Index

Note: page number in italic refer to figures and schemes.

active sites
on metal and alloys 16
 principle of maximum separation 440–1
alcohol condensation
bifunctional catalyst on silica 41–2, 43
in ionic liquid 280–1
microencapsulated catalyst 348, 365
microreactor 415–16
organocatalysed 63–4, 287–90, 324, 326–7, 331–2
insoluble resin-supported catalyst 63–4
allylation
amination on silica 33, 34
fluorous chiral catalyst 185, 189
insoluble resin-supported catalyst 65–6
in ionic liquids 282–3
microencapsulated catalyst 345–6
Amberlyst-21 support 67, 391
amidocarbonylation 359–60
amination, allylic 33, 34
amino acid derived catalysts 319–34
see also proline
amino alcohol ligands 54
aminocarbonylation 422
aminopropyl functionality 36, 40–1
aminooxidation 63
amphiphilic PS–PEG resins 50
annulation reactions 66–9
see also cyclization
aqueous phase catalysis, supported 220–7
see also biphasic catalysis
arylation, alkylation of 389–90, 391, 393
assay of catalyst see catalyst recovery
atom transfer radical polymerization 138–42
Baeyer–Villiger reaction 348, 415
Barton reaction 420
batch process 380–1
Baylis–Hillman reaction
insoluble resin-supported catalyst 64, 143–4, 293–4
in ionic liquids 293–4
silica supported catalyst 34–5
theromomorphic 143–4
bentonite 452
benzylation 308, 312, 313
1,1′-Bi-2-naphthol see BINOL
bifunctionalized silica catalyst 35–8, 432–3
BINAP-containing polymers
fluorous BINAP analogs 96, 195–6
linear polymeric chiral catalysts 103, 105–8
mixed BINAP–BINOL 108–10
ruthenium-sulfonated catalyst 226
self-supporting 156–8, 172
binaphthyl complexes 81, 92, 94, 223
BINOL-containing polymers 57
fluorous chiral catalysts 192–3
linear polymeric chiral catalysts 102–3, 104
mixed BINOL–BINAP 108–10
self-supporting 163–72
biphasic catalysis 199–229, 413–17
additives/mass transfer promoters
co-solvents 204
inverse phase transfer catalysts
calixarenes 210–11
cyclodextrins 207–10
styrene copolymers 211–12
surfactants 204–7

Recoverable and Recyclable Catalysis Edited by Maurizio Benaglia
© 2009 John Wiley & Sons, Ltd
biphasic catalysis (Continued)
commercial hydroformylation of alkenes 202–3
fluorous solvents/catalysts 179–81, 215
homogeneous reaction with biphasic separation 214–20
pH dependant solubility 218–20
thermoregulated phase transfer 216–17
water–oil microemulsions 215–16
new reactor design 227–8
non-aqueous systems 413–17
see also ionic liquids; supercritical carbon dioxide
overviews 200–2, 228–9, 413–15
supported aqueous phase catalysis 220–7
palladium TPPTS catalyst 226–7
rhodium TPPTS catalyst 221–3, 224–6
rhodium/polyacrylic acid catalyst 226
ruthenium-sulfonated BINAP catalyst 223–4
sulfoxantphos catalyst 226
surface-active ligands 212–14
BIPHEP ligands 103–4
2,2′-bis(diphenylphosphino)-1,1′-binaphthyl
see BINAP
bis(oxazolines) see BOX ligands
bisphosphine-containing polymers 103–7
dendrimers 111, 112, 113
polyethylene oligomers 124
bis(phosphonic acids) 163, 164
BOX ligands 452
clay/laponite supports 452–3
fluorous chiral catalysts 185–7
insoluble resin-supported 55–6, 453–4
silaceous supports 27–8, 455–8
soluble polymers 79–80, 81, 89–90
CALB enzyme 393–4
calixarenes 210–11
capping procedures 455–6
carbon dioxide 199–200
in aqueous biphasic reactions 219–20
cycloaddition reactions 66–8, 243
see also supercritical carbon dioxide
carbonylation 368
carbonyl–ene reactions 279–80
carbon–carbon bond formation
in ionic liquids 275–83
organocatalysts 94
insoluble resin-supported catalysts 50–6
carboxamides 62
