INDEX

A
Abbreviations, 413
Acronyms, 413
AISI specification (S100):
 allowable strength, 53
 allowable strength design (ASD), 53
 bolted connections, 281
 bracing requirements for beams, 182
 bracing requirements for columns, 209
 closed cylindrical tubular members, 251
 cold work of forming, 26, 37
 combined axial load and bending, 223
 compression members, 191
 definitions of terms, 47, 397
 design basis, 50
 design strength, 55, 58
 development of, 17
 direct strength method, 371
 effective design width, 62, 64, 75, 82, 92,
 see also Effective design width
 elements, 47, see also Effective design width
 flexural members, 47
 light-frame construction, 359
 limit states design (LSD), 57
 load and resistance factor design
 (LRFD), 54
 load factors, 51
 loads, 53, 55, 58
 materials, 27
 nominal strength, 53, 56, 58
 resistance factors, 51
 roof systems, 340
 safety factors, 51
 screw connections, 293
 second-order analysis, 248

special loads, 53
stiffeners:
 bearing, 157
 edge, 79, 82
 intermediate, 86
 shear, 158

tension members, 224
wall studs, 220, 321, 363
welded connections, 263
yield stress, 27, 33
Allowable loads:
 bolted connections:
 bearing, 283, 287
 shear and tension in bolts, 288
 spacing and edge distance, 282, 285
 compression members, 191
 screw connections:
 shear, 293
 tension, 294
 tension members, 224
web design:
 bearing stiffeners, 157
 bending strength, 165
 crippling strength, 168
 shear strength, 159
welded connections:
 arc seam welds, 269, 276
 arc spot welds, 265, 272
 fillet welds, 269, 276
 flare groove welds, 270, 277
 groove welds, 263, 272
 thickness limitations, 271
Allowable moments:
 closed cylindrical tubular members, 257
 flexural members, 97
Allowable strength design (ASD), 53
Appendices, 381
Applications, 2, see also Cold-formed Sections
Arch, 3
Area factor, Q_a, 200
Aspect ratio, 59, 61, 71, 72, 76, 79

B

Beam-columns, 225
 amplification factor, 226
 coefficient C_m, 227, 233
 coefficient C_T, 230
 critical moment, 230
 design criteria, 232
 design of, 235
 flexural buckling, 225
 flexural-torsional buckling, 227
 interaction formulas, 225, 232
 shapes:
 doubly symmetric, 225, 235
 singly symmetric, 227, 243
Beams, 97, see also Flexural members
Bending brake, see also Forming methods
Bending coefficient, C_b, 125, 129
Bending strength, 182
 combined with shear strength, 166
 combined with web crippling, 175
 inelastic reserve strength, 114
 initiation of yielding, 98
Bend radius-to-thickness ratio, 37, 39
Bolted connections, see also Connections
Bolts:
 high-strength, 282, 288
 unfinished, 282, 288
Box sections, 97, 134, 150
Bracing members, 182
Bracing requirements for beams:
 Continuous bracing, 189
 I-sections, 189
 C-sections, single channels, 182
 Z-sections, 188
Bracing requirements for columns, 209
Bridge forms, 343, 348
Buckling:
 distortional, 140, 142, 201, 204, see also compression and flexural members,
of beam-columns:
 flexural, 225
torsional, and flexural-torsional, 227
of compression members:
 flexural, 192, 203
torsional-torsional, 194, 204, 206
torsional, 194, 204
lateral-torsional:
 of box sections, 134
doubly symmetric sections, 123, 128
of I-beams and channels, 123
point symmetric sections, 128
singly symmetric sections, 123, 128
unbraced compression flanges, 135
of Z-shaped sections, 128
local:
 closed cylindrical tubules, 252, 255
effect of, on column strength, 200
stiffened compression elements, 59
unstiffened compression elements, 75
of webs:
 bending, combined bending and shear, 165, 166
 combined web crippling and bending, 175
 crippling, 168
shear, 159
Buckling coefficients, 60, 61, 71, 72, 75, 79, 81, 83, 89, 91, 143, 205
Building codes, 53, 55, 58
Buildings, industrialized housing, 8, 359
 modular systems, 8
 panelized systems, 8
 standardized buildings, 8, 359

