INDEX

Note: Page numbers in italics refer to Figures; those in bold to Tables.

acetoacetate (ACA), 48, 48–9, 52, 54
ACSM see American Academy of Sports
Medicine (ACSM)
adolescence
 emotional and cognitive development, 323
 exercise
 neurobiological modulator, 327–8
 neurofunctional modulation, 328–9
 and physical activity, 175–6
 regular, 323
 neurodevelopment, 324, 325
 neuroplasticity see neuroplasticity-related growth factors
 neuropsychiatric diseases, 329–30
Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) study, 168
advanced glycation end products (AGEs), 15, 16, 19, 20–21, 339–40
aerobic exercise
 acute single bout, 215
 Alzheimer’s disease (AD), 177
 anxiety, 301
 dementia, 168–9
 executive functions (EFs), 213
 long-term, 214–15
 social anxiety reduction, 302
 training, 206, 210
 walking or running, 297
aerobic fitness
 on brain volume and function, 257
 cerebral white matter integrity (CWMI), 258
 classification, 263
 clinical relevance vs. statistical significance, 263–4
 and cognition, 280
 neuroanatomical and neurohormonal changes, 215
 sedentary lifestyle, 264
 short-term memory, 214
 VO_{2max} test criteria, 262–3
aging
 antiaging intervention strategy, 124–7
brain
 aerobic fitness, 262–4
 consumption of red wine, 127
 exercise and neuroimaging, 255–8
 exercise paradigm see frequency, intensity, time, and type (FITT) of exercise
 Maastricht Aging Study, 127–8
 neurodegenerative diseases, 127
 neurohormonal, 254–5
 physical activity, 258–9
 risk, 128
 supplementation of grape juice, 127
definition, 123

© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
aging (cont’d)
and neurodegeneration, polyphenols
Alzheimer’s disease (AD), 144–5
amyloid precursor protein (APP), 144
changes in brain function, 144
hormone replacement therapy (HRT), 145
loss of neuronal components, 144
neurodegenerative diseases, 144
alpha-linolenic acid (ALA), 59, 60
Alzheimer’s disease (AD)
aerobic and endurance exercises, 175
aging, 123, 127, 144–5
default-mode network (DMN), 216
dementia, 163–4, 170
diet and exercise, 114
docosahexaenoic acid (DHA), 60
enhanced brain inflammation, 233
epigenetic changes, 6
exercise and cognitive functioning
brain-derived neurotrophic factor (BDNF), 177, 195, 254
cardiorespiratory (CR) fitness, 177
endurance/aerobic exercise, 177
expressions of neurodegeneration, 178, 178
functional magnetic resonance imaging (fMRI), 177
mild cognitive impairment (MCI), 177
and sleep, 227–8
exercise and nutrition benefits
chronological timing, 176
meal-fasting chronology, 176
mood states, 176
neuropsychiatric symptoms, 176
nonpharmacological treatment of cognitive deficits, 176
HFS intake, 114
and homocysteine levels (Hcy), 73, 76
ketogenic diets (KD), 53–4
neurodegeneration, polyphenols, 144–5
physical activity/exercise
in children and adolescents, 175
child-youth resistance training programs, 176
epilepsy, 175
salt and autoimmune responses, 89–90
American Academy of Sports Medicine (ACSM), 257, 259, 264, 297, 298, 300
AMP-activated protein kinases (AMPK), 61, 126, 136–7, 185, 191, 195, 344
amyloid precursor protein (APP), 21, 53, 66, 144, 342
antidiabetic intervention strategy
diet
ascorbic acid and vitamins, 124–5
caloric restriction (CR), 124
dietary antioxidants, 124
plant polyphenols, 125–6
exercise, 126–7
antidepressant effect
diet
inflammatory mechanisms, 96–7
neuroprogression, 97–8
neurotransmitters mechanisms, 95–6
oxidative stress mechanisms, 97
exercise
inflammatory mechanisms, 99
neuroprogression, 100
neurotransmitters mechanisms, 99
oxidative stress mechanisms, 99–100
serotonin reuptake inhibitors (SSRIs), 93
anxiety disorders; see also depression
aberrant epigenetic mechanisms, 7
aerobic exercise, 301
in childhood, 329
classification, 296
cognitive behavioral therapy (CBT), 302
comorbidity with depression, 301
definition, 301
evidence-based treatment, 295
mechanisms, 302–3
physical exercise, 301
resistance training, 302
resveratrol, 151
study populations, reviewed research, 297
symptom vs. disease management, 296
Western diet, 113
“Arndt–Schulz law,” 135
astrocytes
activity, tripartite synapse, 245
description, 54, 242
forced and voluntary exercise, astrocytic GSH, 246–7
glycogenolysis-enhancing factors, 344
reduced glutamate uptake, 245
and synaptic plasticity, 242, 243
Atkins diet, 51
attention deficit–hyperactivity disorder (ADHD), 329–31
autism spectrum disorder (ASD)
