procedure 124

4.2.3 Single-Crystalline Branched Zinc Phosphide Nanostructures with TAPLD 125

4.2.3.1 Properties of Zn$_3$P$_2$ 125

4.2.3.2 Zn$_3$P$_2$ Nanostructures 126

4.2.3.3 Properties and Devices Fabrication 130

4.2.3.4 Summary of the Zn$_3$P$_2$ Nanostructures 135

4.2.4 Aligned Ferrite Nanorods, NWs, and Nanobelts with the TAPLD Process 135

4.2.4.1 Introduction 135

4.2.4.2 Experimental Method 136

4.2.4.3 Results and Discussion 138

4.2.4.4 Summary of the Iron Oxide Nanostructures 140

References 142

4.3 ZnO Nanowire and Its Heterostructures Grown with Nanoparticle-Assisted Pulsed Laser Deposition 145

Bingqiang Cao, Ruiqian Guo, and Tatsuo Okada

4.3.1 Introduction 145

4.3.2 From 2D Nanowall to 1D Nanowire with PLD 147

4.3.3 NAPLD Nanowire Growth Mechanism 148

4.3.4 Controlled Nanowire Growth with NAPLD 152

4.3.4.1 Influence of Substrate–Target Distance 152

4.3.4.2 Influence of Laser Energy 153

4.3.4.3 Influence of Substrate Annealing 154

4.3.4.4 Influence of Wetting Layer 156

4.3.5 Growth of Nanowire Heterostructures Based on Low-Density Nanowires 159

4.3.6 Conclusions 162

Acknowledgments 164

References 164
4.4 Laser-Vaporization-Controlled Condensation for the Synthesis of
Semiconductor, Metallic, and Bimetallic Nanocrystals and Nanoparticle
Catalysts 167
M. Samy El- Shall
4.4.1 Introduction 167
4.4.2 Brief Overview of Nucleation and Growth from the Vapor Phase 168
4.4.3 The LVCC Method 170
4.4.4 Silicon Nanocrystals 173
4.4.5 Laser Alloying of Nanoparticles in the Vapor Phase 174
4.4.5.1 Gold–Silver Alloy Nanoparticles 177
4.4.5.2 Size Control by Laser Irradiation of Nanoparticles in Solutions 179
4.4.5.3 Gold–Palladium Alloy Nanoparticles 181
4.4.6 Intermetallic Nanoparticles 182
4.4.6.1 FeAl and NiAl Intermetallic Nanoparticles 183
4.4.7 Growth of Filaments and Treelike Assembly by Electric Field 186
4.4.8 Upconverting Doped Nanocrystals by the LVCC Method 190
4.4.9 Supported Nanoparticle Catalysts by the LVCC Method 194
4.4.10 Conclusion 197
Acknowledgments 197
References 198

5 Nanomaterials: Laser-Induced Nano/Microfabrications 203
5.1 Direct Femtosecond Laser Nanostructuring and Nanopatterning on
Metals 203
Anatoliy Vorobyev and Chunlei Guo
5.1.1 Introduction 203
5.1.2 Basic Principles of Surface Nanostructuring by Direct Femtosecond
Laser Ablation 204
5.1.3 Nanostructures 205
5.1.4 Femtosecond Laser-Induced Periodic Structures (Periodic
Nanogrooves) on Metals 207
5.1.5 Nanostructure-Textured Microstructures 208
5.1.5.1 Nanostructure-Textured Microgroove Structures 208
5.1.5.2 Nanostructure-Textured Columnar Microstructures 208
5.1.6 Single Nanoholes and Arrays of Nanoholes 209
5.1.7 Applications of Femtosecond Laser-Induced Surface Structures
on Metals 210
5.1.7.1 Modification of Optical Properties 210
5.1.7.2 Modification of Wetting Properties 211
5.1.7.3 Biomedical Applications 212
5.1.7.4 Other Applications 213
5.1.8 Summary 214
References 214
6.1.3.2 Laser-Induced Melting and Fragmentation of Liquid-Suspended Particles 387
6.1.3.3 Laser Irradiation of Metal Salts or Liquid Precursors 411
6.1.4 Applications of Nanomaterials Produced by Liquid–Phase Pulsed Laser Ablation/Irradiation 422
 6.1.4.1 Applications in PV Solar Cells 422
 6.1.4.2 In situ Functionalization for Biological Applications 423
 6.1.4.3 Semiconductor NPs as Fluorescent Markers 425
 6.1.4.4 Surface-Enhanced Raman Scattering (SERS) Active Substrates 425
 6.1.4.5 Nanofertilizer for Seed Germination and Growth Stimulation 426
 6.1.4.6 Other Applications 429
6.1.5 Conclusion and Future Prospects 429

