SUBJECT INDEX

A

Academic careers: for chemistry students, 150–151; history monographs and, 341; job crisis for humanities, 392–394; limited positions in, 47, 48–51; for mathematics students, 108–110; in neuroscience, 208–209, 221; non-academic vs., 25–26; oversupply of historians for, 299–300; preparing English students for, 352, 353; student preparation for classroom teaching, 81–82; teaching assistantships as preparation for, 324, 345–346

ACS Directory of Graduate Research, 171
Admission policies, 362, 368n2
Adviser-student relationship, 200–201
Age, 192–193
American Heritage Dictionary, 252
American Higher Education (Beard), 309n2
American Scholar, The, 404
“American Scholar, The” (Emerson), 298
“Analysis and the Complex Problem of Intellectual Influence” (Zuckerman), 92n1
Apprenticeships: graduate education as, 141; “master”/“apprentice” concept, 305; not working in English, 372; postdoctoral, 48, 49, 50, 158; retained in history doctorate, 346–348; suggestions for teaching, 153–154

“Are There Too Many Ph.D.’s in Mathematics?” (Duren), 117n2
“Art as a Cultural System” (Geertz), 88
“Assessing Research-Doctorate Programs” (Ostriker and Kuh), 94n21
At Cross Purposes (Golde and Dore), 94n21
At the Helm (Barker), 164n14
Attrition: questions about, 422–423; student, 5, 187, 193; women and minorities in English programs, 360

B

Behaviorism in educational psychology, 278
Beliefs and misconceptions, 258, 266
Beyond the Culture Wars (Graff), 388
Beyond the Molecular Frontier (National Research Council), 167
Big ideas in educational psychology, 277–279
Bioengineering, 222–223
Biological sciences, 92n2
British Ph.D. programs, 59, 147–148, 163n5

C

Career counseling, 130, 131
Career paths: academic vs. nonacademic, 25–26; in doctoral programs, 49–50; education, 246; educational psychology, 282–285; employment in neuroscience, 208–209; English, 352, 353, 386–387; history,
299–300, 323–324, 341; increasing numbers of talented students, 56–57; job crisis for humanities, 392–393; limited academic employment, 47, 48–51; mathematics, 99, 124–125, 130; mismatch between training and, 26, 27, 151; neuroscience, 208–209, 221; postdoctoral apprenticeships, 48, 49, 50, 158; preparing for nonacademic careers, 51–53, 66, 81; statistics on employment, 93n14; tracking students’, 54–55. See also Postdoctoral employment; Profession

Carnegie Initiative on the Doctorate (CID): about, 6; assumptions of, 7–9, 420; benefits of multidisciplinary studies, 8–9; departments, 8; disciplines and departments included in, 6–7; evaluating postdoctoral careers of students, 55; grounding study in disciplines, 7–8; non-Ph.D.’s absent on board of, 60; PART acronym, 426; products of, 7; responsibilities of stewards, 74–75


Change: demographic influences on doctoral programs, 56; in discipline and profession of history, 299–300; expanding definitions of literature, 363–365; faculty’s resistance to, 34–35, 37; in focus of historical scholarship, 300–303; gauging effectiveness in student careers, 54–55; historical trends in graduate education, 4; ideas as incentive for, 8; implementing teaching apprenticeships, 153–154; involving graduate students in, 40–41; involving untenured faculty in, 43–44; needed in faculty attitudes and habits, 427; pressures for in mathematical discipline, 103; proposed for chemistry programs, 195–200; proposed for natural sciences, 89–91; rethinking foundations of discipline, 79; scientific revolutions and, 69–70; within English discipline, 371–372, 380–387

*Charlotte’s Web* (White), 403

*Chemical and Engineering News*, 144, 170

Chemical engineering, 167–170

Chemistry: challenges posed for chemical engineering and, 167–170; communication skills needed, 182–183; cooperation required in, 188–189; costs of proposed internships, 159–161; developing breadth of knowledge, 174–178, 196–199; developing leaders, 190–191; developing professional skills in, 181–186; discipline of, 135; empowering students in, 193–194; evaluating professional skills and knowledge offered, 143–146; exam system for, 177; final thesis in, 180–181, 199–200; focusing students on research advances, 180; foreign language skills in, 183–184; ideals of scholarly training in, 142–143; instruction in ethics, 185; interdisciplinary research in, 177–178; inviting outside lecturers, 176–177; leadership required in, 189–190; learning history of discipline, 154, 158; management and personnel skills needed in, 155, 159; mathematical framework for research in, 126; numbers of working and Ph.D. recipients in, 135–136; organizing curricula for,
175–176; preparing students for faculty career, 150–151; profiles of students in, 191–193; proposed changes for program, 195–200; research on substances, 172; research proposals in, 179–180; reward systems in programs, 202–204; shortening time-to-degree in, 149; stimulating creative research, 179, 195–196; strategies for implementing change in, 157–162; student research in, 178–179; subfields within discipline, 171; suggested enhanced curriculum for, 161, 162; suggested reforms for future faculty, 152–162; taking nontraditional paths in, 187–188; teaching vs. research, 149–150; transformation of substances, 172–173; viewing education as profession, 153

