INDEX

Abdel-Hamid, Tarek, 4, 10, 25, 27, 47, 51, 221, 265, 362, 374, 378, 392, 460, 474, 496, 531, 533–535, 556
Abdel-Hamid’s integrated project dynamics model, see Integrated project dynamics model
Acuña, Silvia, 221, 260, 265, 267, 273, 362, 482, 531, 535
Acquisition models, 490
Agile and hybrid processes, 235, 482, 488.
See also Hybrid process model
Agile methods, 37
Agile team size, 235
Architecting, see Software architecting
Artificial intelligence, 474
Attribute averaging, 187
Attribute tracking, 186
Attrition, 257
Auxiliaries 15, 57, 159
examples, 59, 159
model formulation, 89
Balancing feedback model infrastructure, 175
Barros, Márcio, 28, 157, 473, 476, 478, 491, 535, 536–539
Brooks, Fred, 16, 20, 47, 426, 428, 441
Brooks’s Law, 10, 16, 426
model behavior, 19
model equations, 18
team partitioning, 464, 465
Burnout, 224. See also Exhaustion
Business processes, 395, 490. See also Software business case analysis
Capabilities of people, 260, 267
Capability maturity models, 41, 327. See also Software process improvement
Capability Maturity Model-Integrated
(CMMI), 41, 220, 364
key process areas, 42
FAA-iCMM, 41
key process area modeling, 354
level five and employee motivation, 252
model example for, 343–362
People Capability Maturity Model, 41, 220
simulation uses at CMM levels, 43
Software Acquisition Capability Maturity Model (SA-CMM), 41
Software Capability Maturity Model
(CMM or SW-CMM), 7, 41, 220
Causal (loop) diagram, 79
Causal relations, 81
Change
defferral, 241
organizational, 462

Software Process Dynamics. By Raymond J. Madachy
Copyright © 2008 the Institute of Electrical and Electronics Engineers, Inc.