C

Channels, see also Cold-formed sections
Cold-formed sections:
 advantages of, 1
 applications of, 2
 depth of, 2, 5, 6
design considerations of, 20
 development of, 1, 17, 359
 framing members, 2, 359
 method of forming, 12
shapes:
 angles, 3, 14, 48, 191, 195, 197, 362, 384
 box sections, 2, 47, 49, 68, 74, 134, 150, 153, 235
C-sections, see also Channels
channel sections, 2, 14, 25, 47, 49, 77, 78, 81, 85, 93, 102, 128, 133, 140, 145, 148, 160, 173, 179, 182, 191, 195, 197, 204, 216, 218, 243, 320, 324, 362, 373, 379, 384, 388, 395
closed cylindrical tubes, 2, 251
corrugated sheets, 6, 343
I-sections, 2, 47, 49, 99, 118, 123, 130, 150, 155, 172, 195, 211, 238
panels and decks, 5, 175, 343
T-sections, 2, 195
tubular sections, see also Box sections
Z-sections, 2, 14, 49, 128, 145, 148, 174, 188, 199
384, see also Z-sections
thickness, 1, 3, 5, 22, 25, 28, 50, 381
types of, 2
Cold roll forming, 12
Cold work of forming:
effect on mechanical properties, 37
utilization of cold work, 40, 113, 202
Columns, 191, see also Compression members
Combined axial load and bending, 223, see also
Beam-columns
Combined compressive axial load and bending, 225
Combined web crippling and bending, 175
Compact sections, 40, 125, 191, 223
Composite design:
advantages, 349
composite beam with steel-deck-reinforced slab, 350
steel-deck-reinforced slab, 349
Compression elements:
edged stiffened, 82
multiple-stiffened, 48, 86
stiffened, 20, 47, 59, 82
subelement, 48, 86, 110
unstiffened, 20, 21, 47, 75
Compression members, 191
bracing requirements, 209
built-up sections, 209
design criteria, 203
design of, 19, 210
distortional buckling, 201, 204, 213, 372, 374, 379
doubly symmetric shapes, 2, 41, 47, 49, 191, 195, 203, 211, 379
effect of cold work, 202
effect of diaphragm-bracing, 319, 322
effect of local buckling, 200
effective length factor, 207
Euler formula, 192
flexural buckling, 191, 192
effect of local buckling, 200, 372
elastic buckling, 192, 203
inelastic buckling, 192, 203
flexural-torsional buckling, 191, 194, 195, 204, 372
nonsymmetric sections, 199, 204
one flange fastened to deck, 219
point symmetric sections, 199, 204
Q-factor, 200
singly symmetric shapes, 195, 204, 216
slenderness ratio, 192, 206
torsional buckling, 191, 194, 204
unified approach, 201,
wall studs:
attachments for, 220, 302, 363
non-load bearing, 363
yielding, 191
Computer-aided design, 369
Connections, 263
bolted, 281
design criteria, 283, 285
design of, 289
shear lag effect, 286
spacing and edge distance, 285
thickness limitations, 285
types of failure, 282
for I-beams, 301, 303
for I- or box-shaped compression members, 299
power-actuated fasteners, 298
press-joints, 298
riveted connections, 297
rostette-joints, 298
rupture failure, 284, 286
screw, 292
design criteria, 292
design of, 292
spacing of connections in compression elements, 304
types of connections, 263
welded, 263
design criteria, 271
arc welds, 263
arc seam welds, 269, 276
arc spot welds (puddle welds), 264, 272
design of, 271
fillet welds, 263, 269, 276
flare groove welds, 263, 270, 277
groove welds, 263, 272
welding symbols, 265
projection welding, 279
resistance welds, 279
shear lag effect, 281
spot welding, 263, 266
Conversion table, 59, 415
Corners:
properties and dimensions, 24, 100
yeld stress, 37, 39
Corrosion protection, 22
Corrugated sheets:
 applications, 343
 arc- and tangent-type, 343
 design of, 343, 348
 section properties, 343
 trapezoidal-type, 343, 348
Cross-sectional property β_y, 395
Cylindrical tubular members (closed),
 applications, 251
 bending strength, 254, 257
 column buckling, 251
 design criteria, 255
 design of, 255, 259
 local buckling, 252
 axial compression, 252
 bending, 254
 combined loading, 255
 torsion, 255
 transverse shear, 255
 postbuckling behavior (snap through buckling), 253
 type of, 251
 fabricated tubes, 251
 manufactured tubes, 251