Acknowledgments 429
References 430

6.2 Synthesis of Metal Compound Nanoparticles by Laser Ablation in Liquid 439
 Haibo Zeng, Shikuan Yang, and Weiping Cai
6.2.1 Introduction 439
6.2.2 Synthesis of Nanoparticles by LAL 441
 6.2.2.1 Oxide Nanoparticles 441
 6.2.2.2 Carbide Nanoparticles 447
 6.2.2.3 Nitride Nanoparticles 451
6.2.3 Conclusions 454
 Acknowledgments 454
 References 454

6.3 Synthesis of Fourth Group (C, Si, and Ge) Nanoparticles by Laser Ablation in Liquids 457
 Minghui Hong, Guoxin Chen, and Tow Chong Chong
6.3.1 Laser Ablation in Liquid (LAL) 457
 6.3.1.1 Introduction 457
 6.3.1.2 Dynamic Process 459
 6.3.1.3 Growth Mechanism of Nanoparticles by LAL 462
 6.3.1.4 LAL Process 464
 6.3.1.5 Nanoparticle Control 466
 6.3.1.6 Safety Matters 468
 6.3.2 Carbon Nanoparticles 468
 6.3.2.1 Diamond Nanoparticles 468
 6.3.2.2 Amorphous Carbon Nanoparticles 476
 6.3.2.3 Carbon Nanocrystals 479
 6.3.2.4 Synthesis of Other Carbon Nanomaterials by LAL 481
 6.3.3 Silicon Nanoparticles 486
 6.3.4 Germanium Nanoparticles 489
6.3.5 Conclusions 491
Acknowledgments 491
References 491

Part II Nanomaterials: Laser-Based Characterization Techniques 495

7 Raman Spectroscopy: Basics and Applications 497

7.1 Raman Spectroscopy and its Application in the Characterization of Semiconductor Devices 497
Patrick J. McNally
7.1.1 Introduction 497
7.1.2 Raman Scattering in Semiconductors 499
7.1.3 Micro-Raman Spectroscopy: Microscale Applications 501
7.1.4 Raman Spectroscopy Approaches the Nanoscale 502
7.1.5 Confocal Raman Spectroscopy – Applications to Future Sub-22 nm Node CMOS Technology 504
7.1.6 Conclusion 508
Acknowledgments 508
References 508

7.2 Effect of Particle Size Reduction on Raman Spectra 511
Vasant G. Sathe
7.2.1 Introduction 511
7.2.2 Nanoparticles and Phonon Confinement 512
7.2.3 Theoretical Considerations of Optical Phonon Confinement 515
7.2.3.1 Effect of Particle Size Distribution 518
7.2.3.2 Estimation of Dispersion Curve 518
7.2.3.3 Limitations of Phonon Confinement Model 519
7.2.4 Experimental Setup for Confocal Micro-Raman Spectroscopy 520
7.2.5 Case Studies of Raman Spectroscopy of Nanomaterials 520
7.2.5.1 Resonant Raman Spectroscopy of CdS and CdSe Nanoparticles 520
7.2.5.2 CeO₂ Nanostructures 522
7.2.5.3 ZnO Nanostructures 524
7.2.6 Effect of Laser Heating in Nanoparticles 524
7.2.6.1 ZnO Nanostructures 524
7.2.6.2 Effect of Laser Heating and Quantum Confinement in NiFe₂O₄ Nanostructures 525
7.2.7 Summary and Future Directions 531
Acknowledgments 532
References 532