brain-derived neurotrophic factor (BDNF), 329
ketogenic diets (KD), 54–5
BDNF see brain-derived neurotrophic factor (BDNF)
β–hydroxybutyrate (BHB), 48, 48–9, 52, 52–4
bipolar disorders (BD), 329–30
blood pressure, high; see also hypertension
Alzheimer’s disease (AD), 76
high salt levels, Western diet, 15, 23, 24, 84, 339
RAAS, 84–5
retinopathy, 107
uric acid, high levels, 19
Borg psychometric Rating of Perceived Exertion (RPE), 260
brain
aging
aerobic fitness, 262–4
brain-derived neurotrophic factor (BDNF), 254
bromodeoxyuridine (BrdU) expression, 255
exercise see frequency, intensity, time, and type (FITT) of exercise
exercise without neuroimaging, 255–6
FNDC5, 254–5
grape juice, supplementation, 127
insulin-like growth factor-1 (IGF-1), 255
Maastricht Aging Study, 127–8
neurodegenerative diseases, 127
neuroimaging, exercise and, 256–8
physical activity, 258–9
red wine, consumption, 127
risk, 128
cognitive aging process
age-sensitive cognitive operations, 145
“brain spurt,” 145
Dietary Supplement Health and Education Act, 146
nutritional supplementation, 145–6
subsets of cognitive development, 145
healthy young and adult, exercise
cognitive evidence, 311
mitochondrial bioenergetics, 311–12
mitochondrial protection, 315–16
mitochondrial redox-related adaptations, 312, 313–14, 314–15
ketogenic diets (KD), 54
training game: Brain Age, 206, 207, 208
tumors, malignant, 54
brain-derived neurotrophic factor (BDNF)
activity-dependent development, visual cortex, 326
beneficial effects, 177, 195
and cardiorespiratory fitness, 328
depression, 329
human, 254
levels, 18, 97–8
neurogenesis, 326
neuronal survival, 268
and physical activity, 254
“brain spurt,” 145
caloric restriction (CR), 54, 124, 269
CAM see complementary and alternative medicine (CAM)
Cambridge Cognitive Testing Battery (CAMCOG), 74
carbohydrates in Western diet, harmful effects
advanced glycation end products (AGEs), 20–21
complications of MetS, 19–20
diacylglycerol (DAG), de novo synthesis, 21
high-fructose corn syrup, soft drinks, 19–20
high glycemic meal, consumption, 19
hippocampal dysfunction, 19, 21
insulin signaling, 20, 20
“leptin resistance,” 21
oxidative stress, 19
refined or simple carbohydrates, 19
cardiorespiratory (CR) fitness, 177, 281, 328
CBT see cognitive behavioral therapy (CBT)
cestogram and puncture (CLP) model, 188
Center for Epidemiologic Studies Depression Scale, 297
child-youth resistance training programs, 176
China Da Qing Diabetes Prevention Study (CDQDPS), 106
cholesterol (high) diet
abnormal APP processing, 342
cognitive function, 151–2
high-density lipoprotein (HDL) cholesterol, 31, 344
risk of Alzheimer’s disease (AD), 165
Western diet, 15, 17–19, 21, 339
chronic fatigue syndrome, 78
“chronognosis,” concept, 137
Clinical Dementia Rating (CDR), 75
Coenzyme Q10 (CoQ10), 124
cognitive behavioral therapy (CBT), 301–2, 303
cognitive function
definition, 213
diet, 345
executive functions (EFs), 213
exercise, effect of
brain, 344
moderate exercise, 343, 343, 344
prolonged exhaustive exercise, 344
synaptic plasticity genes expression, 344
cognitive studies
with exercise and neuroimaging
brain volume improvement, 257
diffusion tensor imaging (DTI), 258
hippocampal volume changes, 257
magnet resonance angiograms, 258
task activation, 257
voxel-wise analyses, 256
exercise without neuroimaging
aerobically fit individuals, 255–6
meta-analyses, 256
resistance training programs, 256
cognitive subscale of the Alzheimer’s Disease Assessment Tool (ADAS-Cog), 74
combined exercise training
aerobic, strength, and stretching exercises, 206, 210
for older people, 208, 208–9
complementary and alternative medicine (CAM), 296
consciousness, theory, 134, 138
copy number variants (CNVs), 3, 4
Cornell Scale for Depression in Dementia, 297
cyclic guanosine monophosphate (cGMP), 192
default-mode network (DMN), 216–17
delta rhythms, 226
dementia
Alzheimer’s, 83
cognitive exercise
cognitive training, 168
daily mental activities, 167–8
description, 167
dementia (cont’d)
 level of education, 167
 meditation, 168
diet
 antioxidant and nutritional supplement, 167
 calories and fat, 165
 description, 165
 fish and fatty acids, 165–6
 food combination, 167
 fruit and vegetable, 166
 Mediterranean diet, 166
 multinutritional intervention, 169–70
 tea and coffee, 166–7
disabilities, 83
evidence-based research, 165, 165
lifestyle, 163
physical exercise
 aerobic, 168–9
 description, 168
 Tai Chi, 169