Chemists: students joining lab of, 136–137; time-to-degree for, 136, 145–150

Children, 193, 205n1

Chronicle of Higher Education, 362

Classical Mechanics (Goldstein and others), 72

Collaborative practice, becoming team players, 53

Collaborative practices: benefits of, 131; in English, 365, 366; in humanities, 410; research groups, 131–132, 155, 159

“Common Sense as a Cultural System” (Geertz), 88

Communication skills: communicating profession to public, 80–81, 82; grant writing, 157, 159, 231–232; importance of theses, 53; needed by chemistry students, 144; oral and written, 182–183; providing students with, 52–53; writing for publication, 266. See also Professional skills; Writing

Community of practice: creating guild of historians, 334–338; doctoral training as entering, 275; guild definition and, 337

Competition: among faculty, 83; between faculty and students, 39–40

Comprehensive exams, 78, 89–90

“Conference on the Future of Doctoral Education,” 366

Conflict: obscuring areas of, 370; organizing courses around, 380–382, 400; wrestling with, 373–374

Conflict of interest, 156

Conservatism: conserving important ideas, 10–11; studying discipline’s innovation and, 82–84; tenure and faculty, 35–38

Context: education and cultural, 271–273, 279–281; historical research into, 330, 331

Contradictions: cultural influences leading to, 69–70; incomplete paradigms and theories in sciences, 71–72; scientific method and, 71; within disciplines, 67, 68, 69–71, 92nn3, 4

Controversy: contested issues in English, 370, 373–374, 380–382; in history, 325–326; over unified scientific method, 71

Creativity, stimulating in research, 179, 195–196

Critical Inquiry, 413–414n13

Critical thinking: art of synthesis, 306; crucial element in education discipline, 261; learning to improve arguments, 344; risk and rigor in natural sciences, 73–76; training students in, 87. See also Independent thinking

“Crucial Elements of Scholarly Inquiry and Student Learning,” 261–263
Culture wars within humanities, 396–397
Curing untreatable diseases, 168–169
Curriculum: chemistry, 137, 157–162, 175–176; current neuroscience, 213–216; history, 292, 303–304, 320–325; innovative changes for sciences, 89; making time for student learning, 90–91; organizing around controversy, 380–382, 400; Ph.D.’s participating in K-12 mathematics, 125; required courses on scientific method, 86; requirements of English, 368–369n3; students’ views of, 42–43

D
Departments: commitment to teaching and writing, 370–371, 376–377, 383; considering change within, 43–45; fostering culture within, 347; grounding study in, 8; included in CID, 7; size of English, 351–352; starting de novo with, 421; stewardship of mathematics, 113; structure of history, 338
“Developing Scholars and Professionals” (Bass), 99
“Development of the Space-Time View of Quantum Electrodynamics, The” (Feynman), 93n13
Dictionary of the History of Ideas (Frankena), 252
Disciplines: assumptions about, 420; avoiding difference in, 299; benefits of multidisciplinary studies, 8–9; challenges within, 25–29; chemistry, 135; communicating profession to public, 80–81, 82, 299; connecting with responsibilities beyond classroom, 27–28; contradiction within, 67, 68, 69–71, 92nn3, 4; defined, 101–102; defining English, 351, 378–380; determining rigorous research in, 75–76; doctorates awarded by, 93–94n17; exploring scholarship beyond specialization, 77–79; exposing students to other, 154–155; flexibility of intellectual heritage, 298; grounding study in, 7–8; history topics overlapping with other, 301–302; included in CID, 6–7; interdisciplinary challenges for, 29–31, 227–230; learning history of, 154, 158; mathematics, 97–100; merging with history, 327–329; messiness of humanities, 391–400; principles of, 297–299; realigning humanities, 409–410; reform and stewardship of, 32; regularly rethinking foundations of, 79; role of history, 336; shared values of historians, 329–334; starting de novo with, 421; steward of, 12, 13; studying innovation and conservatism within, 82–84; subfields within chemistry, 171; understanding diversity of careers in, 58–59; unity within humanities, 400–403; viewing as means in research, 298; wrestling with conflicts in, 373–374, 379. See also Specialization; and specific disciplines
Dissertations: English, 352, 368–369n3; history, 292–293, 324–325, 340–343; mathematical, 98; mentoring students while writing, 325. See also Theses
“Do Babies Matter” (Mason and Goulden), 205
Doctor of Philosophy, 101
Doctoral education: asking new questions about, 421–423; building new model of, 423–426; challenges of
multidisciplinary fields, 240–243; conservation of important ideas, 10–11; developing depth and breadth of training, 79–80, 174–178, 196–199; generation of new knowledge, 10; history of, 3, 122; improving mathematics, 128–132; incomplete paradigms and theories in sciences, 71–72; James’ opposition to, 335, 336; “master”/“apprentice” concept of, 305; in mathematics field, 97–100; shortcomings of programs, 5; traditions of mathematical, 104; training professional generalists for history, 338–340; transformation of knowledge, 11–12. See also Education; Education (as discipline); and specific disciplines

