CONTENTS

<table>
<thead>
<tr>
<th>Preface</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 1</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>1.1</td>
<td>General Remarks</td>
</tr>
<tr>
<td>1.2</td>
<td>Types of Cold-Formed Steel Sections and Their Applications</td>
</tr>
<tr>
<td>1.3</td>
<td>Standardized Metal Buildings and Industrialized Housing</td>
</tr>
<tr>
<td>1.4</td>
<td>Methods of Forming</td>
</tr>
<tr>
<td>1.5</td>
<td>Research and Design Specifications</td>
</tr>
<tr>
<td>1.6</td>
<td>General Design Considerations of Cold-Formed Steel Construction</td>
</tr>
<tr>
<td>1.7</td>
<td>Economic Design and Optimum Properties</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>MATERIALS USED IN COLD-FORMED STEEL CONSTRUCTION</td>
</tr>
<tr>
<td>2.1</td>
<td>General Remarks</td>
</tr>
<tr>
<td>2.2</td>
<td>Yield Stress, Tensile Strength, and Stress–Strain Curve</td>
</tr>
<tr>
<td>2.3</td>
<td>Modulus of Elasticity, Tangent Modulus, and Shear Modulus</td>
</tr>
<tr>
<td>2.4</td>
<td>Ductility</td>
</tr>
<tr>
<td>2.5</td>
<td>Weldability</td>
</tr>
<tr>
<td>2.6</td>
<td>Fatigue Strength and Toughness</td>
</tr>
<tr>
<td>2.7</td>
<td>Influence of Cold Work on Mechanical Properties of Steel</td>
</tr>
<tr>
<td>2.8</td>
<td>Utilization of Cold Work of Forming</td>
</tr>
<tr>
<td>2.9</td>
<td>Effect of Temperature on Mechanical Properties of Steel</td>
</tr>
<tr>
<td>2.10</td>
<td>Testing of Full Sections and Flat Elements</td>
</tr>
<tr>
<td>2.11</td>
<td>Residual Stresses Due to Cold Forming</td>
</tr>
<tr>
<td>2.12</td>
<td>Effect of Strain Rate on Mechanical Properties</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>STRENGTH OF THIN ELEMENTS AND DESIGN CRITERIA</td>
</tr>
<tr>
<td>3.1</td>
<td>General Remarks</td>
</tr>
<tr>
<td>3.2</td>
<td>Definitions of Terms</td>
</tr>
<tr>
<td>3.3</td>
<td>Design Basis</td>
</tr>
<tr>
<td>3.4</td>
<td>Serviceability</td>
</tr>
</tbody>
</table>
CONTENTS

3.5 Structural Behavior of Compression Elements and Design Criteria 59
3.6 Perforated Elements and Members 91
3.7 Plate Buckling of Structural Shapes 95
3.8 Additional Information 95

CHAPTER 4
FLEXURAL MEMBERS
97
4.1 General Remarks 97
4.2 Bending Strength and Deflection 97
4.3 Design of Beam Webs 156
4.4 Bracing Requirements of Beams 182
4.5 Torsional Analysis of Beams and Combined Bending and Torsional Loading 190
4.6 Additional Information on Beams 190

CHAPTER 5
COMPRESSION MEMBERS
191
5.1 General Remarks 191
5.2 Yielding 191
5.3 Flexural Column Buckling 192
5.4 Torsional Buckling and Flexural–Torsional Buckling 194
5.5 Effect of Local Buckling on Column Strength 200
5.6 Distortional Buckling Strength of Compression Members 201
5.7 Effect of Cold Work on Column Buckling 202
5.8 North American Design Formulas for Concentrically Loaded Compression Members 203
5.9 Effective Length Factor K 207
5.10 Built-Up Compression Members 209
5.11 Bracing of Axially Loaded Compression Members 209
5.12 Design Examples 210
5.13 Compression Members Having One Flange Fastened to Decks or Panels 218
5.14 Wall Studs 220
5.15 Additional Information on Compression Members 221

CHAPTER 6
COMBINED AXIAL LOAD AND BENDING
223
6.1 General Remarks 223
6.2 Combined Tensile Axial Load and Bending 224
6.3 Combined Compressive Axial Load and Bending (Beam–Columns) 225
6.4 North American Design Criteria 232
6.5 Design Examples 235
6.6 Second-Order Analysis 248
6.7 Additional Information on Beam–Columns 249

CHAPTER 7
CLOSED CYLINDRICAL TUBULAR MEMBERS
251
7.1 General Remarks 251
7.2 Types of Closed Cylindrical Tubes 251
7.3 Flexural Column Buckling 251
7.4 Local Buckling 252
7.5 North American Design Criteria 255
7.6 Design Examples 259
CONTENTS

CHAPTER 8 CONNECTIONS
- 8.1 General Remarks 263
- 8.2 Types of Connectors 263
- 8.3 Welded Connections 263
- 8.4 Bolted Connections 281
- 8.5 Screw Connections 292
- 8.6 Other Fasteners 296
- 8.7 Rupture Failure of Connections 299
- 8.8 I- or Box-Shaped Compression Members Made by Connecting Two C-Sections 299
- 8.9 I-Beams Made by Connecting Two C-Sections 301
- 8.10 Spacing of Connections in Compression Elements 304

CHAPTER 9 SHEAR DIAPHRAGMS AND ROOF STRUCTURES
- 9.1 General Remarks 307
- 9.2 Steel Shear Diaphragms 307
- 9.3 Structural Members Braced by Diaphragms 319
- 9.4 Shell Roof Structures 329
- 9.5 Metal Roof Systems 340

CHAPTER 10 CORRUGATED SHEETS
- 10.1 General Remarks 343
- 10.2 Applications 343
- 10.3 Sectional Properties and Design of Arc- and Tangent-Type Corrugated Sheets 343
- 10.4 Sectional Properties and Design of Trapezoidal-Type Corrugated Sheets 348

CHAPTER 11 COMPOSITE DESIGN
- 11.1 General Remarks 349
- 11.2 Steel-Deck-Reinforced Composite Slabs 349
- 11.3 Composite Beams or Girders with Cold-Formed Steel Deck 350

CHAPTER 12 INTRODUCTION TO STAINLESS STEEL DESIGN
- 12.1 General Remarks 353
- 12.2 Differences between Specifications for Carbon Steels and Stainless Steels 355

CHAPTER 13 LIGHT-FRAME CONSTRUCTION
- 13.1 General Remarks 359
- 13.2 Framing Standards 359
- 13.3 Design Guides 367

CHAPTER 14 COMPUTER-AIDED DESIGN
- 14.1 General Remarks 369
- 14.2 Computer Programs for Design of Cold-Formed Steel Structures 369
CONTENTS

CHAPTER 15 DIRECT-STRENGTH METHOD 371
 15.1 General Remarks 371
 15.2 North American DSM Provisions 371
 15.3 Commentary on Appendix 1 (DSM) 373
 15.4 Direct-Strength Method Design Guide 376
 15.5 Design Examples 376

APPENDIX A THICKNESS OF BASE METAL 381

APPENDIX B TORSION 383
 B.1 Introduction 383
 B.2 Shear Center 383
 B.3 Torsional Stresses 384
 B.4 Design Criteria for Combined Bending and Torsional Loading 393

APPENDIX C FORMULAS FOR COMPUTING CROSS-SECTIONAL PROPERTY β_y 395

APPENDIX D DEFINITIONS OF TERMS 397
 NOMENCLATURE 401
 ACRONYMS AND ABBREVIATIONS 413
 CONVERSION TABLE 415
 REFERENCES 417
 INDEX 483