Index

a
- ablation threshold, laser wavelength influences on 94
- ablative piston effect 335
- absolute quantum efficiency determination 644–645
- absorbing film-assisted laser-induced forward transfer (AFA-LIFT) 237, 290
- absorbing polymer release layer systems 296–304
- absorption spectroscopy, photoacoustic versus 628–629
- active mode locking 31
- aerosol monitoring 77–78
- agglomeration of nanoparticles 58–59
- aggregation of nanoparticles 52, 58–59
- aligned ferrite nanorods with TAPLD 135–142, See also under thermal-assisted pulsed laser deposition (TAPLD)
- aliovalent substitution 45
- ammonium dihydorgen phosphate (ADP) 633
- Ammosov–Delone–Krainov (ADK) tunneling 71
- amorphous carbon nanoparticles synthesis by LAL 476–479
 - key parameters for 477
 - laser power intensity effect on NPs size 477
 - liquid effect on NP size 478
 - target material effect on bonding structures 477
- antigen and DNA, LIFT of 235
- architectures at nanoscale 35–65
- argon ion laser 17–18
 - physical construction 17
 - working of 17–18
- arrays of nanoholes 209–210
- aryltriazene photopolymers 298
- atmospheric effects 77–79
- atomic force microscopy (AFM) 232
- atomic gas laser 16–17
- atomic force microscopy (AFM) 156
- attosecond pulse generation 70
- autoconsistent confined interaction code (ACCIC) 327
- avalanche ionization 88
- avalanche photodiodes (APDs) 575
- avalanche threshold 87
- axial mode of laser 7

b
- backpressure 92
- `backscattering` process 261
- ballistic laser-assisted solid transfer (BLAST) 303
- band gap 39
- band theory of solids 37–41
 - band gap 39
 - conduction band (C_B) 39
 - direct band gap semiconductors 39
 - highest occupied molecular orbital (HOMO) 39
 - indirect band gap semiconductor materials 39
 - lowest unoccupied molecular orbital (LUMO) 39
 - valence band (V_B) 39
- BaTiO$_3$ nanoparticles 714–717
 - high-order harmonic generation from 723–725
 - low- and high-order nonlinear optical properties study of 714–717
 - – experimental arrangements 715–717
 - – structural characterization 717–719
BaTiO$_3$ nanoparticles (contd.)
- nonlinear refraction and nonlinear absorption of BaTiO$_3$-contained suspensions 719–723
biogenic materials, LIFT of 274–275
biological laser printing (BioLP™) 289
biology, photoacoustic spectroscopy in 646–648
blister-based laser-induced forward transfer (BB-LIFT) 251
blistering lift-off methods 304–305
Boltzmann constant 536, 579
bottom-up technology 53
Brillouin zone 513–514
Brownian motion of NPs 536
Brunauer, Emmett, and Teller (BET) method 535
bulk defects 47
carbide NPs synthesis by LAL 447–451
- components 447
- - ablated target 447
- - laser source 447
- - liquid medium 447
- - β-SiC quantum dots formation 448–449
carbon dioxide (CO$_2$) laser 19–20
carbon nanocrystals (CNTs)
- LIFT of 272
- - multiwall carbon nanotubes (MWCNTs) 272
- - synthesis by LAL 479–481, See also under carbon nanocrystals; diamond nanoparticles
- - carbon nanotubes 481
- - carbon nitride nanocrystals 481
- - in ethanol 479
- - in THF 479
carbon nanotubes (CNTs) 243, 272–273, 293, 648, 655, 660, 670, 676
carbon nitride nanocrystals 481
carrier-envelope phase (CEP) 70
CATGIXRF program 109
cathodoluminescence (CL) 160, 567–568
- applications on single nanomaterials 568–571
- - spatially resolved CL intensity mapping 569
cavitation nanospallation 206
cavitations bubble formation 339–343
characterization of nanomaterials, lasers application in 59–64
charge carrier dynamics
- - electron relaxation dynamics in metal NPs, size and surface effect on 683–684
- - excitation power effect on 682–683
- - measurement of 679–684
- - in semiconductor NPs, size and surface effect on 680–682
- - deep trap (DT) state 681
- - shallow trap (ST) state 681
chemical vapor deposition (CVD) 271, 439
chirped-pulse amplifier (CPA) lasers 78
chirping, 33n1
circulating liquid, liquid-PLA of solid with 385–386
classical nucleation theory (CNT) 168
cluster physics 73
clusters 74–75
- - laser–cluster interaction 76–77
- - laser–cluster production 75–76
coherence length (L_c) 29
coherence time (t_c) 29
coherent anti-Stoke’s Raman spectroscopy (CARS) 664, 666–670
columnar microstructures, nanostructure-textured 208–209
complementary metal oxide semiconductor (CMOS) 497
compound nanostructures of active metals, preparation 365–369
conduction band (C_B) 39
confinement process 322–324
confocal micro-Raman spectroscopy, experimental setup for 520
confocal Raman spectroscopy 504–508
- - confocal uRS, spatial resolution of 507
- - confocal UV Raman spectroscopy 504
- - for future sub-22 nm node CMOS technology application 504–508
contact etch stop layer (CESL) 497
continuous anodic oxidation technique (CAOT) 507
continuous wave (CW) lasers 59, 91
conversion 603
Coulomb explosion 73
Coulomb liquids 74
Coulombic explosion of nanoparticles, laser-induced 402–407
- - electron ejection through multiphoton ionization 402–403
- - electron ejection through photoelectric effect 403–405
- - electron ejection through thermionic emission 405–407
Index