D
Decision table, 370
Decks, 5, 175, 349
Definitions of terms, 397
Deflection of flexural members, 120
Depth of sections, 3, 5, 6, 14
Design basis:
 allowable strength design (ASD), 53
 load and resistance factor design (LRFD), 54
 limit states design (LSD), 57
Design formats:
 for ASD method, 53
 for LRFD method, 54
 for LSD method, 58
Design manual, 19
Design specifications:
 in foreign countries, 20
 in the United States, 18, see also AISI design specifications
Design strength, 54, 400
Direct strength method, 371
Distortional buckling, 140, 142, 201, 204, see also Buckling
Doubly symmetric sections, 2, 49, 99, 123, 128, 130, 189, 191, 195, 204, 211, 223, 238, 379

Drainage structures, 343
Ductility, 28, 34

E
Economic design, 26, 120
Edge stiffeners, 79, 82, see also Stiffeners
Effective design width, 49, 61
 beam webs, 71
due to shear lag (for both compression and tension flanges), 150
 elements with multiple intermediate stiffeners, 87
 elements with single intermediate stiffener, 86
influence of:
 impact loading, 70
 initial imperfection, 68
 stiffened elements under uniform compression, 59
 stiffened elements with stress gradient, 70
 uniformly compressed elements with an edge stiffener, 82
 uniformly compressed elements with circular holes, 92
 unstiffened elements under uniform compression, 75
 unstiffened elements with stress gradient, 79
Effective length, 207, see also Compression members
End bearing, 168, see also Flexural members, webs, web crippling
Equivalent column, 135, see also Flexural members

F
Factored resistance, 58, 400
Flange curling, 155
Flat width, 48
Flat width-to-thickness ratio, 48
Flexural members, 97
 allowable strength design (ASD), 53
 bending strength, 97
 economic design, 120
 effect of cold work, 113
 lateral-torsional buckling strength, 123
 one-flange through-fastened to sheathing, 148
 one-flange fastened to a standing roof system, 149
 section strength, 98
 bracing requirements, 182
 built-up members, 301
 combined bending and torsional loading, 190, 393
 deflection of, 120
 design criteria, 97, 114
 design of, 99
 distortional buckling, 140
 equivalent column, 135
inelastic reserve capacity, 114
initiation of yielding, 98
limit states design (LSD), 57, 98
load and resistance factor design (LRFD), 54, 98
lateral-torsional buckling, 123
laterally unbraced compression flanges, 135
local buckling, 47, see also Buckling
multiple-stiffened flange, 48
shear center, 182, 383
shear lag, 150
stiffened flange, 47
torsional analysis, 190
types of cross-section:
 box sections, 2, 67, 74, 134, 150, 153
 C-sections (channels), 2, 25, 47, 49, 77, 78, 81, 85, 102, 128, 133, 140, 145, 148, 160, 173, 179, 182, 376
 hat sections, 2, 48, 59, 67, 99, 107, 116, 168, 174
 I-sections, 2, 49, 99, 123, 130, 150, 155, 172
 U-sections, 135
 Z-shapes, 2, 14, 49, 128, 145, 148, 174, 188
unstiffened flange, 75
unusually short spans, 150
unusually wide flange, 155
webs:
 bending, 165
 combined bending and shear, 166
 combined web crippling and bending, 175
effect of holes, 93, 165, 173
shear, 159
stiffeners, 157
web crippling, 168
Flexural-torsional buckling, 191, 194, 203, see also Compression members
Floor panels, 5, 349, see also Cold-formed sections, shapes, panels and decks
Folded plate roof, see also Shell roof structures
Form factor, Q, 200, see also Compression members, flexural buckling, local buckling
Forming methods:
 bending brake, 12
cold roll forming, 12
 press brake, 16