Doctoral programs: British, 59, 147–148, 163n5; career paths in, 49–50; common challenges facing, 18–20; conservatism of faculty, 35–38; creating professional guild of historians, 334–338; creating student-centered, 204, 424–426, 427, 428; “Crucial Elements” table for, 264–265; defining research problems in, 76–77; demographic shifts and influence on, 56; design of mathematics, 115–116; developing leaders, 190–191; doctorates awarded by discipline, 93–94n17; emergence of neuroscience field, 233–234; emphasizing student needs in, 46–48; ensuring relevance of, 47; entering community of practice via, 275; expanding educational psychology, 286; expanding pool of applicants, 192–193, 194; fostering networking, 51–52, 166; German, 148, 151–152, 163nn9, 10; goals for sciences, 73; inclusive admission policies for, 362, 368n2; innovations for sciences, 89–91; introductory seminars in, 78–79; Japanese, 60; mathematics’ influence on other, 102–104; need to rethink, 94n21; in neuroscience, 207–208, 213–217, 218–221, 239–240; PART acronym describing, 426; Ph.D. and Ed.D. in education, 247; postdoctoral apprenticeships, 48, 49, 50, 158; questions for humanities, 407–412; reduced size of humanities, 394–395; responsibility for reform in, 23–25; shortening, 59, 149; signs of success in mathematics, 120; size of history departments, 292; soliciting graduate’s input on, 55; special challenges in natural sciences, 65–66; time-to-degree, 49, 129, 146–147, 149; using essays to enliven, 17–18; value of humanities, 412. See also Time-to-degree; and specific disciplines

Doctoral students. See Students

Documenting history, 330

E

Economic Interpretation of the Constitution, An (Beard), 297

Economics: economic demands on students, 42; neuroeconomics, 224; salaries and oversupply of Ph.D.’s, 57. See also Funding

Education: acknowledging sociocultural influences on, 271–273; apprenticeships in graduate, 141; challenges of science, 65–66; definitions of, 252; as discipline and enterprise, 254–255; educating historians, 305–307; German habilitation concept, 151–152, 163nn9, 10; historical changes in, 4; post-World War II expansion in, 312–313; as profession, 153; shortcomings of
doctoral programs, 5; understanding cultural context of K-12, 279–281; U.S. vs. European, 148. See also Doctoral education; Education (as discipline); Teaching; Undergraduate education

Education (as discipline): beliefs and misconceptions in, 258, 266; definitions of education, 252; field of study and enterprise, 254–255; formal knowledge within, 255–257, 260–265; influence of educational psychology in, 268; inquiry and learning in, 260–266; methodologies in, 259–260; overview of, 245–249, 253–254; practical knowledge within, 257, 263–266; practice and research in, 247; women and minorities in, 245–246. See also Educational psychology

Education of Historians for the Twenty-First Century, The (Hofstadter and Smith), 309n3


Elements of Chemistry (Lavoisier), 154

Elephants Teach, The (Myers), 385

“Employment Sector, Salaries, Publishing, and Patenting Activities of S&E Doctorate Holders” (Hoffer), 93n14, 93–94n17