 walking, 168
prevention, 164–5
risk factors, 163, 164, 164
and salt see table salt and dementia
symptoms, 83
vascular, 83
depression; see also major depression
adolescence, 329
 in adolescence, 329
 classification, 296
dementia, 164
dose–response relationship, physical activity, 299
evidence-based treatment, 295
exercise
 anxiety, 301
 depression, 299–300
 and physical activity, 297
 population study, 298–9
 and psychotherapy, 299
 and psychotropic medications, 299
intensity and, 299–300
mechanisms, 302–3
Mediterranean-like diet, 40
meta-analyses, 300–301
randomized controlled trials, 299
study populations, reviewed research, 297
symptom vs. disease management, 296
Western diet, 113, 340, 343
DHA see docosahexaenoic acid (DHA)
Diabetes Control and Complications Trial (DCCT), 106–7
diabetic retinopathy (DR)
 blindness, 105
diet, role of
 diabetic eye disease, management, 107
 fruits and vegetables, 107
 high-fat diet, 107
 nutritional supplementation, 107–8
 lifestyle interventions, 106
 metabolic dysregulation, 105–6
physical activity
 enhanced VEGF, 106
 insulin sensitivity, 106
 poor glycemic control, 106
 proliferative diabetic retinopathy (PDR), 106
 type 1 and 2 diabetes, 106
 whole-body oxygen consumption, 106
Western-style diet, consumption, 105
diacylglycerol (DAG), 21, 341
dietary antioxidants, 41, 124, 127
Dietary Approaches to Stop Hypertension (DASH) trial, 42
Dietary Supplement Health and Education Act, 146
diffusion tensor imaging (DTI), 258
“disposable soma” theory, 134
docosahexaenoic acid (DHA)
 Alzheimer’s disease (AD), 60
 in brain, roles, 60, 61
 chemical structures, 59, 60
 derived lipid mediators
 15-Lipoxygenase-1 (15-LOX), 64
 and neurological disorders, 67–8
 neuroprotectin (NPD), 66
 protectin D1 (PD1), 66
 resolvin D-series, 64, 65
 17s RvDs (resolvin D receptors), 64, 66
 enriched diet, 19, 165–6
 ethanolamine and choline plasmalogens (PlsEtn and PlsCho), 59
 phosphatidylserine (PtdSer), 59
 “drug addiction,” 115–16
DTI see diffusion tensor imaging (DTI)
EFs see executive functions (EFs)
eicosapentaenoic acid (EPA)
 chemical structures, 59, 60
dementia, 166
derived lipid mediators
 arachidonic acid (ARA), 62–3
 and neurological disorders, 67–8
 nonenzymic oxidation, 63, 63, 64
 oxidation products, 62, 64
 phospholipase A2 (PLA2), 59, 60
 resolvins E1 and E2 (RvE1 and RvE2)
 chemical structures, 63, 63–4
 synthesis of, 62, 62
entropy, hormesis and cognitive function
 concept of cognition and intelligence, 135
 definition, 134
 language of thermodynamics, 134
 natural selection, 135
 second law of thermodynamics, 135
 selection of “memory,” 135
What Is Life?, 135
Environment–gene interactions, 7, 8, 9
enzyme immunoassay (EIA) method, 73
EPA see eicosapentaenoic acid (EPA)
epigenetics
 Alzheimer’s disease (AD), 6
 anxiety, 7
 brain function, nutritional regulation, 5
 circulatory systemic environment, 5
 cognition, nutritional effects, 5
 definition and mechanisms, 1, 4
 development and metabolism, 5
 DNA methylation, 4
 growth differentiation factor 11 (GDF11), 5–6
 neuroepigenetics and neurological disorders, 6
 and neurology, nutritional programming, 9
 physical activity, beneficial effects, 5
epilepsy
 Alzheimer’s disease (AD), 175
 ketogenic diets (KD)
 anticonvulsant and neuroprotective effects, 48–9
 GLUT1 deficiency syndrome, 52, 52–3
 modified diets, 53
 periodic starvation, 47
 process of glycolysis, 48, 48–9
 seizure reduction, 52
 status epilepticus (SE), 53
European Prospective Investigation into Cancer and Nutrition (EPIC), 29
executive functions (EFs)
 aerobic exercise, 213
 aerobic training, 328–9
 behaviors, 145
 inhibition, 213
 overlapping hypothesis, 210
 shifting, 213
 strength training, 281
 training, 176, 206
 updating, 213
exercise; see also cognitive studies
 aerobic see aerobic exercise
apoptosis, 270
beneficial actions
 autophagy and PGC-1α, 196
 beneficial action, 183
 brain-derived neurotrophic factor (BDNF)
 production, 195
 formation of lipoxins and NO, 195–6
 and GDF-11, 192–4
 IL-6 and insulin resistance, 183–7, 190–191
 interleukins, 183, 185
 macrophage inflammatory protein 1a (MIP-1a), 183
 metabolic responses and NUR-77 expression, 194–5
 myostatin, FST and GDF-11, 191–2
 physical activity, 183, 184
 sepsis, cortisol and cytokines, 187–90
 cognitive benefit
 cardiovascular–cerebrovascular, 286–7
 life enrichment, 288
 modulation of inflammation, 288