catalysis, defined 1
catalyst
efficiency and immobilization 429–30
leaching 7–8, 81
optimization 436–7
stability/degradation 5–7, 309, 426–7, 428, 429, 434
catalyst precursor 2–3
catalyst recovery, assay of 1–2
catalyst precursor vs catalyst 2–3
catalyst resting state 3–5
loss mechanisms
decomposition 5–6
leaching 7–8
measures of recoverability
gravimetric analysis 12–13
product yield/conversion and turnover frequency 8–12
Cavitron reactor 227
cetyltrimethylammonium bromide 18, 23, 24, 204–6
chalcone epoxidation 333
chincona derived catalysts 89, 96, 311–13, 336
α-chloro esters 388, 390
Chyrazyme L2-C2 393–4
citronellol 393–4, 420
clay supports 452–3
co-condensation method 23–5
and control of silica support morphology 29–31
commercial supports 438
connectivity handle 437, 440
continuous flow processes 380–1, 434, 437
microencapsulated catalysts 368–9
supercritical carbon dioxide systems 232–3, 236, 241, 245
see also microreactor technology;
mini flow reactors
conversion profile 2
conversion rate 8–12
cooperative catalysis 35–43, 45, 430, 432–3
Corey–Bakshi–Shibata catalyst 61
costs 435
covaletly bonded catalysts 20–1
critical solution temperature 118
cross-coupling reactions
and biphosphine containing polymers 108
microencapsulated catalysts 346, 352–3, 358, 360–1, 363, 368
in mini flow reactor 383, 384, 389, 390
CTAB 18, 23, 24, 204–6
CuAAC reactions 79–80
cyanohydrins 421
cyanopropyl group 36–7
cyanosilylation 41–2, 284–5
cyclization
microencapsulated catalyst 346
in mini flow reactor 385, 387, 395, 400–1
resin-supported catalysts 66–9
cycloaddition 66–8
organocatalysed 328–31
photocatalysed 418–19
soluble polymer-supported 79–80
thermomorphic 144
cyclodextrin supports 207–10, 449–50
cyclopropanation
fluorous chiral catalyst 186, 187
insoluble resin-supported 55–6
in ionic liquids 281–2
microencapsulated catalyst 349, 350
mini flow reactor 383
decaffeination 230
decomposition/degradation, catalyst 5–7, 309, 426–7, 429, 434
dendrimer catalyst systems 78, 80
β-amino alcohol-containing polymers 110, 111
optically active dendronized polymers 111–14
and Pd nanoparticles 138
and proline immobilization 447–9
thermomorphic catalysis 125, 131, 143
dialkylaminopyridine catalysts 316–17
dialkylzinc see organozinc
Diels–Alder reactions
fluorous chiral catalyst 191
in ionic liquids 275–7
Difasol process 201
dihydroamino acids, hydrogenation of 261–4
dihydroxylation
insoluble resin-supported catalyst 60
in ionic liquids 272–5
microencapsulated catalysts 344, 350–2, 353, 354, 355, 373
dimethylaminopyridine (DMAP) ligand 34–5, 37, 45, 440–1
dimethyl carbonate 243
divinyl benzene copolymer 356–7
DPEN ligands 158–60
DPPA ligands 103, 105
DPPF ligands 103, 105
enamines, asymmetric hydrogenation of 269–70
enzymatic catalytic behaviour 433
epibromohydrin 395–6
epoxidation
fluorous chiral catalysts 182–3, 188
insoluble-resin supported catalyst 58–9
in ionic liquids 271–2
microencapsulated catalyst 346, 347, 356
organocatalysed 332–3
self-supporting catalysts 160–2, 170, 171
silica supported catalyst 26
ethylphenylsulfonic acid 40–1
flow process see continuous flow
fluorination 285–6
fluorous chiral catalysts 179–97
background 179–82
recovery concepts 127–8, 170–81
fluorous nitrogen ligands 133–4, 141, 146, 182–92
bis(oxazoline) ligands 185–7
miscellaneous amine-based 190–2
proline-based 187–9
pyrrolidine sulfonamides 188, 189–90
salen ligands 182–5
fluorous oxygen ligands 192–4
BINOLs 192–3
diols 193–4
fluorous phosphorus ligands 3–4, 142–3, 194–6
BINAP analogs 96, 195–6