Energy sources, 169

English: assigning faculty to freshman composition, 383; career paths in, 352, 353; changes within discipline, 371–372; collaborative projects in, 365, 366; commitment to teaching and writing in, 370–371, 376–377; confusion among students in, 371–372, 374–375; curriculum requirements in, 368–369n3; defining discipline of, 378–380; definitions of literature in, 363–365; dissertation in, 352, 368–369n3; joint programs with high school teachers, 385–386; linking graduate study with undergraduate research, 383–385; nonacademic career paths in, 386–387; obscuring areas of conflict and consensus in, 370; organizing courses around controversy, 380–382; paternalism toward women in, 357–359; patronizing attitudes toward minorities, 359, 360–362; pedagogy circles, 366–367; requiring courses on teaching, 382; scope of discipline, 351; size of departments of, 351–352; teaching assistantships in, 352–353, 367, 375–376; teaching creative writing, 385; wrestling with conflicts in, 373–374, 379

Epistemologies: confronting epistemological issues of knowledge, 65–66, 67; nature of historical knowledge, 296–297; shaping research, 275

Errors and Expectations (Shaughnessy), 377

Essayists: about, 15; summary of views, 419–420

Essays: assume disciplines will remaining intact, 420; descriptions of stewardship and, 9–14; how to use, 17–18; learning from, 16–20; organization within book, 15–16; as
subject index

product of CID, 7; questions framing, 9; themes across, 18–20

Ethics: instruction in chemistry programs, 183; sensitizing faculty to, 156; training in, 144, 145, 159

Etic/emic views, 274

Exams: changes for English, 365–366; exam system for chemistry, 177; mathematical qualifying, 98; preliminary neuroscience, 216–217; structure of history, 292; thesis defense, 181; time period following comprehensive, 78, 89–90; watching students perform poorly on, 306

Expert learners, 190

“Extraordinary Convergence, The” (Lanham), 414n17

F

Facts in history, 317–318, 332

Faculty: changing in attitudes and habits, 427; competing with students, 39–40; competition and loyalty among, 83; cultivating next generation of historians, 304–305; developing leadership skills of, 156–157; English department, 351–352; ethics training for, 145, 156, 159; evaluations of advising by, 42; explaining tenure issues to, 156; grant writing skills, 157, 159; institutionalized conservatism of, 35–38; involving untenured, 43–44; learning how universities function, 155–156; management and personnel skills needed, 155, 159; mentoring students, 38–40, 347; minorities and women as, 203–204; number of students becoming, 50; resistance to change, 34–35, 37; rethinking role of, 91; teaching breadth and depth of discipline, 196–199; teaching vs. research, 149–150; understanding diversity of career paths, 58–59. See also Mentoring

Failures of educational research, 272–273

Five stages of fame, 39

Flexibility of intellectual heritage, 298

Foreign language skills, 183–184

Formal knowledge, 255–257, 260–265

“From Academic Knowledge to Democratic Knowledge” (Bender), 309


Future of Doctoral Study in English, The (Lunsford and others), 378

G

Gedankenexperiment, 424, 425

Gender in chemistry programs, 182

“General Education for Graduate Education,” 89

German Ph.D. programs: habilitation concept, 151–152, 163nn9, 10; overview, 148

Globalization’s influence on knowledge, 84–85

Government: chemistry graduates employed by, 143, 160; educational methodologies influenced by, 259–260