 neurotrophic stimulation, 288
 physical activity (PA), 287
 control group and bias, 298
 definition, 213, 298
 dosing, 285, 298
 duration of, 286
 forced and voluntary exercise, 246–7
 functional recovery, brain injury/disease, 241
 glial cells see astrocytes
 inflammation, and cognition, 233–4
 intensity of training, 286
 interventions, 295
 modality of, 285
 physical see physical exercise (PE)
 resistance exercise, 215
 trainer certification, 264
fats in Western diet, harmful effects
 brain-derived neurotrophic factor (BDNF) levels, 18
 decreased gene expression, 18
 docosahexaenoic acid (DHA)-enriched diet, 19
 elevated hypothalamic–pituitary–adrenal (HPA)
 activity, 18
 energy homeostasis, 18
 fatty acid oxidation, 18
 high-cholesterol diet, 18–19
 hypothalamic inflammation, 18
 lipid peroxidation product, high levels, 17–18
fibromyalgia, 78, 100
FITT concept see frequency, intensity, time, and type (FITT) of exercise
“food addiction” model, 111, 115–16
food and quality of life
diet, change of
 combination diet, 43
 Dietary Approaches to Stop Hypertension (DASH) trial, 42
 EUROASPIRE III survey, coronary patients, 43
 hypocaloric, normoproteic Mediterranean diet (MeD), 43
 Mediterranean Lifestyle Program, 43
 metabolic syndrome (MetS), HRQOL and physical fitness, 43
 moderate to high intensity training (MeDE), 43
 obese patients, 44
 self-perceived health, 44
insights, observational studies
 diet and depression, correlation, 42
 MD adherence and higher mental status, 41–2
 MOLI-SANI study, results, 41, 42
 oxidative stress and neuropsychiatric disorders, 42
 PREDIMED investigation, results, 41
 quality diet and higher HRQOL, 41
 single-food approach, 42
food pyramid, 31
frequency, intensity, time, and type (FITT) of exercise
frequency, 259–60
intensity, 260–261
time, 261
type, 261–2
functional fitness, 259
functional magnetic resonance imaging (fMRI), 177
gene expression
brain-derived neurotrophic factor (BDNF), 9, 177, 330
diet, 345
epigenetic regulation, 4
genetic variability, 4
nutritional regulation, direct/indirect effects, 3
genome-wide association studies (GWAS), 4
Geriatric Depression Scale, 297
GFAP see glial fibrillary acid protein (GFAP)
glial fibrillary acid protein (GFAP)
description, 242
expression, hippocampus, 242, 244
forced/voluntary exercise, 242
treadmill exercise, 344
Global Dementia Scale (GDS), 75
Global Deterioration Scale (GDS) scores, 75
glycemic index (GI), 19, 47, 51, 107–8, 112, 169
growth and differentiation factors (GDF)-11
ACVR2B gene, 191
and exercise, 192–3
FST and follistatin-like 3 (FSTL3), 193
Mstn and Gdf11 mutants, 193–4
myostatin levels, 193
Smad2 and Smad3, 193
transforming growth factor β (TGF-β) family, 5–6
type I and II receptors, 191
health-related quality of life (HRQOL)
assessment, 41
concept, 40
heart disease, 41
self-rated health and mortality, 40
valid predictor of mortality, 41
helper T cells (Th cells), 89
HFS diet consumption, 112
homocysteine levels (Hcy)
and Alzheimer’s disease (AD), 76
changes in Hcy levels, 74
and mild cognitive impairment (MCI), 75–6
enzyme immunoassay (EIA) method, 73
fibromyalgia and chronic fatigue syndrome, 78
high levels, factors, 73–4
hyperhomocysteinemia, 74–5
mechanisms, 74, 74
mental disorders, 73
and multiple sclerosis (MS), 77
neural studies, 75
and Parkinson’s disease (PD), 77
and vascular dementia, 76–7
hormesis and cognitive function
biological phenomenon, 135–6
calorie restriction mimetic, 137
dose/concentration responses, 136
entropy, 134–5
evolution of intelligence, 139–40
hormetic beta-curve and NOAEL, 135, 136
“Hueppe’s rule” and “Arndt–Schulz law,” 135
inflammatory lesions, 137
intelligence and mitochondrion, 137
life, energy-based information system, 134–5
linear no threshold (LNT) model, 135
mitochondrial protection and quantum thinking, 137–8
neurogenesis, 136–7
oxidative or metabolic stress, 136
pathways, 136
quantum theory of information/mitochondrion, 138–9
reactive oxygen species (ROS) production, 136
stress for optimum smartness, 133–4
stress, goldilocks zone, 135
hormone replacement therapy (HRT), 145
“Hueppe’s rule,” 135
hyperhomocysteinemia, 74–5, 77, 167
hypertension
brain damage and dementia, 23–4
salt and, 84
sodium exchange, 85
stroke, cardiac causes
anticoagulation therapy, 88–9
atrial fibrillation, 88, 89
daw of neuronal tissue, 89
multi-infarct dementia (MID), 88
and vascular dementia, 86–8