H

History:
cold-formed steel construction, 1
design specifications, 18
Housing, see also Light-frame construction
Hyperbolic paraboloid roof, 5, 7, 307, 333, see also Shell roof structures

I

Impact loading, 53
Industrialized housing, 8
Inelastic reserve capacity of beams, 114, see also Flexural members
 Initial imperfection, 14, 63
Initiation of yielding, 98
Interaction formulas:
 for bending and shear, 166
 for compressive axial load and bending, 225
 for closed cylindrical tubular members, 251
 for shear and tension in bolts, 288
 for shear and pull-over in screws, 295
 for tensile axial load and bending, 224
 for web crippling and bending, 175
I-sections, see also Cold-Formed sections

J

Joists, 2, 352

L

Large deflection theory, 62
Lateral-torsional buckling of beams, 123, see also Buckling
Laterally unbraced compression flanges, 135
Length-to-width ratio of plate, 61, 71, 72, 76, 79
Light-frame construction, 359
Limit states design (LSD), 53
Limiting flat-width-to-thickness ratio:
 stiffened compression elements, 50
 unstiffened compression elements, 50
 webs, 50
Linear method, 23
Load and resistance factor design (LRFD), 54
Load combinations, 53, 55, 58
Load factors, 51, 55, 58
Local buckling:
 closed cylindrical tubular members, 252
 compression members, 200
 perforated elements, 91
 stiffened compression elements, 47, 59
 unstiffened compression elements, 47, 75
 uniformly compressed elements with stiffeners, 82
 webs, 70
INDEX

M

Materials, 27
Mechanical properties:
 Bauschinger effect, 37
ductility, 27, 34
effect of strain rate, 46
effect of temperature, 42
elongation, 34
fatigue strength, 27, 37
influence of cold work, 37
modulus of elasticity, 27, 34
proportional limit, 34, 44
residual stress, 44
shear modulus, 27, 34
strain aging, 37
strain hardening, 37
stress-strain characteristics, 27, 33
tangent modulus, 27, 34
tensile strength, 27, 33
toughness, 27, 37
weldability, 27, 36
yield stress, 27, 28, 33
Metal buildings, pre-engineered, 8
Metal roof systems, 340
Modular systems, 8
Moment:
 bending moment, 97
critical moment for distorsional buckling, 140
critical moment for lateral-torsional buckling, 123
plastic, 114, 125
yield, 98, 114, 125
Moment of inertia:
 of compression members, 192, 202
 of flexural members, 100, 120, 123, 159, 371
 of edge stiffeners, 83
 of intermediate stiffeners, 88
 of shear stiffeners, 158
Moment redistribution of continuous beams, 182
Moment-to-weight ratios, 120
Multiple-stiffened elements, 48, 86