“Graduate and Postdoctoral Mathematics Education” (Ewing), 117n2

Graduation. See Time-to-degree

Grant writing, 157, 159, 231–232

Granting of tenure, 44

Great War, The, 365
H
Habilitation concept, 151–152, 163nn9, 10
Handbook of Educational Psychology, The (Berliner and Calfee), 287
Higher Superstition (Gross and Levitt), 94n18
History: career paths in, 299–300; controversy in, 325–326; curiosity and interpretation in research, 311–312; curriculum for, 292, 303–304, 320–325; dealing with memory and facts, 317–318, 332; departmental structure, 338; epistemology of, 297; historical research into context, 330, 331; maintaining flexibility of intellectual heritage, 298; mentoring and apprenticeships in, 346–348; merging of disciplines with, 327–329; as narrative, 88, 295–296, 333; nature of historical knowledge, 296–297; objectivity in, 332–333; overview of, 291–294; public interest in discipline, 296, 299, 319; qualities of steward in, 307–309; relationships among students, 348; resistance to revisionism in, 318; rethinking courses, curriculum, and practices, 303–304; scholarship in, 300–303, 313–316; securing restitution for past wrongs, 315, 316–317; stewardship undermined in, 302–303; teaching art of synthesis, 306; time-to-degree for, 343; training professional generalists, 338–340; truth-fixing in, 299; viewing discipline as means for research, 298; writing dissertation, 292–293, 324–325, 340–343. See also Narrative
History of the Inductive Sciences from the Earliest to the Present Time (Whewell), 71
Humanities: antagonism felt toward sciences by, 85–86; collaborative practices in, 410; cultural analysis as work of, 403; culture wars within, 396–397; disorder of, 67; economic uncertainty of, 393–394; finding commonality with sciences, 86–88; messiness of, 391–400; old and new traditions within, 411–412; questions for programs in, 407–412; realigning, 409–410; reduced program size of, 394–395; responsibility and stewardship in, 404–407; rigor of studies in, 92n7; student goals after graduation, 410–411; tenure in, 405; unity within, 400–403; value of, 412. See also Education (as discipline); English; History
In Defense of Reason (Winters), 388n1
Incentive systems: encouraging reform with, 28–29, 47, 58; interdisciplinary research and, 30, 33n; reward system in chemistry programs, 202–204
Independent thinking: developing creativity and, 195–196; educating students in, 297; nurturing, 51, 74, 131; unemphasized for chemistry students, 137. See also Critical thinking
Interdisciplinary studies: bioengineering, 222–223; challenges in neuroscience, 221–224, 227–230; in chemistry, 177–178; education and, 253, 256; exploring beyond specialization, 77–79; grant writing for, 231–232; incentive systems for, 30, 33n; neuroscience, 212, 218–
“Languages of Criticism and the Sciences of Man, The”, 395
Leaders: developing, 190–191; discipline’s reform by, 23–25; responsibilities beyond classroom, 27–28
Leadership: doctoral programs developing, 190–191; providing faculty with skills in, 156–157; required in chemistry, 189–190
Learning: critical thinking, 344; in education discipline, 260–266; emphasizing context of, 271–273, 279–281; finding time for student, 90–91; functioning of universities, 155–156; history of chemistry, 154, 158; how to teach, 375; networking, 51–52, 166; to prepare and publish research, 114, 115; research crucial to, 261–264; social models in, 278
Liberal Tradition in America, The (Hartz), 312
Life in School, A (Tompkins), 372
Life sciences. See Sciences
“Literary and Cultural Studies in the Transnational University” (Miller), 398

M
Making the Humanities Count (Solow), 413n11
Management and personnel skills, 155, 159
“Master”/“apprentice” concept, 305
Mathematics: declining numbers of students, 123–125; design of doctoral programs for, 115–116; development of discipline, 104–107; ensuring societal support of, 127–128; goals and context for education in, 121–123; growth of usable knowledge, 118n4; improving doctoral education in, 128–132; influence on other doctoral programs,

Mathematics and Science (Wright and Chorin), 127

Mentoring: apprenticeships in history doctorate, 346–348; competition between faculty and students, 39–40; mathematics doctoral students, 130–131; rethinking ways of, 38–39; students through dissertation writing, 325; thesis directors and, 181

Methodologies: improving courses in educational psychology, 273–277; mathematical, 105–106; politicization of education, 259–260; scientific method, 71, 86

Microcosmographia Academica (Cornford), 35

Minorities: addressing multicultural issues in education, 286–287; awards received by, 203; cultural context of, 279–281; difficulties with composition courses, 377; in field of education, 246; hiring and promotion of, 203–204; influence on doctoral programs, 56; numbers of history Ph.D.’s among, 300; participation in graduate chemistry programs, 192; patronizing attitudes toward, 359, 360–362; recruiting by minority faculty, 156; social histories of, 313–314; underrepresented, 5

Monographs, 340, 341

Motivation, 280

Multicultural issues in education, 275–276, 286–287

Multidisciplinary studies: benefits of, 8–9; defined, 231; maintaining quality in, 229–230. See also Interdisciplinary studies

“Myths of Transformation” (Stimpson), 414n13

N

Name of the Rose, The (Eco), 385

Narrative: history as making of, 333; precedents for making, 295–296; study of, 88. See also History

Natural sciences. See Sciences

Nature of Mathematical Knowledge, The (Kitcher), 118n4

Networking, 51–52, 166

Neuroeconomics, 224


Nonacademic careers: academic employment vs., 25–26; chemistry
professions in industry, 145; for English Ph.D.’s, 353; historical
scholarship in public, 323–324; history monographs and, 341; job
crisis for humanities, 392–393; mathematics students in, 99, 110;
in neuroscience, 208–209, 221; options for English, 386–387;
preparing for, 51–53, 66, 81. See also Career paths
Nontraditional paths in chemistry, 187–188
“North American Time” (Rich), 412n1