hypothalamic–pituitary–adrenal (HPA) activity, 18, 93–4, 218, 270
inducible NO synthase (iNOS), 192, 232
inflammation and sleep
adenosine triphosphate (ATP), 229
and cognition, 233–4
cytokines, 227–8
IL-1β and TNF-α expression, 228–9
IL-1 receptor accessory protein (IL-1Acp), 229
inflammmasomes, 229
molecular pathways
cyclooxygenase-prostaglandin pathway, 231–2
mitogen-activated protein kinase-extracellular
signal-regulated kinase (MAPK-ERK), 230–231
nitric oxide pathway, 232–3
nuclear factor-kappa B (NF-κB), 229–30
molecule factor S, 228
sleep loss and brain, 229, 230
interleukin-6 (IL-6)
exercise and insulin resistance
glucose tolerance, 191
muscle structure and function, 191
overexpression of human IL-6, 191
overnutrition or high-fat-diet-induced obesity, 190–191
plasma IL-6 levels, 190
pro- and anti-inflammatory actions
athletes, exhaustive exercise stress test, 185
corticosteroids, 186–7
overnutrition, 186
plasma IL-6 levels, 183–4, 186
receptor expression, changes in levels, 184–5
INTERSALT study, 84

ketogenic diets (KD)
Alzheimer’s disease (AD), 53–4
Atkins diet, 51
autism spectrum disorder (ASD), 54–5
contraindications, 51, 51
in epilepsy, 47, 52–3
high-fat and protein diet, 49
history, 47
initiation facilitates, 49
long-term effects, 50
low glycemic index treatment (LGIT), 47, 51
malignant brain tumors, 54
mechanisms
adenosine triphosphate (ATP), 48
administration of acetone, ACA, and BHB, 49
anticonvulsant and neuroprotective effects, 48–9
2-deoxy-D-glucose, 49
fatty acid oxidation cycle, 48
process of glycolysis, 48, 48
tricarboxylic acid (TCA) cycle, 48, 48
medium-chain triglyceride (MCT) diet, 47, 51
modified diets, development, 51
nonpharmacologic treatments, 49
side effects, 49–50, 50, 51

learning therapy
brain training games, 209, 210
on cognitive functions, 207
reading aloud and simple calculation, 206
training tasks, 207, 207
leukocyte telomere length (LTL), 33
linear no threshold (LNT) model, 135
low-fat diet (LFD), 95, 97–8
low glycemic index treatment (LGIT), 47, 51

macrophage inflammatory protein 1a (MIP-1α), 183
major depression
diet
antidepressant actions, 95–8
and depression, relationship between, 94–5
dietary interventions, treatment, 95
longitudinal or prospective studies, 94
Mediterranean dietary pattern, 94

traditional/healthy dietary patterns, 94
Western/unhealthy dietary patterns, 94
exercise
antidepressant effect, 99–100
and depression, relationship between, 98
exercise interventions, treatment, 98–9
oxidative stress, 93–4
research, 98, 100
serotonin reuptake inhibitors (SSRIs), 93
symptoms, 93
mammalian target of rapamycin complex 1 (mTORC1), 22
MBSR see mindfulness-based stress reduction (MBSR)
MedDiets, 97
Mediterranean diet (MD)
dementia, prevention, 166
depression, major, 94
and health in seniors
aging, 29
alcohol, moderate consumption, 31
cellular senescence see telomeres and Mediterranean diet (MD)
characteristics and benefits, 30, 34
concept, 30
consumption of vegetables and fruits, benefits, 32
food pyramid, 31
lifespan elongation, 30–31
longer and healthier life, Mediterranean countries, 30
Mediterranean Diet Quality Index, 31
molecular and cellular mechanisms, 29
long-term consumption
anti-inflammatory dietary pattern, 343
beneficial effects, human, 342–3
total lipid intake, 342
on mental and physical quality of life
antioxidants and polyphenols, 40
biological mechanisms, 40
characteristics and benefits of diet, 39–40
depression and cognitive function, quality of life, 40
dietary behaviors and risk of heart disease, 39
eating behaviors, Mediterranean people, 39
health-related quality of life (HRQOL), 40–41
and markers of inflammation, 40
olive oil, benefits, 32
resveratrol, 31
telomeres see telomeres and Mediterranean diet (MD)
medium-chain triglyceride (MCT) diet, 47, 51, 52–5
memory consolidation, 226, 227
metabolic equivalents (METs), 260, 298, 299
metabolic syndrome (MetS), 17–19, 21, 23–4, 43
METs see metabolic equivalents (METs)
mild cognitive impairment (MCI)
and dementia, 281
diet and exercise, 114
Hcy levels, 75–6
physical exercise programs, 177
Mindfulness-based stress reduction (MBSR), 302
Mini-Mental State Examination (MMSE), 74, 77, 167
mitochondrial protection; see also redox-and mitochondrial-based alterations
aging and neurodegenerative diseases, 315–16
bioenergetics, 311–12
and quantum thinking
concept of “chronognosis,” 137
microtubules, 138
natural selection, 137–8
theory of consciousness, 138