MOP ligands 194–5
supercritical carbon dioxide systems 234–5
fluorous solvents 215, 415, 416
formamide catalysts 65–6
Friedel–Crafts reactions 4, 280, 343
FSM-type silica 18
gatekeeping effect 38–40
gel type resins 50
gravimetric analysis 12–13
Grubbs/Grubbs–Hoveyda catalysts 5–6, 79, 82–4
Index

handles 437, 440
Hartwig–Buchwald reaction 397, 399
Heck reaction and catalyst assay 8–9, 11–12
fluorous chiral catalysts 195–6
microencapsulated catalyst 360–1, 368, 371
in microflow reactor 417
in mini flow reactor 396, 397, 398, 399
Henry reaction 39–40, 41–2
in mini flow reactor 394
heterogeneous catalysts characterization 26
multi-site vs single site 16–17
vs homogeneous 16
homogeneous catalysis 16
reactions with biphasic separation 214–20
homogeneous catalysts 16
Huisgen cycloaddition 67–8
hydroamination intramolecular on resin-support 68–9
thermomorphic 129
hydroboration 233
hydrocyanation 335
hydroformylation aqueous biphasic systems 203–28
commercial process 201, 202–3
in mini flow reactor 385, 386
resin-supported catalysts 59–60
silica supported catalyst 20
supercritical carbon dioxide systems 232–5, 237–8, 240–3
thermomorphic catalysis 126–9
hydrogen bonding 27
hydrogen peroxide 6
hydrogenation BINAP containing polymers 107
fluorous chiral catalysts 184–5
in ionic liquids 261–70
microencapsulated catalysts 357, 359, 362, 367, 372
self-supporting catalysts 159–60, 170–1
silica-supported catalysts 19, 28
supercritical carbon dioxide systems 233, 235, 236, 237, 239, 243–5
thermomorphic catalysts 122–6
hydroisilylation and catalyst assay 3, 4, 9–11, 13
microencapsulated catalysts 366
thermomorphic reactions 141–5
hydrovinylation in ionic liquids 286–7
in supercritical carbon dioxide 235, 241
hydroxyproline catalysts 63–4
hydroxyprolylthreonine catalysts 64–5
hypervalent silicon compounds 313–15
imidazole salts 66
imidazolidinones 89, 96, 97, 328–31
imines, asymmetric hydrogenation of 269–70
immobilization strategies 427–61
practical aspects
choice of support 437–40
linker/spacer selection 441
location of connection handle 440–1
prerequisite conditions
catalyst stability/degradation 426–7
catalytic efficiency 429–30, 432–3
stereoselectivity 430–1, 433
reasons for immobilization
continuous flow processes 434
cost factors 435
optimization of catalysis 435–7
organocatalysed reactions 303
stability and recovery of catalyst 434
silica supports see mesoporous silica functionalization
soluble polymer supports 79–80
supports compared 17–18
for bis(oxazoline) ligands 452–8
for proline 442–50
incarceration, polymer 357–60, 387
induction period 3, 9, 10
insoluble resin-supported catalysts 49–75
background 49–51
carbon–carbon bond formation
Cu-BOX cyclopropanation 55–6
organozinc addition to aldehydes 53–4
Pd-catalysed allylic substitution/cross coupling 50–3
Rh-catalysed intermolecular C–H bond activation 54–5
organocatalyzed reactions 62
allylation of aldehydes 65–6
asymmetric aldol reactions and aminooxylation 63
asymmetric tandem reactions 64–5
nucleophilic substitutions 66
oxidation of alkanes, alkenes and alcohols 57–8
Index 467

oxidation
dihydroxylation of olefins 272–5
epoxidation of olefins 271–2
and proline immobilization 20, 326, 446–7
pyrrolidine based organocatalysts 317–18
ring-opening of epoxides 283
sulfimidation of sulfides 287
supercritical carbon dioxide systems 240–4
iron oxide supports 44–5, 451
isophorone 245
isotope-labelled tracers 413, 414

ketosteres, hydrogenation of 266–8
ketones, hydrogenation of 268–9