O
“Objectivity and Historians” (Kloppenberg), 309
Objectivity in history, 332–333
“Objectivity Is Not Neutral” (Haskell), 309n1
Oedipal competition with students, 39–40
“On Proof and Progress in Mathematics” (Thurston), 118n6
Opportunities for the Mathematical Sciences (Division of Mathematical Sciences), 127
Oral and written communications, 182–183
Organization of essays, 15–16
Outside lecturers, 176–177

P
PART acronym, 426
Paternalism toward women, 357–359
Patronizing minorities, 359, 360–362
Pedagogy: offering scholarship of, 266; pedagogy circles for English
students, 366–367
“Ph.D. Degree and Mathematical Research, The” (Richardson), 117n2
“Ph.D. Octopus, The” (James), 335, 336, 337, 338
Phi Beta Kappa, 404
Political and social influences on sciences, 68–69, 84–85
“Politics, Intellect, and the American University” (Bender), 392
Pollution, 169
Postdoctoral employment: apprenticeships, 48, 49, 50, 158; mathematicians with Ph.D.’s, 99; postdoctoral
positions in neuroscience, 209; statistics on, 93n14. See also Career paths
Practicums in educational psychology, 280
Preparing a Nation’s Teachers (Franklin and others), 385–386
Principia (Newton), 69
Professing Literature (Graff), 378, 388
Profession, 362
Profession: changes in history, 299–300; chemistry professions in industry,
145; communicating to public, 80–81, 82; defined, 102, 283; education as, 153; educational psychology as, 282–285; mathematics as, 102, 103, 107–112, 113,
116–117; professional identity, 110–111, 230. See also Professional skills
Professional generalists, 338–340
Professional identity, 110–111, 230
Professional skills: developing in chemistry, 181–186; improving educational psychology technological
skills, 285–286; management and personnel skills, 155, 159;
offered in chemistry programs, 143–146; practical knowledge within education discipline, 257, 265–266; preparing history students with, 344–345. See also Communication skills; Training
“Programmatic Attempt at an Anthropology of Knowledge, A” (Elkana), 94n20
Public: communicating profession to, 80–81, 82, 299; interest in history, 296, 299, 319
Publications: communicating profession to public, 80–81, 82; fraudulent papers on research, 81, 93n13; history dissertations intended as, 292–293; neuroscience, 217; writing for, 266
“Pure” vs. “applied” sciences, 132

Q
Qualifying exams in mathematics, 98

R
Reading: foreign languages, 183–184; reading seminars, 342–344
Recruiting: expanding pool of applicants, 192–193, 194; minorities, 156
“Reenvisioning the Ph.D.,” 162
Refiguring the Ph.D. in English Studies (North), 378
Reforms: faculty’s resistance to change, 34–35, 37; incentive systems encouraging, 28–29, 47, 58; responsibility for reform, 23–25; stewardship of disciplines and, 32
Regulatory and compliance issues, 157
Relativism in history discipline, 332
Relevance of doctoral programs, 47
“Religion as a Cultural System” (Geertz), 88
Renewing U.S. Mathematics (National Research Council; Board on Mathematical Sciences), 121
Report of the AMS, ASA, MAA, and SIAM workshop on Vertical Integration of Research and Education in the Mathematical Sciences (AMS), 118n7
Report of the Senior Assessment Panel of the International Assessment of the U.S. Mathematical Sciences (Odom), 121
Research: assigned topics for student, 89–90; chemistry, 149–150, 177–179, 188–189; collaborative English projects, 365, 366; as crucial element of inquiry and learning, 261–264; curiosity and interpretation in, 311–312; defining problems for, 76–77; developing in complex environments, 281–282; in education discipline, 247; educational psychology, 270; failures of educational, 272–273; focusing students on advances in, 180; fraudulent papers on, 81, 93n13; helping students develop approaches to, 131; history, 313–316, 339, 340; learning how to prepare and publish, 114, 115; linking graduate study with undergraduate, 383–385; mathematical dissertations, 98; nature of funding in U.S., 148; preparing mathematics students for, 108; proposals in chemistry, 179–180; quality of multidisciplinary, 229–230; standards for rigorous, 75–76; stimulating creative, 179, 195–196; teaching vs., 149–150; time taken from, 129; time-to-degree and scope of, 147, 148; turmoil in education, 259–260; unable to replicate educational psychology, 282
Research assistants, 137
Research groups: management and personnel skills needed for, 155, 159; mathematics, 131–132
Reshaping the Graduate Education of Scientists and Engineers (COSEPUP), 117n2
Restitution for past wrongs, 315, 316–317
Retaining creative students, 187, 193, 199–200