593
Change (continued)

traffic, 239, 479
rapid, 239, 479
Christie, Alan, 28, 261, 262, 268, 542
Closed system, 12
Coincident flows (coflows), 96, 164
effort expenditure, 187
defects, 196, 397
Collaboration, 261, 268
Constructive Cost Model (COCOMO)
calibration for inspection model, 277, 288
cost driver derivation from simulation
model, 285
detailed, 285
dynamic, 125, 239, 243, 397
dynamic modeling vs. COCOMO for
learning, 263
experience factors in Brooks’s Law model, 20
experience factors and learning curves, 231
job size for integrated project dynamics
model, 386
people factors, 218
platform volatility factor, 243
process and product factors, 270
project and organization factors, 370
reliability factor in value-based product
model, 399
reuse model, 300
static modeling vs. dynamic modeling, 25,
218
system dynamics and, 551
Constructive Quality Model (COQUALMO), 331, 365
Collofello, James, 28, 263, 338, 475,
540–541, 556, 558, 560
Commercial off-the-shelf (COTS) software, 38, 238, 309, 484. See also COTS
Communication overhead, 17, 303
Abdel-Hamid’s integrated project model
and, 382
Brooks’s Law model and, 17, 19, 464, 465
COCOMO model and, 218
Component-based model development, 476
Confidence intervals, 525
calculation, 527
Connectors and feedback loops, 160. See also
Information links
Conserved flows, 55
Conserved versus nonconserved product
flow, 194
Construction iterations in the modeling
process, 104
Continuous model improvement, 131
Continuous systems modeling, see System
dynamics
Control and operational management
applications, 28
Control systems theory, 11
COTS and process concurrence, 437
COTS glue code development and COTS
integration application model (Kim,
Wook), 310–317
application development, 315
COTS component factors, 314
glue code development, 312
model overview, 311
test results, 316
COTS-based systems (CBSs), 309, 366
COTS-Lifespan Model (COTS-LIMO), 317
Cybernetics, 10–11
Cyclic modeling process, 70
Data collection, 134
Decision structures, 188
Defect analysis for process improvement,
327
Defect coflows, 196, 397
Defects and quality, 327
Defects as levels, 158
Defect dynamics example application model
(Abdel-Hamid), 328–330
Defect chain model infrastructures, 196, 327
amplification, 199, 365
categories, 200
detection (filters), 197
generation and propagation, 196, 365
multiplication, 199
rework, 197
Defect removal techniques and Orthogonal
Defect Classification (ODC)
application model (Madachy),
330–337
Defect rework policies, 191
Defense Modeling and Simulation Office
(DMSO), 8, 472, 473, 476
Delays, 93, 169
cascaded, 173
higher-order, 173
hiring, 172
model structures, 93
DeMarco, Tom, 219, 227, 255, 258, 261, 265, 267, 268, 499, 531, 542
Desired staff model structure, 188
Discrete event simulation, 24, 55, 469, 471
inspections, 275
product attributes, 269, 273
Distributed global development, 480
Dynamic COCOMO, 125, 239, 243, 397
Dynamic process models, 7
Dynamics, 5
Earned value, 442
general project procedures, 449
Earned value application model (Madachy), 450–460, 466
Litton applications, 460
testing, 452
usage, 456
Effort expenditure instrumentation, 187
Empirical data collection for simulation models, 493
Empirical research and theory building, 492
Endogenous view, 79
Error detection rate, 330
Evolutionary development, 31
Exhaustion model, 222–227, 567
Experimental design, 523
Exponential decay, 172
Exponential growth, 166. See also Positive feedback
Feedback loops, 11, 132
Feedback opportunities in organizations, 371
Feedback systems
concepts applied to software process, 10
Fernández-Ramil, Juan, 238, 488. See also Ramil, Juan
Fifth Discipline, 5, 9
Flight simulation, 5, 23, 263
Flow, see Rate
Flow chains, 156
generic flows in model formulation, 85
identification of in modeling process, 84
infrastructures, 192
Ford, David, 237, 322, 423, 424, 466
Forrester, Jay, 4, 6, 47, 53, 54, 61, 118, 119, 134, 142, 145, 203, 488, 496
Fourth-generation languages, 39, 301
Game playing, 475, 479. See also training
Generic flow processes, 155, 160
adjustment process, 163
coflow process, 164
compounding process, 162
cyclic loop, 165
draining process, 163
flow chain, 161
production process, 163
rate and level system, 160
split flow process, 165
stock and flow, 160
Global (process) feedback, 13, 291
Glue code, see COTS Glue code
Goal–question–metric (GQM) framework, 135, 477
application to inspection modeling, 138
Goal-seeking behavior, 61
Goodness-of-fit tests, 521
Heuristics, 60
modeling heuristic summary, 148
Hiring delays, 256
Hybrid process (agile and plan-driven)
application model (Madachy et al.), 235–252
model overview, 240
scalable spiral model, 238
scenarios and test results, 246
software value, 249
tradeoff functions, 243
Houston, Dan, 27, 341, 473, 544–545
Humphrey, Watts, 220, 253, 258, 265
Hybrid modeling, 24, 469, 491, 551
Hypotheses in the modeling process, 132
Hypothesis testing, 525
Incremental development, 30, 239
Information links 15, 58, 160
equations, 90
examples, 58, 160
model formulation, 89
nonconservation of, 58
Information smoothing, 63, 180
Infrastructures, 155
 examples, 59
Infrastructures and behaviors, 166–192
 balancing feedback, 175
 delays, 169
 exponential growth, 166
 integrated production structure, 183
 oscillation, 177
 personnel learning curve, 183
 production and rework, 182
 smoothing, 180
 S-shaped growth and S-curves, 167
Inspection model (Madachy), 195, 196, 199, 200, 202, 203, 210, 279, 365, 413
 calibration, 277
 demonstration and evaluation, 281
 derivation of detailed cost driver, 285
 industrial data collection and analysis for, 276
 modification for walk-throughs, 289
 overview, 277
 validation, 287
Inspection process data calibration, 289
Inspection-based process, modeling, 275
Integrated measurement and simulation, 136
 control sector, 385
 exhaustion model, 222–227
 follow-ons to Abdel-Hamid’s work, 393
 human resources sector, 374, 567
 insights and implications, 392–393
 manpower allocation sector, 378
 personnel sector 222–224, 267
 planning sector, 375
 quality assurance and rework sector, 328, 382
 software development productivity subsector, 380
 software development sector, 379
 software production sector, 378
 system testing sector, 384
ISO 9000, 44
ISO/IEC 15504, 44
Iterative development, 32
 compared to waterfall life-cycle process, 39
Iterative modeling process, 68
Johnson, Margaret, 265, 267, 373, 394, 395, 477, 545, 567, 568
Kellner, Marc, 22, 23, 24, 26, 28, 29, 47
Knowledge diffusion example model, 169
Knowledge-based simulation, 474
Learning, 227
Learning curves, 229, 267, 302
 comparison with COCOMO experience data, 231
 fixed learning functions, 234
 language levels and, 302
 models, 231
Levels (stocks) 15, 57, 157
 examples, 58, 157
 initialization and equilibrium, 101
 model formulation, 86
 oscillation and, 86
 state variables, 59
Lin, Chi, 234, 393, 394, 550
Litton, 209, 263, 276, 277, 288, 460
Martin, Robert, 24, 27, 553
Mental models, 9, 10, 118
Meta-models (general modeling techniques), 491–492
Metamodels (system dynamics), 478, 491
Mission control centers, analysis, and training facilities, 494, 500
Model analysis, 473
Model assessment, 116
Model building principles, 101
Model conceptualization, 75
 endogenous view, 79
Model elements, 155, 157
 auxiliaries, 159
 connectors, 160
 feedback loops, 160
 flows, 159
 levels, 157
 sources and sinks, 159
 rates, 159
 stocks, 157
Model formulation and construction, 83
 accuracy, 99
 addition and multiplication of effects, 95
 assigning parameter values, 99
 auxiliaries, 89
 basic patterns, 90
 bounds, 100
 coincident flows (coflows), 96
 connectors, 90
 feedback loops, 90
 generic flows, 85
 graph and table functions, 96
 overtime multiplier function, 97
 level initialization and equilibrium, 101
 levels, 86
 major flow chains, 84
 model sectors, 84
 negative (balancing) feedback, 94
 oscillation, 86
 parameters and validity, 100
 plumbing, 85
 positive (reinforcing) feedback growth or
 decline, 92
 rate equations, 90
 constant rate with a level, 91
 variable rate with a level, 91
 rates, 89
 snapshot test, 87
 sources and sinks, 88
 time delays, 93
 time horizon considerations, 87
 top-level, 84
Model infrastructures, see Infrastructures
Model integration, 103, 489
 common unified models, 489
 meta-model integration, 491
 related disciplines and business processes, 490
Model refinement, when to stop, 133
Model response surface, 524