Knoevenagel condensation 384, 388
Kumada cross-coupling 383, 384
β-lactams 336, 388, 389
lanthanum catalysts 69, 169–71
laponite 452–3
layered double hydroxide supports 451
leaching, catalyst 7–8, 81
Lewis acids 3
microencapsulated catalyst 342–4
Lewis base, organocatalysts 313–19
limonene 420
linear polymeric chiral catalysts 101–15
background 101–2
1,1′-Bi-2-naphthol (BINOL)-based systems 102–3, 103
biphosphine-containing systems 103, 105
BINAP 105–8
mixed BINAP-BINOL systems 108–10
dendritic systems 111–14
linkers/spacers 437, 441
liquid–liquid biphasic systems 413–17
see also biphasic catalysis

MacMillan’s catalyst 89, 328–31, 428–9, 435
macroporous resins 50
magnetic nanoparticles 44–5, 307, 310–11, 324
magnetite supports 44–5, 451
manganese–porphyrin catalysts 58–9
Mannich reaction 292–3, 343, 365
mass transfer promoters 203–12
MCM41 mesoporous silica 450–1
MeOPEG supports 78, 430, 442, 455
mercury amalgam 13
Merrifield resin 389, 395

dihydroxylation of alkenes 60
epoxidation of alkenes 58–9
hydroformylation of olefins 59–60
sulfides to sulfoxide 56–7
reduction
carboxamides to amines 62
of ketones 61
ring formation
cycloaddition 66–8
intramolecular
hydroamination 68–9
use in mini flow reactors 387–92
intermolecular C–H activation 54–5
inverse phase transfer catalysts 210–11
inverse temperature-dependent solubility 118
ionic liquids 259–61, 446–7
aldol reactions
copper catalysed Mukaiyama 280–1
organocatalysed 287–90
alkyne addition to imines 286
Baylis–Hillman reaction 293–4
carbon dioxide cycloadditions 66–7
common ionic liquids listed 260
cyanosilylation of aldehydes 284–5
C–C bond formation, metal catalysed
allylation of aldehydes and ketones 282–3
allylic substitution 277–9
carbonyl–ene reactions 279–80
cyclopropanation 281–2
Diels–Alder reactions 275–7
Friedel–Crafts reaction 280
Michael reaction 283
Mukaiyama aldol reaction 280–1
fluorination 285–6
hydrogenation
acetophenone by transfer hydrogenation 270–1
dihydroamino acids 261–4
imines and enamines 269–70
keto esters 266–8
unfunctionalized ketones 268–9
unsaturated acids and esters 264–6
hydrovinylation of styrene 286–7
Mannich reaction 292–3
Michael reaction
metal catalyzed 273
organocatalyzed 290–2
and mini flow reactor 385

Dihydroxylation of alkenes 60
Epoxidation of alkenes 58–9
Hydroformylation of olefins 59–60
Sulfides to sulfoxide 56–7
Reduction
Carboxamides to amines 62
Of ketones 61
Ring formation
Cycloaddition 66–8
Intramolecular
Hydroamination 68–9
Use in mini flow reactors 387–92
Intermolecular C–H activation 54–5
Inverse phase transfer catalysts 210–11
Inverse temperature-dependent solubility 118
Ionic liquids 259–61, 446–7
Aldol reactions
Copper catalysed Mukaiyama 280–1
Organocatalysed 287–90
Alkyne addition to imines 286
Baylis–Hillman reaction 293–4
Carbon dioxide cycloadditions 66–7
Common ionic liquids listed 260
Cyanosilylation of aldehydes 284–5
C–C bond formation, metal catalysed
Allylation of aldehydes and ketones 282–3
Allylic substitution 277–9
Carbonyl–ene reactions 279–80
Cyclopropanation 281–2
Diels–Alder reactions 275–7
Friedel–Crafts reaction 280
Michael reaction 283
Mukaiyama aldol reaction 280–1
Fluorination 285–6
Hydrogenation
Acetophenone by transfer hydrogenation 270–1
Dihydroamino acids 261–4
Imines and enamines 269–70
Keto esters 266–8
Unfunctionalized ketones 268–9
Unsaturated acids and esters 264–6
Hydrovinylation of styrene 286–7
Mannich reaction 292–3
Michael reaction
Metal catalyzed 273
Organocatalyzed 290–2
And mini flow reactor 385