d
1D confinement 41
3D confinement 41
Debye-Sherrer formula 526–527
defects 44–47
– extrinsic stacking fault (ESF) 47
– intrinsic stacking fault (ISF) 46
– line defects 45
– planar defects 45–47
– point defect 45
– volume or bulk defects 47
degenerate four wave mixing (DFWM) 659, 693
devices fabrication, LIFT for 255–306,
See also direct-write applications, LIFT techniques for
– device microfabrication 260
– direct-write transfer methods 258
– inkjet technology 258
– microcontact printing (μCP) 257
– screen printing (serigraphy) 257
– in three dimensions 256
diamond nanoparticles synthesis by LAL 468–476
– amorphous carbon nanoparticles 476–479, See also individual entry
– laser parameter effect 475
– liquid effect 475
– pressure–temperature phase diagram of carbon 475
– source material effect 468–475
diatomic materials 41
4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran (DCM) 21
diffuse reflectance 54
diffusion process 732
direct band gap semiconductors 39
direct femtosecond laser ablation 204–205
direct space to time pulse shaper (DST-PS) 33
direct-write applications, LIFT techniques for 261–276, See also modified LIFT methods
– enhanced donor systems for printing applications 262–263
– metal patterns 263–271
– organic materials 271–276
– traditional LIFT 261–276
direct-write transfer methods 258
dispersive Raman spectrometer 515
donor substrate 241
dopant energy levels in host matrices 9
doped insulator laser 8–9
– energy level diagrams for 10
doped nanocrystals upconversion by LVCC method 190–194
Doppler effect 538
double pulse laser ablation 99
drag model 96
dynamic light scattering (DLS) 54, 535–552
– general principles of 537–542, See also photon correlation spectroscopy
– NPs size determination by 535–552
– particle size standards applied to 542–546
– sample characterization using 547–551
– – instruments 548
– – ‘Marquardt/Contin’ or multimodal analytical procedure 549
– – size determination of particles in suspension 548–549
– single-mode fiber-optic dynamic light scattering 546–547
– uncertainty in secondary NPs size, identifying and analyzing 549–551, See also secondary NPs size uncertainty
– unique DLS instruments 546–547
dynamic process, in laser ablation in liquid 459–462
dynamic quenching 598
echo 673–678
effective absorption coefficient for laser ablation 273
Einstein relations and gain coefficient 2–3
elastic sphere model (ESM) 515
electric field, filaments growth and treelike assembly by 186–190
electrical-field-assisted LAL method 99–101, 489
– electric-field-assisted laser ablation in liquids (EFLALs) 347
– electric-field-assisted LP-PLA of solid target 380
electrical isolation, in fluorescence correlation spectroscopy 589
electromagnetic (EM) field 49
electron-beam-based characterization methods 56–57
electron diffraction (ED) pattern 173
electron ejection
– through multiphoton ionization 402
– through photoelectric effect 403–405
– through thermionic emission 405–407
electron–hole pairs (EHPs) 133
electron microscopes 56
electron–phonon relaxation time (τ_e) 286
electron relaxation dynamics in metal NPs, size and surface effect on 683–684
electronic plasma 90
electronic Raman scattering time-resolved measurement 668
elemental nanomaterials, LP-PLA of noble metals in liquids for preparation of 351–364
 target compound NPs preparation by reactive LP-PLA of solids 365
elemental NPs of active metals, preparation of 350–365
elemental spectroscopy for chemical analysis (ESCA) 56
ellipsometry 54
energy-dispersive X-ray spectroscopy (EDX) 56, 160, 268

Engines of Creation: The Coming Era of Nanotechnology 36
enhanced donor systems for printing applications 262–263
enhanced photoelectron emission from FLIPSS 213
excimer lasers 20–21
excitation-dependent PL spectroscopy 565–567
explosive ablation threshold 88
extended X-ray absorption fine structure (EXAFS) 55
external quantum efficiency (EQE) 422–423
extreme ultraviolet/vacuum ultraviolet (EUV/VUV) laser lights
 methods of producing 22–26
 free electron lasers (FELs) 22–24
 through higher harmonic generation 25–26
extrinsic stacking fault (ESF) 47

F
fast scanning optics, liquid-PLA of solid with 382–385
FeAl intermetallic nanoparticles 183–185
femtosecond laser ablation, surface nanostructuring by 204–205
femtosecond laser emitting 267
femtosecond laser-induced impulsive force 63
femtosecond laser-induced melt dynamics 206
femtosecond laser-induced periodic surface structure (FLIPSS) 207
 applications of 210–214
 biomedical applications 212–213
 enhanced photoelectron emission from FLIPSS 213
 in optical properties modification 210–211
 thermal radiation emission from incandescent light sources, modifying 214
 wetting properties modification 211–212
 in X-ray bursts generation 213
 on metals 207–208
femtosecond laser pulses (fs-LIFT) 242
femtosecond lasers, special applications using 303
defemtosecond stimulated Raman spectroscopy 668
defemtosecond transient absorption technique 655, 671
Fick’s law 733
field-effect transistors (FETs) 53
field emission gun (FEG) 129
first thermal diffusion length (μ) 638
flash-assisted rapid thermal process (fRTP) 506
fluorescence correlation spectroscopy (FCS)
 of nanomaterials 573–593
 basic theory of 577–580
 Gaussian–Gaussian–Lorentzian intensity profile 579
 molecule detection function (MDF) 579
 normalized autocorrelation function 578
 point spread function (PSF) 578
 total detected fluorescence F(t) 578
 components of the setup 581–587
 collection 582
 detector signal analysis 583
 excitation 581–582
 filters 582
 fluorescence detection 583
 focusing to a pinhole 582–583
 fluorescence as a tool for FCS 576
 instrumentation 580–587
 continuous wave excitation 581
 pulsed excitation 581
 instrument construction 583–587
 dichroic mirror (DM) 583
 emission filter (EM) 583
 neutral-density (ND) filters 583
 setup with microscope 584–585
 single-photon-counting detector (APD) 584
 instrument optimization and FCS experiments 587–589
– electrical isolation 589
– light isolation 588
– sample preparation 589
– setup, aligning and optimizing 587–593
– vibration isolation 588–589
– nanomaterial characterizations 589–593
– core–shell silica particles through
 multiphoton FCS 591
– for tetramethylrhodamine isothiocyanate
 (TRITC) dye 591
– sodium dodecyl sulfate (SDS) in 590
– prism spectrometer 586–587
– desired wavelength range detection 586
– prism-based fluorescence cross-correlation
 spectrometer (FCCS) 585–586
– tasks of FCS 576
– working 576–577
– fluorescence 21
– fluoroolcoholpolysiloxane (SFXA) 278
– Fourier transform infrared (FTIR) 504
– Fourier transform pulse shaper (FT-PS) 33
– Fourier-transformed-infrared (FT-IR) spectra
 443
– fourth group NPs synthesis by LAL
 457–491, See also carbon nanocrystals:
 synthesis by LAL; germanium NPs
 synthesis by LAL; silicon NPs synthesis by
 LAL
– four-wave mixing 678–679
– free electron lasers (FELs) 22–24
 – brilliance 24
 – coherence 24
 – pulse duration 24
 – tunability 23
– Frenkel defect 45
– front-end processing (FEP) metrologies 497

g
– gain coefficient 2–3
– gas dynamic laser 20
– gas flow laser 20
– gas laser 15–21
 – atomic gas laser 16–17
 – carbon dioxide (CO2) laser 19–20
 – construction of gas laser system 16
 – excimer lasers 20–21
 – gas dynamic laser 20
 – gas flow laser 20
 – He–Ne laser 16–17
 – ion laser, argon ion laser 17–18
 – molecular laser 18–21
 – nitrogen laser 20
 – sealed tube laser 20
– self-terminating 20
– transversally excited atmospheric (TEA)
 laser 20
– gas phase, advantages of liquid-phase laser
 ablation over 319
– Gaussian–Gaussian–Lorentzian intensity
 profile 579
– Gaussian-shaped energy profile 267
– germanium NPs synthesis by LAL 489–491
– electrical-field-assisted LAL method 489
– giant pulse formation, See Q-switching
 gold–palladium alloy nanoparticles
 181–182
– TEM of 181
– XRD data of 182
– gold–silver nanostructures 176
 – gold–silver alloy nanoparticles 177–179
– Gruneisen parameter 529
– guide to the expression of uncertainty in
 measurement (GUM) 549, 551