Rethinking American History in a Global Age (Bender and others), 309n3

“Rethinking—Not Unthinking—the Enlightenment” (Elkana), 94n20

Revisionism in history, 318

Rewards. See Incentive systems

Rigor in social studies, 92n7

S

S/Z (Barthes), 385

Scholarship. See Research

Sciences, 65–96; antagonism felt toward, 85–86; arguing in favor of symmetry rules and beauty, 87–88; biological sciences, 92n2; communicating discipline to public, 80–81, 82; confronting epistemological issues, 65–66, 67; defining research problems in, 76–77; developing depth and breadth of training in, 79–80, 174–178, 196–199; embracing risk and rigor in, 73–76; finding commonality with humanities, 86–88; incomplete paradigms and theories in, 71–72; innovative changes proposed, 89–91; mathematics in frontiers of, 126–127; neuroscience and relationship to life, 218–221; political and social influences on, 68–69, 84–85; “pure” vs. “applied,” 132; required courses on scientific method, 86; scientific method, 71, 86; special challenges in graduate education for, 65–66; stewardship in, 72–73

Scientific Knowledge (Barnes and others), 92

Scientific method: controversy over unified, 71; required courses on, 86

Seminars: introductory doctoral, 78–79; suggestions for history reading, 342–344

Sensitivity training, 156

Shortening doctoral programs, 59

“Should Doctoral Education Change?” (Jackson), 117n2

Skills. See Communication skills; Professional skills

Social models in learning, 278

Social sciences. See Humanities

Social Studies of Science (Stolzenberg), 94n18

Social Theory and Social Structure (Merton), 92n1

Sociocultural influences on education, 271–273

“Socio-Economic Roots of Newton’s Principia, The” (Hessen), 92

Sokal Affair, 69, 94n18, 397

“Sokal Affair and the History of Criticism, The” (Guillory), 394, 401

Sokal Hoax (Labinger and Collins), 94

Specialization: avoiding in sciences, 66; community of research in areas of, 113; in educational psychology, 287–288; exploring disciplines beyond, 77–79; neuroscience and areas of, 215

Starting de novo: building education model for, 423–426; designing doctoral program by discipline, 424; history timeline for, 320–325; questioning disciplines and departments, 421; student-centered doctoral programs, 204, 424–426, 427, 428

Statistics: comparison of doctorates by discipline, 394; doctoral employment, 93n14; earned mathematic Ph.D.’s, 98, 117n3; history Ph.D.’s among minorities and women, 300; number of faculty and students in English departments, 351–352; Ph.D. chemists, 135–136; using in educational psychology, 274

Steward of disciplines: communicating discipline to public, 80–81, 82; defined, 5, 12–13; developing,
13–14, 72–88; emphasizing student needs in discipline, 46–48; humanities, 404–407; in neuroscience, 224–225; nurturing next generation of historians, 304–305; principles of, 12–13; qualities of steward in history, 307–309; reform and, 32; responsibilities of, 74–75, 111–112; roles and skills of steward, 9–12, 13; for sciences, 66; stewardship of mathematics, 113–115; studying biographies of past, 80; undermining, 302–303; understanding diversity of careers in discipline, 58–59

*Strengthening the Linkages Between the Sciences and the Mathematical Sciences* (National Research Council), 133–4n