mesocellular silica foam 383, 455–6, 457
mesoporous mixed metal oxides 43–4
mesoporous silica functionalization 15–47
background 17–18
homogeneous vs heterogeneous catalysts 16
multi-site vs single site catalysis 16–17
support materials 17–18
and BOX ligands 456, 457
characterization of heterogenous catalysts 26
conventional functionalization 18–19
co-condensation method 23–5
covalent bonding/silylation reagents 20–1
noncovalent binding 19–20
post-synthetic grafting silylation 21–3
metalosalen complexes 25–6
mini flow reactors 382–7
multifunctionalization and cooperative catalysis 35–8, 430, 432–3
gatekeeping effect and selectivity 38–40
synergic acid/base catalysis 40–3
particle/pore morphology control
nanovoid/internal pore utilization 31–5
polar/nonpolar precursors and particle size 29–31, 32
surface interactions 26–7, 27–9
reduced by spacers 27–9
metal leaching 7–8, 81
metal phosphonates 156
metal scavenging polymers 371, 372
metal–binaphthyl complexes 92, 94
metal–salen complexes see salen complexes
metathesis 5–6, 82–4
ring-closing 385, 387, 395, 400–1
ring-opening 79, 134, 385, 387
Michael reactions 168–9
in ionic liquids 273, 283
microencapsulated catalyst 343, 348, 365
mini flow reactor 384
microemulsions 215–16
microencapsulated metal catalysts 341–77
catalysts and polymers summarized 374–5
cross-linked polystyrene with divinyl benzene 356–7
with oligo(ethylene glycol) 350–65
noncross-linked polystyrene 344–50
derivatives 350–2
polysulphone 353–4
poly(xyllylviolen dibromide) 354–5
urea group cross-linked polyphenylene 367–74
microporous resins 50
micoreactor technology
acid-catalysed reactions
isotope-labelled tracers 413, 414
nitrination 411–12
asymmetric catalytic reactions 421
high temperature/pressure conditions 421–3
liquid-liquid biphasic systems 413–16
segmented flow systems 416–17
mini flow reactors vs micro flow reactors 381–2
photocatalysis 418–20
mini flow reactors 335–6, 379–410
batch vs flow processes 380–1
catalyst immobilization 382
monolithic supports 392–401
polymer supports 387–92
silica supports 382–7
enabling technologies 379–80
micro vs mini flow reactors 381–2
monolithic supports 392–401
monophosphate (MOP) ligands 194–5
montmorillonite 452
MSM-type silica see mesoporous silica
MSU-type silica 18
Mukaiyama reaction 280–1, 365, 415–16
multi-site catalysis 16–17
multifunctionized mesoporous silica 35–43, 430, 432–3
multiphasic systems 201–2
N-heterocyclic carbene (NHC) ligands 52, 81, 82, 89
nanoparticles
encapsulated palladium 357
magnetic 44–5, 307, 310–11, 324
silaceous see mesoporous silica
thermomorphic catalysis 125, 138
nitrination reactions 411–12
nitroaldol reaction 39–40
nitroalkane addition 309–10
noncovalent immobilization
BOX ligands 452–3
on mesoporous silica support 19–20
organocatalysts 319
norbornenes, functionalized 79
oligo(ethylene glycol) copolymer 350–65
optimization, catalyst 436–7
organic peroxides 6
organooalkoxysilanes 29–31
organocatalyzed reactions 62–6, 301–40
achiral catalysts
miscellaneous 309–11
oxidation 304–7
phase transfer 307–9
allylation of aldehydes 65–6
aminooxidation 63
asymmetric aldol 63
asymmetric tandem reaction 64–5
background/general considerations 81, 310–13, 334–7
chiral catalysts
amino acid based 319–34
imidazolinone derivatives 238–331
miscellaneous amino acids 331–4
proline derivatives 320–8
Lewis Base 313–19
miscellaneous 319
phase transfer 311–13
fluorous systems 142–3, 187–90
in ionic liquids 290–2
nucleophilic substitutions 66
thermomorphic catalysts 142–4