h
– Hall, R. N. 1
– hematite, electron microscope
 characterization of 138–140
– He–Ne laser 16–17
– Hertz–Knudsen equation 330
– heterojunction 14
– high harmonic cutoff 25
– high harmonic generation (HHG) 70
– high-intensity femtosecond laser interactions
 with gases and clusters 69–80
 – aerosol monitoring 77–78
 – atmospheric effects 78–79
 – clusters 74–75
 – high-pressure atomic physics 73
 – laser–atom interactions 69–71
 – laser–cluster interaction 76–77
 – laser–cluster production 75–76
 – laser–molecule interactions 72–73
 – strongly coupled plasmas 74
– high-order harmonic generation (HHG)
 704–714
 – in silver-nanoparticle-contained plasma
 704–714
 – Al powder medium 707–710
 – coherence length and the length of the
 medium 712
 – colloidal silver 707
 – experimental arrangements 705–706
 – harmonic efficiency determination 713
 – low-order harmonic generation,
 comparison 711
 – structural changes during 713
Index

high-pressure atomic physics 73
high-resolution transmission electron microscope (HRTEM) 56, 174, 442–454
high-resolution X-ray diffraction (HRXRD) 505
high temperature, high pressure, and high density (HTHPHD) 318
higher harmonic generation (HHG), EUV/VUV lasers through 25–26
highest occupied molecular orbital (HOMO) 39
historical development of nanoscale materials 35–36
hole traps 47
Holonyak, Nick 1
homodyne correlation function 540
homodyne detection method 538
homojunction 14
horseradish peroxidase (HRP) 275
hydrodynamic phenomenon 92

i
idler photons 603
imperfections 44–47
indirect PA cells 633
indium–tin oxide (ITO)-coated glass substrate 272
induced assembly of nanoparticles 58–59
inductive, capacitive, and resistive (LCR) circuit 10
infrared (IR) characterization (1000–200 000 nm) 55
inkjet technology 258
inorganic materials as absorbing release layers 285–286
instrument response function (IRF) 603
insulator nanomaterials 53
intermetallic nanoparticles 182–185
– FeAl intermetallic nanoparticles 183–185
– NiAl intermetallic nanoparticles 183–185
internal conversion 597
intersystem crossing 597
intrinsic stacking fault (ISF) 46
ion laser 17–18
iron oxide nanostructures 135–142, See also under thermal-assisted pulsed laser deposition (TAPLD)
isovalent substitution 45
I–V curves 57

k
Kastler, Alfred 1
Kerr effect
– optical Kerr gate (OKG) 658–659
– time-resolved fluorescence based on 659
Kerr lens mode-locked (KLM) 1064 nm laser 284
Kramers–Kronig relationship 701
Kröger Vink notation 609