Model sensitivity analysis, 121
Model structures, see also Infrastructures
 and general behaviors, 65
 and component-based model development, 476
Model types, 7
Model validation, 117
 tests, 119, 120, 121
Modeling communication, 139
Modeling documentation and presentation, 141
Modeling heuristics, see Heuristics
Modeling tools, 142
Model-Based Systems Architecting and
 Software Engineering (MBASE), 32,
 36, 70, 319, 466
Monte Carlo analysis, 125, 262, 474, 515
 inverse transform, 515
Motivation, 252
 overtime function, 253
Motorola, 45, 263, 327
NASA, 234, 330, 331, 343, 346, 393
Negative feedback, see also Balancing
 feedback
 as balancing feedback, 175
 general behavior, 62, 63, 67
 in personnel hiring, 172
 model structure, 63, 94, 175
Negotiation, 261
Networked simulations, 475, 498
Nonconserved information, 55
Object-oriented
 framework for model structures, 156
 methods, 478
Open source software development, 486
Open system, 11, 12
Open-source software, 38, 486–488
Opportunity trees, 212
 people, 219
 process and product, 271
 project and organization, 370
Orthogonal defect classification (ODC), 200,
 328, 330
 example model for, 330–333
Oscillation, 61, 177
 and multiple levels, 86
 model structures for, 178
INDEX