redox-related adaptations, 312, 313–14, 314–15
mitogen-activated protein kinase-extracellular signal-regulated kinase (MAPK-ERK)
circadian rhythm, 231
cytokine and growth factor signaling, 230–231
sleep regulation, 231
synaptic plasticity, 231
“mitohormesis,” 137
moderate to high intensity training (MeDE), 43
modified Atkins diet (MAD), 47
monoamine oxidase (MAO), 96
multi-infarct dementia (MID), 85–6
multigorgan dysfunction syndrome (MODS), 187
multiple sclerosis (MS), 77, 90
myostatin (GDF-8), 191–2
natural selection principle, 133, 137–8
neural plasticity, 247–8
neuroanatomical and neurohormonal changes, exercise
cerebral perfusion, 216–17
event-related potentials, 217
neuromodulators, neurohormones, and neurotransmitters
aging, 217
brain-derived neurotrophic factor (BDNF), 217
cortisol and testosterone levels, 218
insulin-like growth factor-1 (IGF-1), 217
N-acetyl aspartate (NAA), 218
spatial ability, 218
psychological factors and autonomic nervous system, 218
structural and functional connectivity changes
aerobic fitness, 215
aging, 216
cardiovascular fitness, 215
default-mode network (DMN), 216
frontoparietal network, 216
hippocampus, 216
neurodegenerative diseases; see also redox-and mitochondrial-based alterations
AD see Alzheimer’s disease (AD)
mild cognitive impairment (MCI), 75–6, 114, 281
Parkinson’s disease (PD), 2, 6, 17, 73, 77, 114, 127, 150, 176, 245, 272, 310
neuroepigenetics and neurological disorders
Alzheimer’s disease, 6
schizophrenia, 6
neuronal survival
large for gestational age (LGA), 7
maternal and infant nutrition, 7
nutritional programming, 7, 9
small for gestational age (SGA), 7
and cognitive neuroscience
 energy status, 2–3
 Mediterranean diet, 2
 omega-3 polyunsaturated fatty acids, role, 2
 trace elements, 2
“nutritional genomics” or “nutrigenomics,” 3
nutritional programming
 DNA methylation profiling, 9
 of health and disease, 7
 maternal diet, 9
 one-carbon units, 9
 parental nutrition, 9
nutrition–gene interactions
 epigenetics, definition and mechanisms, 1, 4
 gene expression, 1, 3
 genetic variability, 4
 mechanisms, 3
 “nutritional genomics,” 3
 prenatal and early postnatal development, 9–10

older adults; see also Smart Aging studies, older adults clinical recommendations, 288–9
cognitive impairment and dementia, 281, 285
cognitively healthy, 281
cross-sectional relationships
 physical activity and cognitive performance, 280
dementia, 279
longitudinal studies, physical activity, 280–281
methodological issues
 dose of exercise, 285
 duration of exercise, 286
 intensity of training, 286
 modality of exercise, 285
 outcome measures, 286
 volume, 285–6
 physical exercise (PE), 279
 randomized controlled trials (RCTs), exercise, 282–4
 osteopenia, 50
oxidative phosphorylation system (OXPHOS), 312
oxidative stress, 19

PA see physical activity (PA)
Paleolithic diet (stone-age diet), 15, 68, 339, 340
Parkinson’s disease (PD), 2, 6, 17, 73, 77, 114, 127, 150, 176, 245, 272, 310
Patient Health Questionnaire-9, 297
PE see physical exercise (PE)
physical activity (PA)
 cognitive performance/brain morphology, 280
 definition, 259
 and depression, 299
 description, 297
exercise see exercise
 and exercise, 297
longitudinal studies, 280–281
mental health, 298
recommendations, 259
weight loss interventions, 297
physical exercise (PE)
 Alzheimer’s disease (AD), 175–6
 anxiety, 301
dementia, 168–9
 mild cognitive impairment (MCI), 177
 older adults, 279
physical fitness, description, 259
plant polyphenols
 AMP-activated protein kinases (AMPK), 126
 plasma membrane redox system (PMRS), 125
 polyphenols, 125
 rate of aging, 126, 126
 resveratrol, 125
 sirtuin-1 (SIRT1), 125
plasma membrane redox system (PMRS), 125
polyphenols
 aging and neurodegeneration, 144–5
 brain/cognitive development, 145–6
clinical studies
 cocoa flavanols, 153
 flavonoids, 153, 154
 flavonols, 153
 isoflavones, 153
 resveratrol, 152
 compounds, classes, 143
dietary, classification and chemical structure, 143, 144
factors influencing
 cardiovascular health, 152
cerebral hemodynamics, 152
general health conditions, 151–2
 intrinsic and extrinsic factors, 151
 lifestyle choices, 151
 neurogenesis, 152
 obesity and cognitive decline, 151
health benefits, 143
major classes of dietary polyphenols, 143, 144
neurodegenerative diseases, 143
plant see plant polyphenols
 plant compounds, 143
 resveratrol, 143, 146–8, 149, 150