8 Size Determination of Nanoparticles by Dynamic Light Scattering 535
Haruhisa Kato
8.1 Introduction 535
8.2 General Principles of DLS (Photon Correlation Spectroscopy) 537
8.3 Particle Size Standards Applied to DLS 542
8.4 Unique DLS Instruments 546
8.4.1 Single-Mode Fiber-Optic Dynamic Light Scattering 546
8.4.2 Photon Cross-Correlation Spectroscopy (PCCS) 547
8.5 Sample Characterization Using DLS Measurements of Nanoparticles 547
8.5.1 DLS Instruments 548
8.5.2 Size Determination of Particles in Suspension 548
8.5.3 Concept of Identifying and Analyzing Uncertainty in the Size of the Secondary Nanoparticles 549
8.5.3.1 Change in Size of the Secondary Nanoparticles during a Time Period 550
8.5.3.2 Difference in Size Determined by Different DLS Instruments 550
8.5.3.3 Difference in Size Determined by Different DLS Instruments 551
8.5.4 Calculation of Combined Uncertainty 551
8.6 Result of DLS Characterization 551
8.7 Conclusion 552
References 552

9 Photoluminescence/Fluorescence Spectroscopic Technique for Nanomaterials Characterizations 555

9.1 Application of Photoluminescence Spectroscopy in the Characterizations of Nanomaterials 555
Bingqiang Cao, Haibo Gong, Haibo Zeng, and Weiping Cai
9.1.1 Introduction 555
9.1.2 Experimental Techniques 557
9.1.3 Applications of General PL Spectroscopy on Nanomaterial Ensembles 559
9.1.3.1 Room-Temperature PL and PLE Spectroscopy 559
9.1.3.2 Temperature-Dependent PL Spectroscopy 561
9.1.3.3 Time-Resolved PL Spectroscopy 564
9.1.3.4 Excitation-Dependent PL Spectroscopy 565
9.1.4 Applications of MicroPL Spectroscopy on Single Nanomaterial 567
9.1.4.1 MicroPL Spectroscopy and Its Applications on Single Nanomaterial 567
9.1.4.2 CL Spectroscopy 567
9.1.4.3 Applications of CL in Single Nanomaterials 568
9.1.5 Conclusions 571
Acknowledgments 571
References 572

9.2 Fluorescence Correlation Spectroscopy of Nanomaterials 573
Kaushal Kumar, Luigi Sanguigno, Filippo Causa, and Paolo Antonio Netti
9.2.1 Introduction 573
9.2.1.1 What FCS Can Do for Nanoparticles? 576
9.2.1.2 Fluorescence Is a Tool for FCS 576

9.2.1.3 How Does FCS Work? 576

9.2.1.4 Basic Theory of FCS 577

9.2.2 Instrumentation 580

9.2.2.1 Components of the Setup 581

9.2.2.2 Construction of the Instrument 583

9.2.3 Instrument Optimization and Performing FCS Experiments 587

9.2.3.1 Aligning and Optimizing the Setup 587

9.2.3.2 Preparing the Sample for FCS 589

9.2.4 Some FCS Studies on Nanomaterial Characterizations 589

9.2.5 Conclusions and Future Prospects 593

Acknowledgments 593

References 594

9.3 Time-Resolved Photoluminescence Spectroscopy of Nanomaterials 597

Yashashchandra Dwivedi

9.3.1 Introduction 597

9.3.1.1 Example 601

9.3.2 Experimental Methods of TRPL 602

9.3.2.1 Pump-Probe Technique 604

9.3.2.2 Single-Photon Counting Technique 604

9.3.2.3 TRPL Imaging Technique 605

9.3.2.4 Nonlinear Optical Techniques 606

9.3.3 Case Study of ZnO 607

9.3.3.1 Origin of ZnO Photoluminescence 608

9.3.3.2 Time-Resolved Spectroscopy of ZnO 612

9.3.4 Concluding Remarks 617

References 617

10 Photoacoustic Spectroscopy and Its Applications in Characterization of Nanomaterials 621

Kaushal Kumar, Aditya Kumar Singh, and Avinash Chandra Pandey

10.1 Introduction 621

10.1.1 Theory of the Signal Generation 622

10.1.2 Optically Transparent Solids \((l_β > l)\) 625

10.1.3 Optically Opaque Solids \((l_β ≪ l)\) 626

10.1.4 Three-Dimensional Heat Flow Model 627

10.1.5 Thermal Diffusivity 627

10.1.6 Saturation Effect in PAS 628

10.1.7 Photoacoustic versus Absorption Spectroscopy 628

10.2 Instrumentation 629

10.2.1 Modulated Continuous Wave Source Spectrometer 630

10.2.1.1 Radiation Sources 630

10.2.1.2 Sample Cell 631
10.2.1.3 Modulation Techniques 633
10.2.1.4 Signal Detectors 634
10.2.1.5 Design of the Low-Cost Continuous Wave PA Spectrophotometer 634
10.2.2 Pulsed Photoacoustic Spectroscopy 639
10.3 Applications of PA Spectroscopy to the Nanomaterials 641
10.3.1 Determination of Optical Band Gap 641
10.3.2 Determination of Absolute Quantum Efficiency 644
10.3.3 Determination of Thermal Diffusivity/Conductivity 645
10.3.4 Photoacoustic Spectroscopy in Biology 646
10.3.5 Determination of Phase Transition with Temperature 648
References 648