*Structure of Scientific Revolutions* (Kuhn), 69

Student-centered doctoral programs, 204, 424–426, 427, 428

Students: arguing in favor of symmetry rules and beauty, 87–88; assigned research topics, 89–90; attrition of, 5, 187, 193; beliefs and misconceptions about education, 258, 266; challenges for science, 63–66; communication skills for, 52–53; competition with mentors, 39–40; confusion among English doctoral, 371–372, 374–375; cultivating depth and breadth in training, 79–80, 174–178, 196–199; declining numbers of mathematics, 123–125; developing critical thinking, 73–76, 87; dissertation-writing groups for, 325; economic demands on, 42; educating in independent thinking, 297; elements of study in education discipline, 260–266; emphasizing needs in doctoral programs, 46–48; empowering chemistry, 193–194; evaluation of faculty, 42–43; exploring disciplines beyond specialization, 77–79, 154–155; finding time for learning, 90–91; first year of *de novo* history timeline, 320–323; focusing on research advances, 180; following careers of, 54–55; funding for mathematics, 98–99, 121, 122; importance of becoming team player, 53; increasing numbers of talented, 56–57; involving in departmental change, 40–41; joining faculty chemist’s lab, 136–137; learning about K-12 cultural context, 279–281; limited academic employment opportunities, 25–26, 47, 48–51; mentoring, 38–40, 131; networking, 51–52, 166; number of in English departments, 351–352; nurturing as next generation of historians, 304–305; nurturing independent research and thought of, 51, 74, 131; overview of chemistry programs for, 136–137; paternalism toward women, 357–360; preparing for faculty career, 150–151; profiles of chemistry, 191–193; promoting careers in mathematics, 124–125, 130; questions about graduate school experience, 422; relationship with adviser, 200–201; research in education discipline, 247; retaining creative, 187, 193, 199–200; second year of *de novo* history timeline, 323–324; soliciting input on doctoral programs, 55; teaching art of synthesis, 306; teaching preparation for, 81–82; value of relationships among, 348

Studying past stewards, 80

Substances: detecting dangerous, 168; learning to manufacture new, 167;
research on, 172; transformation of, 172–173
Synthesis, 306

T
Teaching: apprenticeships in, 153–154; breadth and depth of discipline, 196–199; commitment in English departments to, 370–371, 376–377; creative writing, 385; deficiencies in preparation for, 26; developing mathematician's skills for, 115; education as profession, 153; emphasizing learning in context, 271–273; intensive course on, 158; learning by doing, 375; preparing students for, 81–82, 108–109, 130, 265–266; relation between doctorate and good, 336–337; requiring courses and workshops on, 382; research vs., 149–150; skills needed for chemistry, 184–185; training required in, 345; undergraduate writing courses, 376–377. See also Education (as discipline); Teaching assistants
Teaching assistants (T.A.'s): chemistry, 137, 184–185; English students as, 352–353, 367, 375–376; history students as, 324, 345–346; mathematics graduate students as, 98–99, 121, 129, 130
Team players, 53
Tenure: explaining issues to new faculty, 156; faculty conservatism and, 36–37; granting of, 44; involving untenured faculty in change, 43–44; standards for, 405
That Nobel Dream (Novick), 309
Theories of Learning (Hilgard), 277
Theses: chemistry, 180–181, 199–200; importance of, 53; neuroscience, 218; replicating findings of educational psychology, 283. See also Dissertations
“Thick Description” (Geertz), 88, 403
Thinking. See Critical thinking; Independent thinking
“Time for Change?, A” (Chan), 99
Time-to-degree: averages for, 146; for chemists, 136, 145–150; history doctorates, 292, 343; shortening, 129, 149
Towards Excellence (Ewing), 121
Training: ethics, 144, 145, 159; ideals of in chemistry, 142–143; mismatch between career tasks and, 26, 27, 151; professional generalists, 338–340; required for teaching, 345; sensitivity, 156; in technology, 285–286. See also Professional skills
Transformation of knowledge, 11–12
Travels and Adventures of Serendipity, The (Merton and Barber), 93n13
“2001 Annual Survey of the Mathematical Sciences, Second Report,” 125

U
Undergraduate education: linking English graduate study with, 383–385; questions with “right” answers, 196; writing courses, 376–377
Unity within humanities, 400–403
Universities, learning functioning of, 155–156
University in Ruins, The (Readings), 398
Untenured faculty, 43–44
Uses of the University, The (Kerr), 37

V
Variational Principles of Mechanics, The (Lanczos), 72
W

What is English? (Elbow), 378
Women: awards received by, 203; decreases in history Ph.D.'s, 300; in field of education, 245–246; hiring and promotion of, 203–204; number in advanced degree programs, 5, 352, 358; participation in graduate chemistry programs, 192, 202–203; paternalism toward, 357–360; social histories of, 313–314
Writing: commitment in English departments to, 370–371, 376–377, 383; communicating profession to public, 80–81, 82; creative, 385; English dissertation, 352, 368–369n3; fraudulent papers on research, 81, 93n13; grants, 157, 159, 231–232; history dissertation, 292–293, 324–325, 340–343; neuroscience publications, 217; publications in education discipline, 266; teaching undergraduates, 376–377.
See also Dissertations; Theses