l
Ladenburg, R.W. 1
Lamb, W.C. 1
laser ablation in liquid (LAL) 439–454, 457–468, See also fourth group (C, Si, and Ge) NPs synthesis by LAL; metal compound nanoparticles synthesis by LAL
– dynamic process 459–462
– experimental setup 458
– laser plasma plume formation induced by 459
– laser wavelength used for 461
– liquid layer thickness role in 461
– nanoparticle control 466–468
– NPs growth mechanism 462–464
– audible acoustic waves generation 465
– bubble formation 462
– in situ monitoring of 466
– liquid splashing, reduction 464–465
– reactive quenching process 463
– solid target in liquid 462
– time-resolved evolution of transmission during 463
– ‘water hammer’ effect 464
– physical and chemical aspects of 344–345
– safety matters 468
laser-ablated inductively coupled plasma mass spectroscopy (LA-ICPMS) 64
laser ablation of metals in vacuum 105–114
– nanostructured thin films prepared by, synthesis and analysis 105–114
– experimental details 106
laser ablation transfer (LAT) 249, 280
– mechanism of 282
– with a metallic release layer 282–285
laser ablation under liquid confinement 321–322
– basic characteristics of 321–322
laser alloying of nanoparticles in vapor phase 174–182
– gold–palladium alloy nanoparticles 181–182
– gold–silver nanostructures 176
– in solutions, size control by laser irradiation 179–181
laser–atom interactions 69–71
laser-based processing in liquid media 317–491, See also under liquid media
laser-based thermal techniques 729–754
– experimental techniques 743–748
 – basic principle 744–745
 – thermal pulses 746–747
 – three-dimensional mapping 747–748
 – one-dimensional heat conduction 733–736
 – Bauer and Ploss regimes 735
– one-dimensional LIMM equation and its solutions 736–741
 – Monte Carlo technique 740–741
 – scale transformation 737–738
 – Tikhonov regularization 737, 739–740
– polarization and space-charge profiling with 729–754
 – polymer-dispersed liquid crystals (PDLCs) 752–753
 – polyvinylidene fluoride and its copolymers films 748–749
 – PVDF–TrFE coaxial sensor cables 749–752
– space-charge electrets 752
– theoretical foundations and data analysis 733–743
– thermal polarization probing 733
 – frequency-domain approach 733
 – time-domain approach 733
 – two- and three-dimensional analysis 741–743
laser chemical vapor deposition (LCVD) 59, 241
 – pyrolytic LCVD 61
laser decal transfer 270
laser direct-write (LDW) 241
laser-excited X-ray spectroscopy (LEXS) 77
laser heating effect on nanoparticles 524–531
 – NiFe$_2$O$_4$ nanostructures 525–531
 – ZnO nanostructures 524–525
laser-induced breakdown spectroscopy (LIBS) 64, 77
laser-induced chemical vapor deposition (LCVD) 265
laser-induced electron diffraction (LIED) 71
laser-induced forward transfer (LIFT) 219–237, See also micro-nanomaterials transfer on substrate
 – antigen and DNA 235
 – applications 235–237
 – for devices fabrication 255–306, See also devices fabrication, LIFT for; modified LIFT methods
 – for direct write of patterns in film form 219–237
 – principle and method 219–221
 – of materials 221–235
 – aluminum 224
 – chromium 226–228
 – copper 221–222
 – diamond 229
 – gold 222–224
 – metals and single element 221–229
 – palladium 228–229
 – titanium 225–226
 – tungsten 224–225
 – oxides 229–234, See also oxides, LIFT of
 – photopolymers 234–235
laser-induced local transfer (LILT) 292
laser-induced melting/vaporization of nanoparticles 389–402
 – improved two temperature model (Werner and Hashimoto) 398
 – Insawa et al. model 391–395
 – modified two temperature model (Giammanco et al.) 397–398
 – Takami et al. model 389–391
 – two step size reduction model (Singh et al.) 395
 – two temperature model (Hodak et al.) 395
laser-induced melting/vaporization/fragmentation in alloy and core/shell NPs preparation 409–411
laser-induced molecular implantation technique (LIMIT) 280
laser-induced nano/microfabrications 203–306
 – arrays of nanoholes 209–210
 – FLIPSS, on metals 207–208
 – nanostructures 205–207
 – cavitation nanospallation 206
 – femtosecond laser-induced melt dynamics 206
 – mechanisms 206
 – redeposition of ablated species 206
 – nanostructure-textured microstructures 208–209
 – microgroove structures 208
 – single nanoholes 209–210
 – surface nanostructuring by direct femtosecond laser ablation 204–205
laser-induced periodic surface structures (LIPSSs) 203
laser-induced solid etching (LISE) 304
laser-induced thermal imaging (LITI) 292–295
laser-induced thermal spray printing (LITSP) 289
laser-induced ultrasonics 647
laser intensity modulation method (LIMM) 731, 745–746
– one-dimensional LIMM equation and its solutions 736–741
– – Monte Carlo technique 740–741
– – scale transformation 737–738
– – Tikhonov regularization 737, 739–740
laser irradiation of metal salts or liquid precursors 411–422
laser–matter interaction 85–103, See also high-intensity femtosecond laser interactions
– plasma and nanomaterials processing 85–103, See also individual entry
laser molecular implantation (LMI) 268, 279–280
laser–molecule interactions 72–73
laser nanosurgery of defects 62
laser plasma channeling 88
laser polarization effect 101–102
laser propulsion transfer 285
laser radiation properties 26–30
– brightness 29
– coherence 28–29
– coherence length (L_c) 29
– coherence time (t_c) 29
– directionality 28
– focusing of laser beam 29–30
– monochromaticity 26–28
– spatially coherent beam 29
– wavelength range and active media 27
laser Raman spectroscopy 62
laser structure, modification in 30–34
– mode locking 30–32
– – active mode locking 31
– – passive mode locking 32
– – principle of 30–31
– – techniques 31–32
– optical design 33
– pulse shaping 33–34
– Q-switching 32–33
laser thermal transfer 284
laser-vaporization-controlled condensation (LVCC) 59, 167–198, 317, See also intermetallic nanoparticles; laser alloying of nanoparticles in vapor phase
– filaments growth and treelike assembly by electric field 186–190
– metallic, and bimetallic nanocrystals synthesis 167–198
– nanoparticle catalysts synthesis 167–198
– nucleation and growth from vapor phase 168–170
– for semiconductor synthesis 167–198
– laser vaporization with controlled condensation (LVCC) 168, 170–173
– doped nanocrystals upconversion by 190–194
– experimental setup for 171
– supported nanoparticle catalysts by 194–197
lasers
– application
– – in nanomaterial synthesis, modification, and characterization 59–64
– basic construction 2
– Einstein relations and gain coefficient 2–3
– fundamentals 1–34
– geometry of laser cavity 5
– historical development 1
– modes 7–8
– operations 1–34
– optical resonator 5–7
– principle of lasing 2
– threshold gain coefficient for lasing 4
– types and their operations 8–22, See also gas laser; liquid laser; semiconductor laser; solid laser
layered donor systems with intermediate absorbing films 280–305
– absorbing polymer release layer systems 296–304
– – DRL LIFT approach 304
– – femtosecond LIFT approach 303
– – gadolinium gallium oxide 301
– – shadowgraphy 301
– – triazene photopolymers functionality as DRL 302
– ytterbium-doped yttrium aluminium oxide 301
– blistering lift-off methods 304–305
– inorganic materials as absorbing release layers 285–286
– laser propulsion transfer 285
– laser thermal transfer 284
– metal films as absorbing release layers 286–292
<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>absorbing film-assisted laser-induced forward transfer (AFA-LIFT)</td>
<td>290</td>
</tr>
<tr>
<td>biological laser printing (BioLP™)</td>
<td>289</td>
</tr>
<tr>
<td>laser-induced local transfer (LILT)</td>
<td>292</td>
</tr>
<tr>
<td>light-hydraulic effect (LHE)</td>
<td>289</td>
</tr>
<tr>
<td>two-photon polymerization (2PP) technique</td>
<td>290</td>
</tr>
<tr>
<td>metal nanoparticle absorbers</td>
<td>295–296</td>
</tr>
<tr>
<td>light beam characterization techniques (200–1000 nm)</td>
<td>54–55</td>
</tr>
<tr>
<td>light detection and ranging (LIDAR)</td>
<td>79</td>
</tr>
<tr>
<td>light dynamic scattering (LDS)</td>
<td>64</td>
</tr>
<tr>
<td>light-emitting diode (LED) device</td>
<td>13, 53, 131, 268, 439</td>
</tr>
<tr>
<td>light-emitting polymers (LEPs)</td>
<td>295</td>
</tr>
<tr>
<td>light-hydraulic effect (LHE)</td>
<td>289</td>
</tr>
<tr>
<td>light isolation, in fluorescence correlation spectroscopy</td>
<td>588</td>
</tr>
<tr>
<td>light scattering intensity autocorrelation function</td>
<td>540</td>
</tr>
<tr>
<td>light-to-heat conversion (LTHC)</td>
<td>262</td>
</tr>
<tr>
<td>line defects</td>
<td>45</td>
</tr>
<tr>
<td>liquid-assisted pulsed laser ablation (LA-PLA)/irradiation for generation of nanoparticles</td>
<td>317–438</td>
</tr>
<tr>
<td>advantages over gas phase</td>
<td>319</td>
</tr>
<tr>
<td>classification, on the basis of target characteristics</td>
<td>319–422</td>
</tr>
<tr>
<td>liquid-phase laser ablation of metal salts/organic precursors</td>
<td>320</td>
</tr>
<tr>
<td>liquid-phase laser ablation of solid bulk target materials</td>
<td>320</td>
</tr>
<tr>
<td>liquid-phase laser ablation of solid bulk target materials</td>
<td>320–387</td>
</tr>
<tr>
<td>liquid-phase laser ablation of suspended nano/microparticles</td>
<td>320</td>
</tr>
<tr>
<td>liquid-suspended particles, laser-induced melting and fragmentation of</td>
<td>387–422</td>
</tr>
<tr>
<td>See also individual entry</td>
<td></td>
</tr>
<tr>
<td>liquid laser</td>
<td>21–22</td>
</tr>
<tr>
<td>liquid media, laser-based processing in</td>
<td>317–491</td>
</tr>
<tr>
<td>liquid-assisted pulsed laser ablation (LA-PLA)/irradiation for generation of nanoparticles</td>
<td>317–438</td>
</tr>
<tr>
<td>See also individual entry</td>
<td></td>
</tr>
<tr>
<td>liquid-phase laser ablation of metal salts/organic precursors</td>
<td>320</td>
</tr>
<tr>
<td>liquid-phase laser ablation of solid bulk target materials</td>
<td>320–387</td>
</tr>
<tr>
<td>liquid-phase laser ablation of suspended nano/microparticles</td>
<td>320</td>
</tr>
<tr>
<td>liquid-suspended particles, laser-induced melting and fragmentation of</td>
<td>387–422</td>
</tr>
<tr>
<td>alloy and core/shell NPs preparation</td>
<td>409–411</td>
</tr>
<tr>
<td>laser-induced melting/vaporization/fragmentation in</td>
<td>409–411</td>
</tr>
<tr>
<td>coulombic explosion of nanoparticles, laser-induced</td>
<td>402–407</td>
</tr>
<tr>
<td>field enhancement near curved surfaces</td>
<td>407–409</td>
</tr>
<tr>
<td>laser-induced melting/vaporization</td>
<td>389–398</td>
</tr>
<tr>
<td>laser irradiation of metal salts or liquid precursors</td>
<td>411–422</td>
</tr>
<tr>
<td>photocatalytic deposition</td>
<td>421–422</td>
</tr>
<tr>
<td>photochemical synthesis</td>
<td>411–421</td>
</tr>
<tr>
<td>mechanisms</td>
<td>388</td>
</tr>
<tr>
<td>‘liquid transfer vehicle’</td>
<td>278</td>
</tr>
<tr>
<td>local oxidation of silicon (LOCOS)</td>
<td>501–502</td>
</tr>
<tr>
<td>longitudinal optical (LO) phonon</td>
<td>669</td>
</tr>
</tbody>
</table>
Index