11 Ultrafast Laser Spectroscopy of Nanomaterials 651
Subhash Chandra Singh and Yashashchandra Dwivedi
11.1 Introduction 651
11.2 Ultrafast Time-Resolved Spectroscopy 652
11.2.1 Transient Absorption Spectroscopy 653
11.2.2 Time-Resolved Ultrafast Fluorescence Spectroscopy 656
11.2.3 Time-Resolved Ultrafast Infrared Spectroscopy 660
11.2.4 Time-Resolved Ultrafast Raman Spectroscopy 663
11.2.5 Time-Resolved Ultrafast Faraday Rotation (TRFR) Spectroscopy 672
11.3 Other Multiple Wave Ultrafast Spectroscopic Techniques 673
11.3.1 Photon Echoes 673
11.3.2 Four-Wave Mixing 678
11.4 Measurement of Charge Carrier Dynamics 679
11.4.1 Effect of Size and Surface on Charge Carrier Dynamics in Semiconductor NPs 680
11.4.2 Effect of Excitation Power on Charge Carrier Dynamics: Picosecond Dynamics 682
11.4.3 Effects of Size and Surface on the Electron Relaxation Dynamics in Metal NPs 683
11.5 Conclusion and Future Prospects 684
Acknowledgments 685
References 685

12 Nonlinear Optical Characterization of Nanomaterials 693
Rashid Ashirovich Ganeev
12.1 Influence of Laser Ablation Parameters on the Optical and Nonlinear Optical Characteristics of Colloidal Solution of Semiconductor Nanoparticles 693
12.1.1 Introduction 693
12.1.2 Experimental Setup 694
12.1.3 Results and Discussion 696
12.1.3.1 Measurements of n_2 of Semiconductor Solutions 696
12.1.3.2 The Analysis of Self-Interaction Processes in Semiconductor Solutions 699
12.1.3.3 The Sign of Nonlinear Refraction of Semiconductor Nanoparticles 700
12.1.3.4 Nonlinear Absorption Measurements 702
12.2 High-Order Harmonic Generation in Silver-Nanoparticle-Contained Plasma 704
12.2.1 Introduction 704
12.2.2 Experimental Arrangements 705
12.2.3 Results and Discussion 706
12.3 Studies of Low- and High-Order Nonlinear Optical Properties of BaTiO₃ and SrTiO₃ Nanoparticles 714
12.3.1 Introduction 714
12.3.2 Experimental Arrangements 715
12.4 Results and Discussion 717
12.4.1 Structural Characterization of the Samples 717
12.4.2 Nonlinear Refraction and Nonlinear Absorption of BaTiO₃- and SrTiO₃-Nanoparticle-Contained Suspensions 719
12.5 High-Order Harmonic Generation from the BaTiO₃- and SrTiO₃-Nanoparticle-Contained Laser Plumes 723
12.6 Conclusions 725
Acknowledgments 727
References 727

13 Polarization and Space-Charge Profiling with Laser-Based Thermal Techniques 729
Axel Mellinger and Rajeev Singh
13.1 Introduction 729
13.1.1 Overview 729
13.1.2 History of Thermal Techniques for Polarization and Space-Charge Depth-Profiling 730
13.2 Theoretical Foundations and Data Analysis 732
13.2.1 One-Dimensional Heat Conduction 733
13.2.2 The One-Dimensional LIMM Equation and its Solutions 736
13.2.2.1 Scale Transformation 737
13.2.2.2 Tikhonov Regularization 739
13.2.2.3 Monte Carlo Technique 740
13.2.2.4 Other Techniques 741
13.2.3 Two- and Three-Dimensional Analysis 741
13.3 Experimental Techniques 743
13.3.1 Basic Principle 744
13.3.2 Laser Intensity Modulation Method (LIMM) 745
13.3.3 Thermal Pulses 746
13.3.4 Three-Dimensional Mapping 747
13.4 Applications 748