INDEX

Absorption, 56. See also Electroabsorption modulators (EAMs)
Access networks, 1, 3. See also Broadband access networks
challenges facing, xiii
hybrid fiber coax, 9
Access technologies, 4–6
bandwidth and reach for, 5
comparison of, 5–6
competition in, 29
future, 1–2
Acknowledgment (ACK) signal, 252. See also
REGISTER ACK message
Ac power lines, 18
Active optical networks (AONs), xiv
Ad hoc on-demand distance vector (AODV), 228
ADSL standard, 7–8. See also Asymmetric DSL (ADSL)
Advanced encryption standard (AES) technique, 115, 137, 142. See also AES-128 standards
Advanced Mobile Phone System (AMPS), 24
Aerial optical fiber deployment technique, 240–241
AES-128 standards, 155. See also Advanced encryption standard (AES) technique
Amplified spontaneous emission (ASE) noise, 80, 95–96, 106
Amplifier gain, 79, 83
Amplifier noise figure, 80
Amplitude shift keying (ASK), 20
Analog TV broadcasting, 31
Analog video delivery architecture, 121
Analog video signals, 27
Antenna technology, advanced, 222
APD receivers, 95, 157. See also Avalanche photodiodes (APDs)
APON standard, 12. See also ATM-based PON (APON); Passive optical networks (PONs)
Application-specific integrated circuit (ASIC), 243
Arrayed waveguide gratings (AWGs), 92–93, 163, 173, 177, 190–191. See also AWG entries
temperature-stabilized, 200
Arrival-time framing, 207
Asymmetrical transmission, 7
Asymmetric DSL (ADSL), 6. See also ADSL standard; Digital subscriber line/loop (DSL)
Asynchronous transfer mode (ATM), 12, 115–116, 121–123. See also ATM entries;
Non-ATM-based service network interfaces
ATM adaptation layer 5 (AAL5) cells, 123.
See also Asynchronous transfer mode (ATM)
INDEX

ATM-based PON (APON), 108, 115. See also APON standard; ATM-PON; Passive optical networks (PONs)
ATM cell, 125–126
ATM cell format/services, 122–123
ATM network protocol, 133
ATM-PON, 12. See also ATM-based PON (APON); Passive optical networks (PONs)
ATM QoS service classes, 123
ATM virtual circuits, 8
Autodiscovery process, 114, 148–151
mixed-mode, 160
Automatic bias control, 72
Automatic protection switching (APS) techniques, 114
Avalanche current-multiplication process, noise associated with, 76
Avalanche photodiodes (APDs), 74–76, 173. See also APD receivers structure of, 75
AWG channels, wavelength bands for, 191. See also Arrayed waveguide gratings (AWGs)
AWG MUX/DEMUX, 190. See also DEMUX
AWG + PD/RX sets, 193
Backbone networks, 2
Backhaul layer, 237
Backhaul network deployment cost, 240–241
Backhaul point-to-point connections, 22
Back-reflection Rayleigh backscattering, 174
Backreflections, 181
Bandpass filter (BPF), 158
Bandwidth, of a photodiode, 74
Bandwidth demand, xi, i, 5, 29
monitoring, 247–248
WDM-PON and, 13–15
Bandwidth-distance product, 181
Bandwidth efficiency, of wireless mesh networks, 231
Bandwidth grant, EPON, 151–152
Bandwidth requirements, of multimedia applications, 5
Base station controller, 24, 25
Batch earlier departure first (BEDF) algorithm, 206
BER performance, 184. See also Bit error rate (BER)
Bessel function, 40, 42
Best effort (BE) traffic, 210, 211
Bidirectional amplifiers, 9
Bidirectional optical subassembly (BOSA), 101
Bidirectional pumping configuration, 81
Bidirectional transmission, 182, 199
Binary tree mechanism, 130
Bit error rate (BER), 97, 98, 127. See also BER performance; CLS + MMF BER measurements
Bit-error-rate tester (BERT), 171–172
Bit interleaved parity (BIP), 127, 138
Bit rate-distance (BL) product, 99–100
Bit rates, 10GEPON standard, 156–157
Booster amplifier, 80
BPON analog video overlay architecture, 120. See also Broadband PON (BPON); Passive optical networks (PONs)
BPON architecture, 118–121
versus GPON architecture, 134
BPON downstream/upstream data-rate pairs, 118
BPON dynamic bandwidth allocation, 130–133
BPON in-band IP video delivery architecture, 120
BPON key churning technique, 142
BPON OLTs, 130
BPON parameters, comparison with GPON and EPON parameters, 116
BPON PLOAM cell format, 126. See also Physical-layer operation, administration, and maintenance (PLOAM) cell format
BPON protocol layers/functional blocks, 124–125
BPON protocol/service, 121–125
BPON ranging process, 129–130
BPON standard, 12–13, 115–116
BPON T-CONT architecture, 131, 132
BPON T-CONT types, 132
BPON transmission convergence layer, 125–130
BPON transmission frames, 127–129
BPON wavelength plan, 119
Bragg diffraction, 59
Bragg gratings, 91–92
Brillouin effect, 180
Broadband access, pervasive, 4
Broadband access networks, 1, 4
Broadband access services, 29–30
Broadband access technologies, 1–33. See also Broadband backhaul technologies; Broadband fiber access access technologies and, 4–6 broadband over power lines, 18–20 broadband services and emerging technologies, 28–31 communication networks, 2–4 digital subscriber line, 6–8 future, 1–2 growth of, 28–29 hybrid fiber coax, 9–11 optical access networks, 11–17 summary of, 31–32 wireless access technologies, 20–28
INDEX