longitudinal–transverse splitting frequency 601
low-energy electron diffraction (LEED) 57
low-frequency phonons 514
low-pressure differential mobility analyzer (LP-DMA) 172
low-voltage electron microscope (LVEM) 56
lowest unoccupied molecular orbital (LUMO) 39
luminescence quenching 654

magnetite, electron microscope characterization of 138–140
Maiman, Theodore 1
‘Marquardt/Contin’ or multimodal analytical procedure 549
materials at nanoscale 35–65
− band theory of solids 37–41
− historical development 35–36
− origin 35–36
materials characterization techniques 54–58
− electron-beam-based characterization methods 56–57
− elemental spectroscopy for chemical analysis (ESCA) 56
− extended X-ray absorption fine structure (EXAFS) 55
− infrared (IR) characterization (1000–200 000 nm) 55
− light beam characterization techniques (200–1000 nm) 54–55
− near-edge X-ray absorption fine structure (NEXAFS) 55
− nuclear radiation and particle-based spectroscopy 57–58
− X-ray absorption near-edge structure (XANES) 55
− X-ray photoelectron spectroscopy (XPS) 55
− X-ray-beam-based characterization methods 55–56
matrix-assisted pulsed laser evaporation (MAPLE) 251, 259
matrix-assisted pulsed laser evaporation direct-write (MAPLE-DW) study 236–237, 270–271, 277–279
− working principle of 277
Maxwell–Boltzmann distribution 614
mean free path 404
mechanically sensitive materials, transfer of 248–251
melting, laser irradiance influence on 85–90
metal compound nanoparticles synthesis by LAL 439–454
− active metal oxides and hydroxides 440
− carbide NPs 447–451
− nitride nanoparticles 451–453
− oxide nanoparticles 441–447
− FeO NPs characterizations 446
− mechanism 443
− TiO₂ NPs 446–447
− ZnO–Zn composite NPs formation 444
metal compound nanostructures preparation of, LP-PLA of active metals for 370–379
− PLA of Al in liquids 377–379
− PLA of Zn and Cd in liquids 373–377
metal films as absorbing release layers 286–292
metal nanomaterials 48–53
− absorbers 295–296
− electron relaxation dynamics in 683–684
− inks, LIFT of 269
− size-/shape-dependent properties 48–52
− metal oxide semiconductor field-effect transistor (MOSFET) 497
− linear region for I_D S−V_D S operation 497–498
metal patterns, LIFT of 263–271
− gold fringe patterns 266–267
− laser decal transfer 270
− metal nanoparticle inks 269
− silver nanoparticle (Ag NP) links 270
metal/elemental and metal/compound nanomaterials by LP-PLA of solid targets 347–380
− compound nanostructures of active metals, preparation 365–369
− elemental nanomaterials, LP-PLA of noble metals in liquids for preparation of 351–364
− elemental NPs of active metals, preparation of 350–365
− elemental NPs of active metals, preparation of 350–365
− elemental NPs of noble metals, preparation 348–350
− metal/elemental NPs by nonreactive LP-PLA of solids 347–348
− noble metals, reactive PLA for 369–380
metallic and bimetallic nanocrystals synthesis, laser-vaporization-controlled condensation for 167–198
metallic release layer, laser ablation transfer (LAT) with 282–285
- metals, LIFT of 221–229
 - aluminum 224
 - chromium 226–228
 - copper 221–222
 - diamond 229
 - gold 222–224
 - palladium 228–229
 - titanium 225–226
 - tungsten 224–225
- metal-to-ligand charge transfer (MLCT) 669
- 2-[2-(2-methoxyethoxy)ethoxy]acetic acid (MEEAA) 425
- Michaelis–Menten model 276
- microchannel plate (MCP) detectors 73
- microcontact printing (μCP) 257
- microelectromechanical systems (MEMS) 241, 305
- microgroove structures, nanostructure-textured 208
- micro-nanomaterials transfer on substrate 241–251
 - blister-based laser-induced forward transfer (BB-LIFT) 251
 - donor substrate 241
 - femtosecond laser pulses (fs-LIFT) 242
 - mechanically sensitive materials, transfer of 248–251
 - metallic materials transfer 242
 - prepatterned donor substrate, LIFT process with 249
 - spatial resolution of LIFT process 243–248, See also individual entry
 - thermally sensitive materials, transfer of 248–251
 - ultrashort picosecond laser pulses (ps-LIFT) 242
- microPL spectroscopy 567–571
 - applications on single nanomaterial 567–571
 - cathodoluminescence (CL) 567–568
 - micro-Raman spectroscopy 501–502
 - microscale applications 501–502
 - under bump metallization (UBM) 502
 - mode locking 30–32
 - modes of laser 7–8, 28
 - axial 7
 - transverse electromagnetic (TEM) modes 8
 - uniphase mode 8
 - transverse 7–8
- modification of nanomaterials, lasers
 - application in 59–64
- modified LIFT methods 277–305
 - laser molecular implantation (LMI) 279–280
 - layered donor systems with intermediate absorbing films 280–305, See also individual entry
 - MAPLE-DW 277–279
- modified metal-film-assisted LIFT technique 272
- modulated continuous wave source spectrometer 630–639
 - incoherent sources of 630
 - low-cost, design of 634–639
 - accessories 634
 - conventional photoacoustic cell for wavelength versus PA intensity spectra 635–636
 - for frequency versus PA intensity spectra 637–639
 - open photoacoustic cell (OPC) configuration 636–637
 - performance studies 639
 - thermal diffusivity measurements 638
 - modulation techniques 633–634
 - radiation sources 630–631
 - signal detectors 634
 - molecular laser 18–21
 - molecule detection function (MDF) 579
 - molten globules 321
 - monoatomic materials 41
 - monochromaticity 26–28
 - monodisperse dilute particle suspension 540
 - monomodal disperse particle solution 541
 - Monte Carlo technique 740–741
 - Moore’s law 22
 - Mössbauer (γ-ray) spectroscopy 57
 - multilevel systems for attaining population inversion condition 3–4
 - multimodal-size-distributed particle dispersion 541
 - multiphoton ionization, electron ejection through 402
 - multiple laser beams, liquid-PLA of solid with 386–387
 - multiple wave ultrafast spectroscopic techniques 673–679
 - four-wave mixing 678–679
 - photon echoes 673–678
 - multiwall carbon nanotubes (MWCNTs) 272
nanobelts with TAPLD 135–142, See also under thermal-assisted pulsed laser deposition (TAPLD)
nanocrystal quantum dots (NCQDs) 299
nanocrystal quantum dots (NQDs) 250
nanodroplet LIFT 246
nanofertilizers 426–429
nanomaterial-enabled laser transfer (NELT) 295
nanoparticle-assisted pulsed laser deposition (NAPLD) 59, 85, 145–164, 317, See also under zinc oxide (ZnO) nanowires
nanoparticle catalysts, synthesis, laser-vaporization-controlled condensation for 167–198
Nd:YAG laser construction and operation 11–13
– assembly of various components in near-edge X-ray absorption fine structure (NEXAFS) 55
near-field nanomachining techniques 203
neuron beam scattering spectroscopy 57
NiAl intermetallic nanoparticles 183–185
nitride NPs synthesis by LAL 451–453
nitrogen laser 20
noble metals, reactive PLA for 369–380
nonlinear absorption measurements 702–704
nonlinear optical characterization of nanomaterials 693–727, See also high-order harmonic generation (HHG)
– experimental setup 694–696
– N₂ measurements of semiconductor solutions 696–699
– intensity-dependent variation of nonlinear refractive index 698
– nonlinear absorption measurements 702–704
– nonlinear refraction of semiconductor nanoparticles 700–702
nonlinear optical techniques 566, 606–607
nonlinear refraction of semiconductor nanoparticles 700–702
nonradiative recombination 600
nonsequential double ionization (NSDI) 71
nonsequential ionization (NSI) 70
