CONTENTS

Foreword xiii

Barry Boehm

Preface xvii

PART 1 FUNDAMENTALS

Chapter 1 Introduction and Background 3
1.1 Systems, Processes, Models, and Simulation 6
1.2 Systems Thinking 8
 1.2.1 The Fifth Discipline and Common Models 9
 1.2.2 Systems Thinking Compared to System Dynamics 9
 1.2.3 Weinberg’s Systems Thinking 10
1.3 Basic Feedback Systems Concepts Applied to the Software Process 10
 1.3.1 Using Simulation Models for Project Feedback 13
 1.3.2 System Dynamics Introductory Example 14
1.4 Brooks’s Law Example 16
 1.4.1 Brooks’s Law Model Behavior 19
1.5 Software Process Technology Overview 22
 1.5.1 Software Process Modeling 22
 1.5.2 Process Lifecycle Models 29
 1.5.3 Process Improvement 40
1.6 Challenges for the Software Industry 45
1.7 Major References 47
1.8 Chapter 1 Summary 48
1.9 Exercises 49

Major References 47
Chapter 2 The Modeling Process with System Dynamics 53
 2.1 System Dynamics Background 54
 2.1.1 Conserved Flows Versus Nonconserved Information 55
 2.1.2 The Continuous View Versus Discrete Event Modeling 55
 2.1.3 Model Elements and Notations 56
 2.1.4 Mathematical Formulation of System Dynamics 56
 2.1.5 Using Heuristics 60
 2.1.6 Potential Pitfalls 60
 2.2 General System Behaviors 61
 2.2.1 Goal-Seeking Behavior 61
 2.2.2 Information Smoothing 63
 2.2.3 Example: Basic Structures for General Behaviors 63
 2.3 Modeling Overview 64
 2.3.1 An Iterative Process 68
 2.3.2 Applying the WinWin Spiral Model 70
 2.4 Problem Definition 73
 2.4.1 Defining the Purpose 73
 2.4.2 Reference Behavior 74
 2.4.3 Example: Model Purpose and Reference Behavior 75
 2.5 Model Conceptualization 75
 2.5.1 Identification of System Boundary 78
 2.5.2 Causal Loop Diagrams 79
 2.6 Model Formulation and Construction 83
 2.6.1 Top-Level Formulation 84
 2.6.2 Basic Patterns and Rate Equations 90
 2.6.3 Graph and Table Functions 96
 2.6.4 Assigning Parameter Values 99
 2.6.5 Model Building Principles 101
 2.6.6 Model Integration 103
 2.6.7 Example: Construction Iterations 104
 2.7 Simulation 110
 2.7.1 Steady-state Conditions 112
 2.7.2 Test Functions 113
 2.7.3 Reference Behavior 115
 2.8 Model Assessment 116
 2.8.1 Model Validation 117
 2.8.2 Model Sensitivity Analysis 121
 2.8.3 Monte Carlo Analysis 125
 2.9 Policy Analysis 126
 2.9.1 Policy Parameter Changes 127
 2.9.2 Policy Structural Changes 128
 2.9.3 Policy Validity and Robustness 129
 2.9.4 Policy Suitability and Feasibility 130
 2.9.5 Example: Policy Analysis 130
 2.10 Continuous Model Improvement 131
 2.10.1 Disaggregation 132
2.10.2 Feedback Loops
2.10.3 Hypotheses
2.10.4 When to Stop?
2.10.5 Example: Model Improvement Next Steps

2.11 Software Metrics Considerations
2.11.1 Data Collection
2.11.2 Goal–Question–Metric Framework
2.11.3 Integrated Measurement and Simulation

2.12 Project Management Considerations
2.12.1 Modeling Communication and Team Issues
2.12.2 Risk Management of Modeling Projects
2.12.3 Modeling Documentation and Presentation
2.12.4 Modeling Work Breakdown Structure

2.13 Modeling Tools

2.14 Major References

2.15 Chapter 2 Summary
2.15.1 Summary of Modeling Heuristics

2.16 Exercises

Chapter 3 Model Structures and Behaviors for Software Processes
3.1 Introduction

3.2 Model Elements
3.2.1 Levels (Stocks)
3.2.2 Rates (Flows)
3.2.3 Auxiliaries
3.2.4 Connectors and Feedback Loops

3.3 Generic Flow Processes
3.3.1 Rate and Level System
3.3.2 Flow Chain with Multiple Rates and Levels
3.3.3 Compounding Process
3.3.4 Draining Process
3.3.5 Production Process
3.3.6 Adjustment Process
3.3.7 Coflow Process
3.3.8 Split Flow Process
3.3.9 Cyclic Loop