N

Neutral axis, 98
Nomenclature, 401
Nominal load, 53, 55, 57
Nominal moments:
 flexural members:
 beams having one flange through-fastened to a standing seam
 roof system, 149
distorsional buckling strength, 140, 373
lateral-torsional buckling strength, 123, 373
section bending strength, 98
Nominal resistance, 58, 400
Nominal strength:
 bolted connections:
 bearing strength, 287
 shear and tension in bolts, 288
 shear lag effect, 286
tension in connected part, 286
closed cylindrical tubular members in compression, 256
compression members:
 distorsional buckling, 204, 372
 flexural buckling, 192, 203, 372
 flexural-torsional buckling, 194, 372
torsional buckling, 194, 372
flexural members:
 web crippling, 168
 web shear strength, 159
lateral-torsional buckling, 123, 128, 373
screw connections:
 shear, 293
tension, 294
tension members, 224
welded connections:
 arc seam welds, 263, 264, 269, 276
 arc spot welds, 263, 264, 272
 fillet welds, 263, 264, 269, 276
 flare groove welds, 263, 264, 270, 277
 groove welds, 264, 272
 resistance welds, 279
Noncompact sections, 205
Nonsymmetric sections, 199, 204
North American Specification, 18, see also AISI
 Specification (S100)

O

Optimum properties, 26

P

Panels, 5, 343
Perforated members, 91
Plastic design, 23, 114, 125
Plasticity reduction factor, 61, 355
Plate buckling:
 long plate, 61, 161
 rectangular plate, 60, 161
 square plate, 60, 61
Point symmetric sections, 128, 199, 204
Poisson’s ratio, 60, 156, 160, 162, 168, 252, 253
Polar radius of gyration, 126, 129, 194, 200, 228
Postbuckling strength:
 perforated elements, 91
 stiffened compression elements, 20, 62
 unstiffened compression elements, 20, 76
 web element subjected bending, 71
Proportional limit, see also Mechanical properties
Purlins, 35, 148, 149, 182, 188, 362

R

Reduced modulus method, 192
References, 417
Reliability index, 56
Research:
 foreign countries, 20
 the United States, 17
Residential and commercial construction, see also Light-frame construction
 applications of, 359
 design guides, 367
 framing standards, 359, 361
 prescriptive method, 366
Residual stress, 44
Resistance factor, 51, 54, 56, 58
Roof deck, 1, 5
Rupture:
 shear, 272, 282, 285
 tension, 284, 286
 block shear, 299

S

Safety factor, 51, 53, 57, see also Flexural members,
 Compression members, Closed cylindrical tubular members, Connections, and Shear diaphragms
Screw connections, 292, see also Connections
St. Venant torsion constant, 123, 129, 194, 386
Section strength:
 inelastic reserve capacity, 114
 initiation of yielding, 98
 beams having one flange fastened to deck, 148
 beams having one flange fastened to standing seam roof, 149
Sectional properties, 21, 23, 98, 100, 102, 107, 109
Serviceability, 59
Shear buckling:
 perforated plates, 91
 rectangular plates, 61, 160
Shear center, 182, 383
Shear diaphragms:
 applications of, 307
 deflection, 309, 316
 design criteria, 315
 design of, 314
 research, 307
 resistance factor, 316
 safety factor, 316
 shear strength, 308, 314
 special consideration, 316
 stiffness, 309
 tests, 309
Shear lag:
 effective width, 150
 bolted connections, 286
 welded connections, 281
Shear modulus, 34, see also Mechanical properties
Shear strength
 combined with bending, 166
 webs with holes, 165
 webs without holes, 162
Shear yielding, 159
Shell roof structures, 329
 folded plate roof, 329
 advantages of, 329
 analysis and design of, 330
 deflection of, 332
 research, 332
 truss type, 333
 types of, 329
 Williot diagram, 332
 hyperbolic paraboloid roof, 333
 analysis and design, 335
 applications of, 333
 curvilinear grid frame type, 339
 research, 339
 types of, 335
Singly symmetric shapes, 2, 123, 129, 195, 204, see also Channels
Slenderness ratio, maximum limit for compression members, 206
Space frames, 2, 4
Specifications and recommendations:
 American Institute of Steel Construction, 34, 37, 282, 350, 413
 American Iron and Steel Institute, 413, see also AISI specifications
 American Society of Civil Engineers:
 composite slabs, 350
 stainless steel structural members, 354
Specifications and recommendations: (continued)