organosilanes 23–5
see also silylation
organozinc reagents 53–4, 165, 167, 190, 192–4
ouabain hexaacetate 417
oxidation
and catalyst decomposition 6, 7
insoluble resin-supported catalysts 56–60
in ionic liquids 272–5
microencapsulated catalysts 348, 349–50, 356–7, 365–6
in mini flow reactor 387–8
organocatalyzed achiral 304–7, 309, 374
singlet oxygen 419–20
TEMPO 87–8, 145–6, 304–7, 365–6, 423, 434
thermomorphic reactions 145–7
palladium catalysts
insoluble resin-supported 50–3, 70
silica-supported 32–4
soluble polymer-bound 84–5, 86, 89, 91
thermomorphic reactions 126, 130–8
Paraxon 45
PASSflow matrix 395, 398, 400
PEG support 439
amphiphilic PS–PEG 50
for Box ligands 456
for proline 95, 442–3, 445
soluble polymer systems 78, 95, 97
TEMPO catalyst 305
thermomorphic catalysis 132–3, 136–7
PEPPSI™ catalyst 397, 399
pH dependent solubility 218–20
phase transfer catalysts
fluorous 191–2
microreactor alkylation 416
organocatalysis
achiral 307–9
chiral 311–13
soluble polymer-bound 85, 87, 96, 97
phosphine functionalized polymers 362–3
dendritic chiral 111, 112, 113
phosphinic acids 70
phosphoramidite catalysts 315–16
photocatalysis 418–20
PNIPAM support 121–3, 125
polyacrylic acid catalyst 226
polydimethylsiloxane support 143
polyethylene glycol supports see PEG
polyisobutylene support 140
polymer incarceration 50–1, 357–60, 387
polymer-microencapsulation see microencapsulated catalysts
polymer-supports see dendrimer; insoluble resin-supported; soluble polymer-bound
polymeric chiral catalysts see linear polymeric chiral catalysts
polymerization reactions
supercritical carbon dioxide systems 235
thermomorphic 138–42
poly(N-alkylacrylamide) supports 121–3, 125, 132, 146
polyphenylene, cross-linked 367–74
polystyrene supports 49–50, 78
amphiphilic PS–PEG resins 50
BOX ligands 452, 453, 455
proline 443, 444, 445
polysulphones 353
poly(xylyliovigen dibromide) 354–5
porphyrin catalyst 309
precursor, catalyst 2–3
Index

proline-based catalysts 320–8
applications tabulated 95
cyclodextrin supported 326, 449–50
dendrimer supported 447–9
fluorous chiral catalysts 187–9
insoluble resin-supported 54–5, 63–5, 322–4
and ionic liquids 20, 287–90, 291, 292–3, 326, 446–7
magnetite and layered double hydroxides 451
polymer supports compared 442–6
prolinamides 326–8
silica supported 324–6, 450–1
soluble polymer-bound 89, 95–6
2-pyridyldiphenylphosphine 53
pyrrolidine-based organocatalysts 317–18
pyrrolidine sulfonamides 188, 189–90
radiopharmaceuticals 413, 414
rate/reaction profile 2, 9
reactor design 227–8
recovery, catalyst
assay techniques see catalyst recovery strategies 79, 428
reduction
fluorous chiral catalyst 188, 191
insoluble resin-supported catalysts 61–2
microencapsulated catalyst 246, 372
organocatalysed 314–15, 333–4
see also hydrogenation
resting state, catalyst 3–5
ring-closing metathesis 385, 387, 395, 400–1
ring-opening
epoxides in ionic liquids 283
metathesis polymerization (ROMP) 79, 134, 385, 387
Ruhrchemie/Rhône-Poulenc process 201, 202
salen complexes
fluorous chiral catalysts 182–5
in mini flow reactor 383
salen-containing polymers 108
self-supported catalyst 160
silica supported 26, 383
soluble polymers 26, 90–2, 93, 383
SBA-type silica 18
segmented flow systems 416–17
self-encapsulation 62
self-supported asymmetric catalysts 155–77
background and approaches to 155–6
multitopic chiral ligands linked with metal centres 168–72
post-synthetic modifications of coordination polymers 163–8
subunits linked via metal-ligand coordination 156–63