3.4 Infrastructures and Behaviors
3.4.1 Exponential Growth
3.4.2 S-Shaped Growth and S-Curves
3.4.3 Delays
3.4.4 Balancing Feedback
3.4.5 Oscillation
3.4.6 Smoothing
3.4.7 Production and Rework
3.4.8 Integrated Production Structure
3.4.9 Personnel Learning Curve
PART 2 APPLICATIONS AND FUTURE DIRECTIONS

Introduction to Applications Chapters 211

Chapter 4 People Applications 217
4.1 Introduction 217
4.2 Overview of Applications 221
4.3 Project Workforce Modeling 222
 4.3.1 Example: Personnel Sector Model 222
4.4 Exhaustion and Burnout 224
 4.4.1 Example: Exhaustion Model 224
4.5 Learning 227
 4.5.1 Example: Learning Curve Models 231
4.6 Team Composition 234
 4.6.1 Example: Assessing Agile Team Size for a Hybrid Process 235
4.7 Other Application Areas 252
 4.7.1 Motivation 252
 4.7.2 Personnel Hiring and Retention 256
 4.7.3 Skills and Capabilities 260
 4.7.4 Team Communication 260
 4.7.5 Negotiation and Collaboration 261
 4.7.6 Simulation for Personnel Training 263
4.8 Major References 265
4.9 Chapter 4 Summary 265
4.10 Exercises 267

Chapter 5 Process and Product Applications 269
5.1 Introduction 269
5.2 Overview of Applications 273
5.3 Peer Reviews 274
 5.3.1 Example: Modeling an Inspection-Based Process 275
 5.3.2 Example: Inspection Process Data Calibration 289
5.4 Global Process Feedback (Software Evolution) 291
 5.4.1 Example: Software Evolution Progressive and Antiregressive Work 293

5.5 Software Reuse 299
 5.5.1 Example: Reuse and Fourth-Generation Languages 301

5.6 Commercial Off-the-Shelf Software (COTS)-Based Systems 309
 5.6.1 Example: COTS Glue Code Development and COTS Integration 310
 5.6.2 Example: COTS-Lifespan Model 317

5.7 Software Architecting 319
 5.7.1 Example: Architecture Development During Inception and Elaboration 319

5.8 Quality and Defects 327
 5.8.1 Example: Defect Dynamics 328
 5.8.2 Example: Defect Removal Techniques and Orthogonal Defect Classification 330

5.9 Requirements Volatility 333
 5.9.1 Example: Software Project Management Simulator 337

5.10 Software Process Improvement 343
 5.10.1 Example: Software Process Improvement Model 346
 5.10.2 Example: Xerox Adaptation 354

5.11 Major References 362
5.12 Provided Models 363
5.13 Chapter 5 Summary 363
5.14 Exercises 364

Chapter 6 Project and Organization Applications 369

6.1 Introduction 369
 6.1.1 Organizational Opportunities for Feedback 371

6.2 Overview of Applications 372

6.3 Integrated Project Modeling 373
 6.3.1 Example: Integrated Project Dynamics Model 373

6.4 Software Business Case Analysis 395
 6.4.1 Example: Value-Based Product Modeling 396

6.5 Personnel Resource Allocation 411
 6.5.1 Example: Resource Allocation Policy and Contention Models 411

6.6 Staffing 416
 6.6.1 Example: Rayleigh Manpower Distribution Model 418
 6.6.2 Example: Process Concurrence Modeling 423
 6.6.3 Integrating Rayleigh Curves, Process Concurrence, and Brooks’s Interpretations 441

6.7 Earned Value 442
 6.7.2 Example: Earned Value Model 450

6.8 Major References 460
6.9 Provided Models 460
A.6 Analysis of Simulation Output 525
 A.6.1 Confidence Intervals, Sample Size, and Hypothesis Testing 525
A.7 Major References 527
A.8 Appendix A Summary 527
A.9 Exercises 529

Appendix B: Annotated System Dynamics Bibliography 531

Appendix C: Provided Models 565

References 571

Index 593