American Society for Testing and Materials, 27, 28, 381, 413
American Welding Society, 36, 263, 279, 413
Australian, 20
Austrian, 20
Brazilian, 20
British, 20
Canadian, 20, see also North American specification
Canadian Sheet Steel Building Institute, 9, 14, 20, 413
Chinese, 20
Composite slab design, 20, 349
Czechoslovakian, 20
Dutch, 20
European Convention for Construction Steelwork, 20
Finnish, 20
French, 20
German, 20
Indian, 20
Italian, 20
Japanese, 20
Metal Building Manufacturers Association, 9, 14, 20
Metal Construction Association, 20, 314
Mexican, 20, see also North American specification
New Zealand, 20
North American Specification, 18, see also AISI Specification (S100)
North American Standards for Cold-Formed Steel Framing, 359
Rack Manufacturers Institute, 20, 413
Research Council on Structural Connections, 282
Romanian, 20
Russian, 20
South African, 20
Stainless steel design, 353
applications of, 353
design criteria, 353
stress-strain curves of stainless steels, 353
Standing seam roof system, 149
Steel Deck Institute, 27, 314, 349, 413
Steel Joist Institute, 20, 413
Steel Stud Manufacturers Association, 19, 20, 413
Swedish, 20
Specified load, 58, 400
Spring constant, 136, 137, 189
Standardized buildings, 8
Stiffened compression elements, see also Compression elements
Stiffeners:
edge stiffeners, 79, 82
multiple-intermediate stiffeners, 87
single-intermediate stiffeners, 86
web stiffeners, 157
Stiffness, 120, see also Flexural members
Strength:
allowable strength, 53, 400
available strength, 400
design strength, 55, 400
nominal strength, 54, 56, 400
required strength, 53, 54, 400
Stress, definitions of, 399
Stress factor, Qs, 201
Stress-strain curves, 33, 39, 44
Structural economy, 86, 120
Subelement, see also Compression elements
Successive approximation, 99, 107, 327

T

Tangent modulus method, 192
Tension members, 224
combined tensile load and bending, 225
nominal tensile strength, 224
Tests:
confirmation, 397
flat elements, 43
full sections, 43
performance, 398
shear diaphragms, 309
special cases, 25
Thickness:
base metal, 50, 381
coating, 381
galvanized sheet, 381
uncoated sheets, 381
Tolerances, 14, 16
Torsion, 383
Torsional analysis of beams, see also Flexural members
Torsional buckling, 194
Torsional rigidity, 21, 134
Truss-panel system, 2, 9
Types of cold-formed sections, 2

U

Unstiffened compression elements, 21, 47, 75, 99, 118
Unsymmetric shapes, 199, 204

V

Virgin steel, 399
Virgin steel properties, 37, 399
Virtual hole method for C-section webs with holes, 93
W

Wall panels, 5, 6, 10, 11, see also Corrugated sheets;
Shear diaphragms
Wall studs, 220, 320, 363
Warping constant, 123, 194, 200, 385, 386
Warping rigidity, 194
Wavelength, 60, 61
 distortional buckling, 141, 202, 374
 local buckling, 60, 61
Web crippling, 168
 webs with holes, 171, 173
 web without holes, 168, 172
Weld connections, see also Connections
Weldability, 27, 36
Welds:
 arc, 263
 resistance, 279

Width-to-thickness ratio, see also Flat-width-to-thickness ratio

Wind load:
 load factor for the LRFD method, 55
 load factor for the LSD method, 58

Y

Yield stress, 28, 33
 reduced yield stress for multiple-web configurations, 34

Z

Z-sections, 2, 14, 49, 128, 145, 148, 174, 188, 199, 384