Osterweil, Leon, 22, 23, 24, 25, 47
Overtime, 253, 267
 multiplier, 97, 253

Peer reviews, 274, 276. See also Inspections, Walk-throughs
People, see also Personnel
 applications, 217–268
 COCOMO cost model factors, 218–219
 model infrastructures for, 200–203
People maturity model, 41, 220
People subsystem, 352
Peopleware, 219, 258, 261, 265, 268
Perceived quality, 181
Personnel chain model infrastructures, 200
 chain examples, 203
Personnel hiring and retention, 256
Personnel learning curve, 183
Personnel pools, 201
Personnel (resource) allocation, 15, 411
 allocation policy, 411
 contention models, 411
 dynamic resource allocation with initially
 fixed levels, 413
 parameterized allocation profiles, 413
 project contention, 414
 squeaky wheel gets the grease, 411
Personnel sector model (Abdel-Hamid), 222–223, 267
Personnel talent supply and demand, 488. See also Workforce
Personnel training, simulation for, 263. See also Software manager training,
 Training
Planning applications, 26
Policy analysis, 126
Policy parameter changes, 127
Policy structural changes, 128
Policy suitability and feasibility, 130
Policy validity and robustness, 129
Positive feedback
 exponential growth, 92, 166
 general behavior, 62, 63, 67
 model structure, 63, 92
Powell, Anthony, 27, 237, 238, 555
Probability, 502
 empirical, 513
 gamma, 511
 interpreting, 505
 lognormal, 509
 measures of location, variability, and
 symmetry, 506
 normal, 509
 PERT, 509
 triangular, 508
 uniform, 508
Problem definition, 73
Process and product modeling applications, 269
Process and product opportunity tree, 271
Process concurrence, 322, 423–442, 466
 architecting, 322
 COTS, 437
 external process concurrence, 428
 internal process concurrence, 426
 phase leverage analysis with process
 concurrence, 432
 RAD example of external process
 concurrence, 432
 systems engineering staffing
 considerations, 433
 trying to accelerate software development, 425
Process flight simulation, see Flight simulation
Process improvement, see also Software
 process improvement
 capability maturity models, 41
 ISO 9000, 41
 ISO/IEC 15504, 41
 overview, 40
 Six Sigma, 41
 technology adoption applications and, 28
Process improvement model, 274
Process life-cycle models, 29
Process model types, 23
Process performance, 213
Process and product applications, 269–368
Production structure, 182–183
Product(s), see Software product(s)
Product quality, see Quality
Project and organization applications, 369–468
Project feedback (using simulation for), 13
INDEX

Project management in the modeling process, 138
Project workforce modeling, 222
Project rescoping framework, 14
Prototyping, 36
Putnam, Larry, 419, 425, 466

Quality
 defects and, 327
 lost, 367
 perceived, 181, 400
 representative attributes of, 272
Quality assurance tradeoffs, 330
Quality assurance model sector, 382
Quality modeling and value functions, 399

Ramil, Juan, 27, 273, 291, 293, 296, 484, 549, 558. See also Fernández-Ramil, Juan
Raffo, David, 24, 47, 275, 475, 481, 493, 551, 555
Rates (flows) 15, 57, 159
 equations, 90
 examples, 58, 159
 model formulation, 89