normalized autocorrelation function 578
nuclear magnetic resonance (NMR) 57
nuclear radiation and particle-based spectroscopy 57–58
open photoacoustic cell (OPC) configuration 636–637
optical band gap determination 641–644
optical dephasing 674
optical Kerr gate (OKG) 658–659
optical oscillator 5
optical phonon confinement 515–519
– basic model of 515
– dispersion curve estimation 518–519
– limitations of 519
– longitudinal optical (LO) phonons 516
– particle size distribution effect 518
– theoretical considerations of 515–519
– transverse optical (TO) phonons 516
optical resonator 5–7
optical vapor breakdown 88
optoacoustic spectroscopy, See photoacoustic spectroscopy (PAS)
organic field-effect transistors (OFETs) 257
organic light-emitting diodes (OLEDs) 250, 258
organic materials, LIFT of 271–276
– biogenic materials 274
– carbon nanotubes 272
– modified metal-film-assisted LIFT technique 272
– polymer films 273
– single-pulse ablation processes 273
– small organic molecules 271–272
origin of nanoscale materials 35–36
oxide nanoparticles synthesis by LAL 441–447
oxides, LIFT of 229–234
– Bi₄Sr₂Ca₃Cu₄O₁₀ 229–231
– In₂O₃ 231
– Nd:YAG laser 230
– TiO₂–Au 233–234
– V₂O₅ 231–233
– YBCO 229–231
particle size standards applied to DLS 542–546
passive mode locking 32
peak-fitting technique 503
periodic nanogrooves 207–208
phase shift 602
phase-locked laser 30
phonon confinement 512–515, See also optical phonon confinement
– phonon confinement model (PCM) 515
phonons 500
photo ablation therapy (PAT) 62, 422
photoacoustic spectroscopy (PAS) 621–648
– applications to nanomaterials 641–648
 – absolute quantum efficiency determination 644–645
 – optical band gap determination 641–644
 – phase transition with temperature determination 648
 – thermal diffusivity/conductivity determination 645–646
– in biology 646–648
– indirect PA cells 633
– instrumentation 629–641
 – data acquisition system 629
 – means of detecting the acoustic signal 629
 – periodic (modulated or pulsed) source of illumination 629
 – sample chamber 629
 – modulated continuous wave source spectrometer 630–639, See also individual entry
– in nanomaterials characterization 621–648
– pulsed photoacoustic spectroscopy 639–541
– sample cell, criteria 631–632
– saturation effect in 628
– signal generation theory 622–625, See also Rosencwaig and Gersho (R–G) theories
– suitable lasers for PAS 631
– thermal diffusivity 627–628
– three-dimensional heat flow model 627
– versus absorption spectroscopy 628–629
photoactive yellow protein (PYP) 654
photocatalytic deposition 421–422
photochemical synthesis 411–421
photoelectric effect, electron ejection through 403–405
photoexcitation 597
photolithography 59
photoluminescence (PL) spectroscopy in NPs characterization 173, 269, 555–571, See also microPL spectroscopy
– applications on nanomaterial ensembles 559–567
 – excitation-dependent PL spectroscopy 565–567
 – room-temperature PL and PLE spectroscopy 559–561
 – temperature-dependent PL spectroscopy 561–563
 – time-resolved PL spectroscopy 564–565
– direct bandgap and an indirect bandgap, differences between 556
– experimental techniques 557–559
– measurements with a cryostat station 558
– possible emission process in semiconductors 556
photoluminescence excitation (PLE) 557
photon correlation spectroscopy 537–542
– light scattering intensity autocorrelation function 540
– monodisperse dilute particle suspension 540
– monomodal disperse particle solution 541
– multimodal-size-distributed particle dispersion 541
photoluminescence excitation (PLE) 557
photoluminescence excitation (PLE) 557
photon cross-correlation spectroscopy (PCCS) 547
photon echoes 673–678
– dephasing 677
– phase relaxation 677
– three-pulse photon echo 677
– two-pulse photon echo 675
photopolymers, LIFT of 234–235
photothermal correlation spectroscopy (PhCS) 575
photothermal methods 622
picosecond dynamics 682–683
planar defects 45–47
plasma and nanomaterials processing 85–103
– background gas pressure influence on plasma characteristic and morphology 94–99
– double pulse laser ablation 99
– electric-field-assisted laser ablation 99–101
– laser irradiance influence on melting and vaporization processes 85–90
– laser polarization effect 101–102
– laser pulse width and pulse shape influence 90–94
– magnetic-field-assisted laser ablation 99–101
plasma-induced plasma 344, 380
plasma-induced pressure 322
plasma parameters, laser wavelength influences on 94
point defect 45
point spread function (PSF) 578
polarization 729–754, See also under laser-based thermal techniques
poling dynamics 749
poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) 259
poly[ethyl methacrylate] (PEMA) 279
polyatomic materials 41
polydimethylsiloxane (PDMS) chip 276
polydisperse particle suspension 541
polydispersity index (PI) 541
polyepichlorhydrin (PECH) 278
polyethyleneimine (PEI) pixels 298
polymer films, LIFT of 273
polymer-dispersed liquid crystals (PDLCs) 752–753
poly(methacrylonitrile) (PMAN) 223
poly(methyl methacrylate) (PMMA) 386
polyvinylidene fluoride and its copolymers films 748–749
– focused LIMM and TPT, comparison 748–749
– poling dynamics 749
population inversion condition, multilevel systems for attaining 3–4
population inversion 3
positron annihilation lifetime spectroscopy (PALS) 57
positron annihilation spectroscopy (PAS) 57
potassium dihydorgen phosphate (KDP) 633
prepatterned donor substrate, LIFT process with 249
printed circuit boards (PCBs) 278
prism-based fluorescence cross-correlation spectrometer (FCCS) 585–586
– single-wavelength (SW) FCCSs 585
prism spectrometer 586–587
proton-induced X-ray emission (PIXE) 57
pulse shaping 33–34
pulsed laser ablation (PLA) 85, 123
– in a furnace, nanostructures synthesis with 117–142, See also pulsed laser deposition (PLD); thermal-assisted pulsed laser deposition (TAPLD)
– one-dimensional nanostructure 117–120
– pulsed laser ablation in aqueous media (PLAAM) 319
– pulsed laser ablation in liquid media (PLAM) 59
– pulsed laser ablation in liquids (PLALs) 319
pulsed laser deposition (PLD) 85, 98, 113, 117–120, 259, 317
– iron oxide NWs 117–120
– one-dimensional nanostructure 117–120
– ZnO NWs 118–120
pulsed photoacoustic spectroscopy 639–541
pumping techniques in solid state lasers 9–11
pump-probe interferometry 89
pump-probe method 604
pump-probe Raman spectroscopy 664
pyrene-doped polymethyl methacrylate (PMMA) films 297
pyrolytic LCVD 61
q
Q-particles 167
Q-switching 12, 32–33
quality factor 5
quantum confinement 41–44
– density of states (DOSSs) 42
– effect on NiFe2O4 nanostructures 525–531
quantum dots (QDs) 41
quantum size confinement 679
quantum well lasers 13
quantum wire (QW) 41
r
radiative recombination 600
radiofrequency identification (RFID) 260
Raman shift 500
Raman spectra, particle size reduction effect on 511–532
– CeO2 nanostructures 522–523
– confocal micro-Raman spectroscopy, experimental setup for 520
– low-frequency eigenmodes 514
– spherical mode 514
– torsional mode 514
– nanoparticles and phonon confinement 512–515
– ZnO nanostructures 524
Raman spectroscopy of nanomaterials 520–524
– application in semiconductor devices characterization 497–508
– approaches in nanoscale 502–504
– confocal Raman spectroscopy 504–508, See also individual entry
– mechanical strain or stress effect 500
Index