 secondary metabolites, 143
PREDIMED study, 95
pregnancy
 apoptotic cell death signaling, 311
 exercise duration, 310
 maternal swimming, 310
 neonatal mitochondrial improvements, 311
 redox-related adaptations, 311
 treadmill running, 310
 proliferative diabetic retinopathy (PDR), 107
protein (high) contents in Western diet, harmful effects
amino acids (AA), 21
dairy and meat consumption, 21–2, 22
leucine-rich proteins, 22
mammalian target of rapamycin complex 1 (mTORC1), 22
type II diabetes and obesity, 21–2
protoconsciousness, 138
quantum theory of information/hormesis mitochondrion
anesthetics, 139
calcium, 139
cytoskeleton, 139
microtubule structure, 138–9
periods of protoconsciousness, 138
randomized controlled trials (RCTs), 165
cognitive functions
brain training games, 207, 208
combined exercise training, for older people, 208, 208–9
learning therapy, 207, 207
older adults, 282–4
Smart Aging studies, older adults, 207–9
rapid eye-movement (REM) sleep, 225
reactive oxygen species (ROS) production, 136
redox-and mitochondrial-based alterations
healthy young and adult brains, exercise
cognitive evidence, 311
mitochondrial bioenergetics, 311–12
mitochondrial protection, 315–16
mitochondrial redox-related adaptations, 312, 313–14, 314–15
pregnancy
apoptotic cell death signaling, 311
exercise duration, 310
maternal swimming, 310
neonatal mitochondrial improvements, 311
redox-related adaptations, 311
treadmill running, 310
renin–angiotensin system, 24
resistance exercise, 215
resveratrol
on blood flow, 152
on cerebral flow and cognitive performance, 152
chemical structure and properties, 146, 147
chemopreventive effects, 146
cognitive function, 151, 151
“French paradox,” 146
on human neurodegenerative diseases, 152
influences, preclinical studies
on brain, behavior, and cognitive function, 148, 150
on physiological characteristics, brain function, 148, 149
learning and memory, 150
molecular/cellular/physiological function, neuroprotection, 147–8
“natural or herbal” products, 146
neurodegenerative disorders, 150–151
neuroprotection, 148, 150
neurotransmitters, 148
oral dosing, 146–7
parameters, 152
plant polyphenols, 125
potential anticancer agent, 146
publication history, 146, 147
red grapes (wine), 146
SIRT activation, 146
salt; see also table salt and dementia
autoimmune responses and Alzheimer’s disease, 89–90
higher sodium diets, 90
Th17 cells, 89
white blood cells (WBCs), 89
high salt in Western diet, harmful effects
calcium and bone metabolism, effect, 24
consumption of sodium, 22–3
coronary heart disease, 24
high blood pressure (hypertension), development, 23–4
renal disease, 23
renin–angiotensin system, 24
sodium-insensitive mechanism, 23
sodium-sensitive mechanism, 23
and hypertension, 84
to hypertension and RAAS, pathways
hypervolemia, hypertension sodium exchange, and ouabain, 85
physiology of blood pressure control, 84–5
S100B protein
animal models, 244, 244–5
concentration, 244
increased levels, humans, 244
schizophrenia, 2–3, 6–7, 195, 245, 269, 329–31
sedentary lifestyle, definition, 264
sepsis, cortisol and cytokines
ACTH/cortisol indices, 188
cecal ligation and puncture (CLP) model, 188
CRH stimulation, 188
dog endogenous adrenocortical response, 187
gram-negative bacterial sepsis, 187
hydrocortisone and cytokines, 189, 190
hyperinflammatory response and immunosuppression, 187
IL-6 and IL-10 production, 188–9
inflammatory and immune response, 189, 189–90
multiorgan dysfunction syndrome (MODS), 187
severe, 187
TNF-α production, 187–8
serotonin metabolism, 95–6, 96, 97
serotonin reuptake inhibitors (SSRIs), 93
serotonin transporters (SERT), 96
signal transducer and activator of transcription 3 (STAT3), 196
single nucleotide polymorphisms (SNPs), 4
sleep
active cortical neurons, 232–3
animals, 225
and cognition, 227
cognition and, 227
delta and theta rhythms, 226
detriment, sleep loss, 226
EEG sleep-related rhythms, 226
electrical brain activity, 225
exercise and inflammation, 233–4
humans, 225
and inflammation, 227–9
inflammatory molecular pathways, 229–33
innate immune system, 225
loss, detriment of, 226
non-rapid-eye movement (NREM) sleep, 225, 226
rapid eye-movement (REM) sleep, 225
restriction, 226
sleep vigilance state phenotype, 225
slow-wave activity (SWA) see delta rhythms
Smart Aging studies, older adults
cognitive function improvements
after interventions, 206
combined exercise training, 210