Rational Unified Process (RUP), 32, 319, 466
Rayleigh curve models, 366, 418–422
 calibrated to COCOMO, 397
 defect modeling, 333, 422
 model enhancements, 422, 465, 466
 Rayleigh curve generator, 185
 Rayleigh manpower distribution model, 418
 system dynamics implementation, 419
Rayleigh curves for staffing profiles, 397, 417, 418
 dynamic requirements changes, 422
 incremental development, 422
 Rayleigh curve versus flat staffing, 422
Reengineering, 38
Reference behavior, 76, 115, 282
 patterns, 74
Reliability
 attribute of quality, 272
 required software reliability cost factor, 270
 modeling, 399, 400
 sweet spot, 409
Requirements
 evolution and volatility, 337
 process inputs, 11
 volatility, 333, 466
Requirements volatility application model (Ferreira), 337–343
 causal model, 340
 results, 342
 simulation model, 341
Resource allocation, see also Personnel resource allocation
 model infrastructures for, 190
Reuse, 38. See also Software reuse
Rework model structure, 182
Richardson, George, 53, 54, 64, 69, 74, 80, 119, 127, 142, 146, 227
Richmond, Barry, 9, 53, 64, 146, 204, 227
Risk analysis, 502
Risk management, 140
Royce, Walker, 30, 32, 36, 47, 460
Rubin, Howard, 28, 258, 264, 265, 394, 557
Rus, Ioana, 27, 478, 558
Sample size, 525
Scacchi, Walt, 24, 487, 488, 490, 499
Scalable spiral model, 238
Scheduled completion date model structure, 190
S-curves, 167. See also S-shaped growth
Sensitivity analysis, 123
Simulation
 definition of, 8
 introduction, 4
 knowledge-based, 474
 modeling process and, 110
 networked, 475
 personnel training and, 263
 statistics of, 501
Simulation environments and tools, 472
Simulation input, analysis of, 521
Simulation output, analysis of, 525
Simulation report, 143
Six Sigma, 44, 367
Skills, 260
Slack (time), 227, 255, 267
Smoothing of information, 63, 180
Snapshot test, 87
Software Acquisition CMM (SA-CMM), 41
Software architecting application model
(Fakharzadeh, Mehta), 319–327
empirical reference data, 320
model overview, 321
Software business case analysis, 395
Software Capability Maturity Model (CMM
or SW-CMM), 41. See also Capability Maturity Models
Software Engineering Institute (SEI), 7, 24,
41, 309, 339, 343
Software evolution, 291. See also Global process feedback
open-source systems and, 488
Software evolution progressive and anti-regressive application model (Ramil),
293–299
model overview 295
calibration and experimentation, 296
Software entropy, 167, 367
Software life-cycle phases and modeling steps, 69
Software manager training, 263, 264, 460
Software metrics, 134
etiquette, 463
Software process, 7
Software process chain infrastructures, 192
Software process control system, 13
Software process improvement (SPI), see also Capability maturity models,
Process improvement simulation in support of, 343
Software process improvement application model (Ho), 346–362, 367
high-level feedback, 347
KPA processing subsystem, 354
life-cycle subsystem, 351
model changes, 357
people subsystem, 352
sensitivity analysis, 360
test runs, 359
Xerox adaptation, 354
Software process model types, 23
Software process modeling overview, 22–26
characterization, 26
characterization matrix, 27
discrete, 24
hybrid, 24
major models, 27
modeling approaches, 23
Software process simulation technology, 469
Software process technology, 22
Software product chain infrastructures, 193
chain examples, 195
Software production rate, 14
Software project management simulator, 337
Software project dynamics, 4, 5, 10. See also Abdel-Hamid, Tarek
Software Project Management Simulator (SPMS) model, 338
Software reliability, see Reliability
Software reuse, 299
Software reuse and fourth-generation languages application model (Lo),
301–309
model description, 302
results, 304
Spiral model, 33
modeling process usage, 70
scalable spiral model, 238
WinWin spiral model, 35
Spreadsheets, 26
S-shaped growth and S-curves, 167
Staffing, see also Personnel applications, 416
calculation parameters, 245
desired staff model structure, 188
Dynamic COCOMO, 125, 243, 397
integrating Rayleigh curves, process concurrence, and Brooks’s interpretations, 441
process concurrence modeling for staffing profiles, 423–442. See also Process concurrence
Rayleigh curves for staffing profiles, 417, 418–422
Stallinger, Friedrich, 268, 559
State variables, 6, 59
Static versus dynamic modeling, 25
Steady-state behavior, 113
Steady-state conditions, 112
Sterman, John, 53, 121, 146, 237, 322, 423,
424, 466, 476, 502
Stock, see Level
Stock and flow representation, 14
Strategic management applications, 26
Sweet spot (determination of), 405
System boundary, 70, 78, 148, 149
System dynamics, 3, 5, 8, 11, 14, 16, 24, 25, 54
background, 54
continuous view, 55
heuristics, 60
mathematical formulation, 56
structure of a model, 59
model element summary, 15
model elements, 56, 57
auxiliaries, 57
information linkages, 58
level, 57
rate, 57
sources and sinks, 57
notation, 56
numerical integration, 59
potential pitfalls, 60
System feedback, see Feedback
Systems (definition of), 6
closed (closed loop), 6, 11
combined, 6, 7
continuous, 6, 7
discrete, 6, 7
dynamic, 6, 7
open (open loop), 6, 11
static, 6
variables, 6
Systems of systems, 236, 483
software-intensive, 235, 236, 483
Systems thinking, 3, 8, 10
compared to system dynamics, 9
Team communication, 260
Team composition, 234
Team issues, 139
Team partitioning, 464, 465
Team size, 235
Test functions, 113
Time horizon, 87
Training
game playing and, 475
software project management, 263, 264, 460
simulation for, 4, 263
Training and learning applications, 28
Training overhead in Brooks’s Law model, 17, 19
Tvedt, John, 138, 195, 196, 210, 237, 275, 341, 365, 544, 560
U.S. Defense Modeling and Simulation Office (DMSO), 8, 472
Usability of simulation tools, 473, 498
User- and people-oriented focus, 482
Value-based product application model (Madachy), 396–411
applications, 402
model overview, 397
quality modeling and value functions, 399
Value-based software engineering, 396
Walk-throughs, 288. See also Peer reviews
Waterfall (life-cycle) process, 29
compared to iterative process, 39
Weinberg, Gerry, 10, 47, 51, 152, 220, 265, 268, 416, 467
Wernick, Paul, 27, 291, 292, 293, 547, 561–562
WinWin spiral model, 35, 70, 262
Work breakdown structure for modeling, 142, 144
Workforce modeling, 222
desired workforce levels, 223
Workforce shortage, 258, 268, 499
causal loop, 259
Xerox Corporation, 354, 357, 361
Yourdon, Ed, 265, 393, 563