– – Raman scattering in semiconductors 499–501
– – surface-enhanced Raman scattering (SERS) 504
– CdS NPs, resonant Raman spectroscopy of 520–522
– CdSe NPs, resonant Raman spectroscopy of 520–522
Rayleigh light scattering 537
Rayleigh–Taylor instability 96
reflection electron microscope (REM) 56
reflection high-energy electron diffraction (RHEED) 57
reflection high-energy loss spectrum (RHELS) 57
regularization parameter (λ) 739
resonant infrared laser vapor deposition (RIR-LVD) 259
resonant infrared pulsed laser deposition (RIR-PLD) 259
resonant Raman spectroscopy
– of CdS NPs 520–522
– of CdSe NPs 520–522
room-temperature photoluminescence (RT-PL) 557, 559–561
Rosencwaig and Gersho (R–G) theories 622–625
– experimental configuration 623
– optically opaque solids ($l_\beta \ll l$) 626–627
– thermally thick solids ($\mu \ll l$; $\mu < l_\beta$) 626
– thermally thin solids ($\mu > l$; $\mu < l_\beta$) 626
– optically transparent solids ($l_\beta > l$) 625
– thermally thick solids ($\mu < l$; $\mu < l_\beta$) 625
– thermally thin solids ($\mu > l$; $\mu > l_\beta$) 625
– parameters used 623
Rutherford, R.C. 1
s
scale transformation method 737–738
scanning transmission electron microscope (STEM) 56
screen printing (serigraphy) 257
sealed tube laser 20
secondary ion mass spectrometry (SIMS) analyses 283
secondary NPs size uncertainty, identifying and analyzing 549–551
– change during a time period 550
– combined uncertainty calculation 551
– size difference determination 550
selected area electron diffraction (SAED) 129
self-amplified stimulated emission (SASE) 23
self-assembly of nanoparticles 58–59
self-focusing 336
self-interaction processes in semiconductor solutions, analysis 699–700
self-terminating laser 20
semiconductor laser 13–15
– geometry of 15
semiconductor nanomaterials 48–53
– as fluorescent markers 425
– nonlinear refraction of 700–702
– size-dependent properties 52–53
semiconductor synthesis, laser-vaporization-controlled condensation for 167–198
semiconductors characterization 497–508,
See also under Raman spectroscopy of nanomaterials
shadowgraphy 301
shallow trench isolation (STI) formation 497
shock laser processing and additional pressure in plasma, analytical models for 324–333
– Etina model 330
– assumptions 330
– early stage 331
– intermediate stage 331
– later stage 332
– Fabbro and coworkers model 324
– assumptions of 324–326
– shortcoming of 326
– Sollier et al. model 326–327
– Wu and Shin model 328–330
– assumptions 329
– Zhang et al. model 327–328
– water-plasma-target system 327
shock-wave-affected zone 321
shock wave relation 329
signal photons 603
silicon nanocrystals 173–174
– electron diffraction (ED) pattern 173
– photoluminescence (PL) properties 173
Index

silicon NPs synthesis by LAL 482–489
- experimental conditions influence on 487
- laser parameters effect on NPs growth 488–489
- liquid effect on 486
silver-nanoparticles 704–714, See also under high-order harmonic generation (HHG)
single-active-electron (SAE) approximation 71
single element, LIFT of 221–229
single-mode fiber-optic dynamic light scattering 546–547
single nanoholes 209–210
single-photon counting technique 604–605
single-pulse ablation processes 273
single-walled nanotube (SWNTs) 655, 657
single-wavelength fluorescence cross-correlation spectrometers (SW-FCCSs) 585
sodium dodecyl sulfate (SDS) 441–445, 590
soft lithography 257
solid–gel auto-combustion method 525
solid laser 8–15
- dopant energy levels in host matrices 9
- doped insulator laser 8–9
- flash lamp and laser rod in, arrangement of 12
- Nd:YAG laser construction and operation 11–13
- pumping techniques in 9–11
- transition of Nd:YAG laser, energy level diagram for 14
solid–liquid interface kinetics, laser ablation at 333–339
- laser and liquid media parameters effects on 333–339
- focal length of convex lens 335
- pulse duration of laser 337
- rate of ablation 333–339
solutions, nanoparticles in, size control by laser irradiation 179–181
space-charge electrets 752
space-charge profiling 729–754, See also under laser-based thermal techniques
spatial resolution of LIFT process 243–248
- Gaussian spatial profile 243–244
- morphology of LIFT spots 245
- nanodroplet LIFT 246
- submicrometer-sized LIFT spots 247
- spatially coherent beam 29
spin polarized low-energy electron microscope (SPLEEM) 56
spontaneous emission 2
SrTiO₃ nanoparticles 714–717
- high-order harmonic generation from 723–725
- low- and high-order nonlinear optical properties study of 714–717
- - experimental arrangements 715–717
- - structural characterization 717–719
- nonlinear refraction and nonlinear absorption of SrTiO₃-contained suspensions 719–723
stable resonators 5–6
static quenching 598
static secondary ion mass spectroscopy (SSIMS) 223
Stefan–Boltzmann constant 390
stimulated emission 2
Stokes–Einstein equation 536, 541
strained silicon on insulator (SSOI) materials 498
strongly coupled plasmas 74
substitutional defect 45
superconducting quantum interference device (SQUID) measurements 135
supercontinuum generation 79
supported nanoparticle catalysts by LVCC method 194–197
surface acoustic wave (SAW) mass 278
surface-enhanced Raman scattering (SERS) 319, 425–426, 504
surface nanostructuring by direct femtosecond laser ablation 204–205
surface plasmon resonance (SPR) 48, 50, 107, 175, 388
surface plasmons 504
synthesis methods of nanoscale materials 53–54
- bottom-up technology 53
- top-down technology 53
synthesis of nanomaterials, lasers application in 59–64

t’taping effect’ 268
temperature-assisted pulsed laser deposition (TAPLD) 85, 317
temperature-dependent PL spectroscopy 561–563
tetrahydrofuran (THF) 478
tetramethylrhodamine isothiocyanate (TRITC) dye 591–592
thenoyltrifluoroacetone (TTA) 386
Index