Shell-SHOP process 201
Shibasaki’s catalyst 169–70
shock-wave reactor 227
silanes see organosilanes
silazane derivatives 21
silica supports
and bis(oxazolines) immobilization 455–8
described 17–18
mesocellular foam 383, 455–6, 457
for mini flow reactors 382–7
and proline immobilization 450–1
see also mesoporous silica functionalization
silicone resin 62
silylation 20–1
co-condensation method 23–5
and microencapsulated catalyst 343
post-synthetic grafting method 21–3
silica support morphology
and internal pore surface 31–5
particle size 29–31, 32
silylcyanation 421
singlet oxygen 419–20
smart catalyst supports 125
soluble polymer-bound catalysts 77–100
achiral catalysts 81–2
palladium for cross coupling 84–5, 86
phase transfer catalysts 85, 87
ruthenium–carbene for olefin metathesis 82–4
TEMPO oxidation 87–8
chiral catalysts 88–9, 100–2
metal–binaphthyl complexes 92, 94
metal–bis(oxazoline)
complexes 89–90, 91
metal–salen complexes 90, 92, 93
organocatalysts 94
chicona alkaloids 96
imidazolidinones and thioureas 96, 97
phase transfer 96, 97
proline-based 95
general considerations/
background 77–9, 98
immobilization strategies 79–80
metal catalysts 81, 89
organocatalysts 81, 89, 94
see also dendritic chiral catalysts; linear
polymeric chiral catalysts
Sonogashira reaction 363, 396, 398, 422
spacers/linkers 437, 441
PEG-supported TEMPO 305
and silica support 27–9
Staudinger ligation 56, 80
stereoselectivity 430–1, 435–6
Stille reaction 368
styrene copolymers 211–12
sulfimidation of sulfides 287
sulfoxantphos catalyst 226
supercritical carbon dioxide systems 229–47
catalyst recycling approaches 230–2
carbon dioxide–water biphasic systems 236–40
ionic liquid–carbon dioxide biphasic systems 240–4
microencapsulated catalysts 368–70
solid–carbon dioxide biphasic systems 245–6
solvent and extraction 232–5
critical parameters and phase diagram 228–9
overview 229–30, 246–7
supported aqueous phase catalysis 220–7
supports see under immobilization strategies
support–catalyst cooperation 439
surface-active ligands 212–14
surface-functionalization see immobilization
surfactants 204–7, 212–16
Suzuki–Miyaura reactions
microencapsulated catalysts 346, 352–3, 358, 361, 364, 368, 370–1
in mini flow reactor 389, 390, 396, 397, 398, 399
TantaGel 60
temperature-dependent miscibility/
solubility 118–19
TEMPO oxidation 87–8, 145–6, 434
microencapsulated catalyst 365–6
microreactor 423
organocatalyzed reactions 304–7
Tentagel resin 357
tetraethoxysilane 18, 23, 24
thermomorphic catalysts 117–53
background 117–18
poly(β-isopropylacrylamide)
supports 121–2
separation strategies 118–22, 181
1,3-cycloadditon 144
hydroamination 129
hydroformylation 126–9
hydrogenation 122–6
hydroisilylation 144–5
organocatalysis 142–4
oxidation 145–7
palladium-catalyzed reactions
allylic substitution 130–1
cross-coupling reactions 131–8
polymerization 138–42
thermoregulated catalysis 120–1, 126, 129
phase transfer 216–17
thiazine synthesis 71–2
thiourea-based organocatalysts 320, 334–5
soluble polymers 96, 97
TPPTS ligand 212–17
and commercial hydroformylation 202
supported aqueous phase catalysis 221–4, 226
transesterification 393–4
transfer hydrogenation
in ionic liquids 270–1
microencapsulated catalyst 372–3
mini flow reactor 385, 386, 396, 397
trialkysilanes 455–6
triazole synthesis 67–8, 391
trichlorosilane 314
triphenylphosphine trisulfonate see TPPTS
turnover frequency 8–12
Wilkinson’s catalyst 2–3, 4
yield, product 8–12
zeolites 18
zirconium phosphonates 156–61, 163–5