episodic memory, 210
overlapping hypothesis, 209–10
psychological measures, 209
results of intervention programs, 209, 209
simple arithmetic calculation problem task, 209
for cognitive improvements, 205
new intervention programs
brain training game: Brain Age, 206
combined exercise training, 206
improvement of cognitive functions, 206
learning therapy, 206
RCTs, 207–9
working memory training and strength training, 206
status epilepticus (SE), 53
strength exercise training, 206, 210, 215
stress for optimum smartness
concept of “hormesis,” 134
“disposable soma” theory, 134
entropy, 133–4
natural selection principle, 133
“negative entropy,” 133
physical activity, 133
principle of adaptation, 133
selection of complexity, 134
stretching exercises, 206, 210
strokes
atrial fibrillation, 88
high salt intake, 24
multi-infarct dementia, 85–6
Stroop color word test, 215
table salt and dementia
autoimmune responses and Alzheimer’s disease, 89–90
hypertension and RAAS
hypervolemia, hypertension sodium exchange, and ouabain, 85
physiology of blood pressure control, 84–5
salt and hypertension, 84
simple salt reduction, in diet, 84
strokes: multi-infarct dementia, 86–9
Tai Chi, 169, 169
T cells (specialized lymphocytes), 89
telomeres and Mediterranean diet (MD)
definition, 29
shortening, telomere
anti-inflammatory effects, 33
antioxidants, high concentration, 33, 34
and chromosome instability, 33
identified mechanisms, telomere length modulation, 34
leukocyte telomere length (LTL), 33
lower inflammatory and coagulation markers, 34
lower plasmatic level oxidative stress, 34
oxidative stress, reduction, 33–4
telomerase activation, 34
telomere attrition, variables affecting, 33
telomere maintenance modulation, 34
telomere-stabilizing function, 34
virgin olive oil, reducted oxidative stress, 34
and telomerase system
acidic senescence-associated β-galactosidase
activity, 32
cellular senescence, 32
cellular senescence model of aging, 32
“Hayflick limit,” 32
“shelterin” complex, 32
telomerase, 32
telomere length (TL), 29
theta rhythms, 226
total antioxidant capacity (TAC), 97
traditional/healthy dietary patterns, 94
Trials of Hypertension (TOHP), 84
tricarboxylic acid (TCA) cycle, 16, 48, 48, 51, 194
“tripartite” synapse, 242
UK Prospective Diabetes Study (UKPDS), 106
vascular dementia (VaD), 83, 163–4; see also dementia and homocysteine levels (Hcy), 76–7
hypertension and
ARIC study, 86, 87
cholesterol, 88
extracranial carotid disease, 88, 88
imaging capabilities, 86
intracranial vascular pathways, 86, 87
Prospective Studies Collaboration, 86, 86
white matter lesions (WMLs), 86, 87
VO_{2max} test criteria, 262–3
Western diet
affect/addiction
“drug addiction,” 115
“food addiction” model, 115–16
liking and wanting, distinction between, 114
and overconsumption of food, 114–15
striatal dopaminergic function, 116
wanting subsystem, 114
weight gain, 115
breast-feeding, 116
consumption, neurochemical effects
acid load and net acid excretion, 16
carbohydrates, 19–21
chronic disease-inducing properties, 16, 16
chronic visceral diseases, risk, 17
on cognitive function, 17, 17
components, metabolism and effects, 15, 16
fats, 17–19
generically modified foods, 17
high protein contents, 21–2
high salt, 22–4
processed foods, 15–16
in rodents, signal transduction processes, 16–17
depression
and anxiety, 113
omega-3 poly-unsaturated fatty acids (n-3
PUFAs), 113
serum levels of brain-derived neurotrophic factor
(BDNF), 113
diabetic retinopathy (DR), 105
diet, effects of, 117
exercise, effect of, 117
fasting, 117
high levels of omega-6 fatty acids, 68
highly refined carbohydrates, 339
high sodium levels, 339
IQ differences, 116–17
long-term consumption
brain-derived neurotrophic factor (BDNF), 342
body weight, 342
cyclic AMP response element binding protein
(CREB), 340
hippocampal and hypothalamic signaling, 340
oxidative stress, 340
receptor-mediated signal transduction
process, 341
memory, attention, working memory, and inhibition
blood–brain barrier (BBB), 113
brain-derived growth factor (BDNF), 112
combined, 112
HFS diet consumption, 111, 112
inflammatory response, 113
oxidative stress, 112–13
refined sugar, 111, 112
saturated fat, 111–12
neurodegenerative disease, 114
n-6 fatty acid, intake of, 68
and Paleolithic diet, 340
processed foods, 111
rates, 116
ratio, n-6 and n-3 fatty acids, 339
unhealthy dietary patterns, 94
What Is Life?, 135
working memory training, 206