775

theory of quantum confinement 42
thermal-assisted pulsed laser deposition (TAPLD) 120–125
– aligned ferrite nanorods, NWs, and nanobelts with 135–142
– – experimental method 136–137
– – systematic synthesis study 138
– – experimental procedure 124–125
– – furnace system 122–123
– hematite, electron microscope characterization of 138–140
– laser ablation setup 123–124
– magnetite, electron microscope characterization of 138–140
– with Zn$_3$P$_2$ nanostructures, single-crystalline branched 125–135
– – device design and fabrication techniques 131–134
– – fabrication through TAPLD process 126–127
– – optical properties 130–131
– – properties and devices fabrication 130–134
– – structural characterization 127–130
– – Zn$_3$P$_2$ properties 125–126
thermal diffusivity 627–628
– thermal diffusivity/conductivity determination 645–646
thermal-pulse tomography (TPT) 747–748
thermal techniques 730–732, See also laser-based thermal techniques
– nondestructive thermal techniques 730
– for polarization and space-charge depth-profiling 730–732
– thermal wave technique 731–732
– time- and frequency-domain approaches 731
thermally sensitive materials, transfer of 248–251
thermionic emission, electron ejection through 405–407
thermocapillarity 92
thermodynamics of plasma, confinement influences on 322–324
thin-film transistors (TFTs) 260
third harmonic generation (THG) 234
three-dimensional heat flow model 627
three level laser systems 4
threshold current 14
threshold gain coefficient for lasing 106
Tikhonov regularization 737, 739–740
time-correlated single-photon counting (TCSPC) 604–605
– imaging technique 605–606
time-correlated single-photon-counting technique (TCSPT) 559
time-resolved fluorescence (TRF) 654
time-resolved photoluminescence (TRPL) spectroscopy of nanomaterials 557–558, 597–617, 680
– dynamic quenching 598
– experimental methods of 602–607
– – Kerr gate technique 606–607
– – nonlinear optical techniques 606–607
– – pump-probe method 604
– – single-photon counting technique 604–605, See also time-correlated single-photon counting (TCSPC)
– – time-resolved measurements in picosecond resolution 603
– – upconversion technique 607
– – longitudinal–transverse splitting frequency 601
– nonradiative recombination 600
– radiative recombination 600
– size-dependent radiative decay 601
– static quenching 598
– ZnO case study 607–617, See also time-resolved spectroscopy of ZnO
– – optical properties of ZnO 612
– – ZnO photoluminescence, origin 608–611
time-resolved PL spectroscopy 564–565
time-resolved spectroscopic techniques 680
time-resolved spectroscopy of ZnO 612–617
– annealing effect on 615
– emission lifetime 614
– superradiance 612
– ultrafast carrier dynamics 615
time-resolved ultrafast Faraday rotation (TRFR) spectroscopy 672–673
time-resolved ultrafast fluorescence (TRUF) spectroscopy 656–660
– optical Kerr gate (OKG) 658–659
– photoactive yellow protein (PYP) 657
– time-resolved fluorescence upconversion 656
time-resolved ultrafast IR spectroscopy 660–663
– broadband IP pump probe 661
– experimental arrangement 661
– in semiconductor nanostructure materials 663
Index

-time-resolved ultrafast optical temperature measurements 283
time-resolved ultrafast Raman spectroscopy 663–671
- experimental arrangement 665
- femtosecond stimulated Raman spectroscopy 668
- pump-probe Raman spectroscopy 664
tip-enhanced Raman spectroscopy (TERS) 507
top-down technology 53
total detected fluorescence $F(t)$ 578
total reflection X-ray fluorescence (TXRF) 106
traditional LIFT 261–276
transient absorption spectroscopy (TAS) 653–655
- experimental setup for 653
- luminescence quenching 654
transient-bleaching spectroscopy 680
transistor-transistor logic (TTL) 583
translational diffusion (τ_D) 580
transmission electron microscope (TEM) 56, 128, 156, 442–454, 695
transversely excited atmospheric (TEA) laser 20
transverse electromagnetic (TEM) modes 8
transverse mode of laser 7–8
traps 47
triazene polymer (TP) 250
two-dimensional electron gas (2DEG) 498
two-photon polymerization (2PP) technique 59, 290

ν
ultrafast laser spectroscopy of nanomaterials 55, 64, 651–685
- charge carrier dynamics, measurement of 679–684
ultrafast time-resolved spectroscopy (UTRS) 652–673
- transient absorption spectroscopy (TAS) 653–655
ultrashort picosecond laser pulses (ps-LIFT) 242
under bump metallization (UBM) 502
uniphase mode 8
unstable resonator 6
- with annular beam shape 6
upconversion technique 607, 656, 658
upconverting doped nanocrystals by LVCC method 190–194

ν
vacuum ultraviolet/extreme ultraviolet (VUV/EUV lasers, VUV/EUV lasers 59
valence band (V_g) 39
vaporization processes, laser irradiance influence on 85–90
vapor–liquid–solid (VLS) mechanism 146
velocity interferometer system for any reflector (VISAR) 321
vertical pulsed laser deposition (VPLD) 264
vibration isolation, in fluorescence correlation spectroscopy 588–589
void 47
volume or bulk defects 47

ν
‘water hammer’ effect 464
water-plasma-target system 327
Watson–Crick base pairing 54
weak focusing 106

x
X-ray absorption near-edge structure (XANES) 55
X-ray-beam-based characterization methods 55–56
X-ray diffraction (XRD) 55, 129
X-ray dispersive energy analyses (EDAX) 291
X-ray laser beams 24
- producing methods 22–26
X-ray photoelectron spectroscopy (XPS) 55, 223
X-ray spectroscopy (EDX) 695

z
zinc hydroxide/surfactant composite (ZnDS) 369
zinc oxide (ZnO) nanowires 145–164
- controlled nanowire growth with NAPLD 152–159
- - laser energy influence 153–154
- - substrate annealing influence 154–156
- - substrate–target distance influence 152–153
- - wetting layer influence 156–159
- nanoparticle-assisted pulsed laser deposition (NAPLD) growth of 145–164
- - from 2D nanowall to 1D nanowire with PLD 147–148
- - vapor–liquid–solid (VLS) mechanism 146
– nanowire heterostructures growth, based on low-density nanowires 159–162
– NAPLD nanowire growth mechanism 148–152
zinc phosphide (Zn$_3$P$_2$) nanostructures, single-crystalline branched 125–135,
See also under thermal-assisted pulsed laser deposition (TAPLD)
zone-center G-phonons 670
Z-scan technique 695–702
– closed-aperture Z-scan scheme 702
– open-aperture Z-scan scheme 702