269

Broadband backhaul technologies, 239–240
comparison of, 240
Broadband communication over power lines, 1
Broadband deployment wave, 29
Broadband fiber access, European efforts in, xiv
“Broadband for all” society, 29
Broadband optical access networks, importance of, xi. See also Next-generation broadband optical access networks
Broadband over power lines (BPL), 18–20, 32 challenges in, 20
modem, 19–20
Broadband PON (BPON), 108, 110, 115, 117–133, 167. See also BPON entries;
Passive optical networks (PONs)
ONT management and control interface specification for, 133
Broadband power-line communications, 19
Broadband services, future, 30
Broadcast LLID, 161. See also Logical link ID (LLID)
Buried optical fiber deployment technique, 240–241
Burst-mode laser drivers, 103
Burst-mode operation, 112–113
Burst-mode optical transmission, 102–104
Burst-mode receivers (BMRxs), 102–104, 135
Burst-mode transmitters, 102, 103
Cable access, 29
Cable modem, 1, 9, 10. See also Modulator/demodulator (modem)
Cable networks, 9
Capacity, of wireless mesh networks, 231–237
Capacity injection layer, 237
Carrier concentration, 64–65
Carrier density, 61–62
Carrierless amplitude phase (CAP) modulation method, 8
Carrier rate equation, 61
Carrier-sense multiple access with collision avoidance (CSMA/CA), 22, 227–228
Cavity losses, 59
C-band, 82
CDR time, 145. See also Clock and data recovery (CDR)
Cell transfer delay (CTD), 123
Cellular networks, 24–25
Central access offices, consolidating, 163–164
Centralized dynamic bandwidth allocation, 114
Centralized light sources (CLSs), 106. See also CLS entries
architectures of, 180–181
with RSOAs, 179–181
Channel loss, 98
China Communications Standards Association (CCSA), 164
Chromatic dispersion, 47, 49–51, 111–112
Class A transceivers, 111
Class B+ (28 dB)-type transceivers, 111
Class C transceivers, 111
Class-of-service-oriented bandwidth allocation, 154
Client devices, 226–227
Client wireless mesh networks, 226
Clock and data recovery (CDR), 135. See also CDR time
Clock and data recovery circuits, 77–78
Clock recovery architectures, 103–104
CLS + MMF BER measurements, 183. See also Bit error rate (BER); Centralized light sources (CLSs);
Multimode fibers (MMFs)
CLS + MMF experimental setup, 182
CLS + MMF loss of components, 183
CMOS-controlled tunable photodetectors, 175
Coax cable access bandwidth, 31
Coaxial cables, 6, 9. See also Hybrid fiber coax (HFC)
Code group, 146
Coding hierarchy, 171
Coexistence options, 10GEPON, 161–162
Coherent transmission systems, xi Collected ring, 200
Colorless ONUs, 104–106, 173–174. See also Optical network units (ONUs)
SUCCESS-HPON, 199
Communication, free-space optical, 16–17
Communication networks, 2–4
evolution of, 30
Communication satellites, modern, 26
Complementary code keying (CCK), 22
Complementary error function, 97
Complex amplitude, 57
Conduit optical fiber deployment technique, 240–241
Confinement factor, 44
Congestion monitoring, 260
Congestion report, 260
Connection, 224
Continuous-mode transmission, 102
INDEX

Continuous wave (CW), 182–183, 203. See also CW optical carrier
Continuous wave semiconductor lasers, 55
Control frame format, 256
Control packet format, 255–256
Copper wire technologies, transmission distance of, 239
Couple-cavity semiconductor lasers, 59–60
Coupled mode theory, 87
Coupling coefficient, 87
Coupling length, 49
Coupling ratio, 89
Cross-gain saturation, 86
Cross-phase modulation, 54
CWDM (coarse wavelength-division multiplexing) band splitters, 196
CWDM RN, 197. See also Remote nodes (RNs)
CW optical carrier, 201. See also Continuous wave (CW)
Cyclic redundancy check (CRC), 127
Cylindrical coordinates, 39
Data link layer, DOCSIS, 10–11
Data modulation schemes, 106, 180
Data Over Cable Service Interface Specifications (DOCSIS), 10–11. See also DOCSIS entries
Data rates, 7
BPL-supported, 20
in BPON architecture, 118
in cellular networks, 25
Data subcarriers, 219–220
Data transmission, 3
shared resources in, 202–203
DBA protocol, 131–133. See also Dynamic bandwidth allocation (DBA)
DBR mirrors, 59. See also Distributed Bragg reflector (DBR) lasers
Dedicated twisted pairs, 9
Delimiter, 128
DEMUX, tunable, 192. See also AWG MUX/DEMUX; MUX/DEMUX; WDM MUX/DEMUX
Denial of service (DoS) attack, upstream, 155
Dense wavelength-division multiplexing (DWDM), 242. See also DWDM RNs
Depletion layer, 73
DFB/DBR lasers, 60, 174–175. See also Distributed Bragg reflector (DBR) lasers; Distributed feedback (DFB) lasers
DFB lasers, 100
lasing frequency in, 65
Differential binary-phase shift keying (DBPSK), 22
Differential-dispersion parameter, 51
Differential material dispersion parameter, 50
Differential quadrature-phase shift keying (DQPSK), 22
Digital communication links, 25
Digital encoding techniques, 24
Digital encoding technologies, 32
Digital subscriber line/loop (DSL), 1, 5–6, 6–8, 29. See also DSL entries; Voice over DSL (VoDSL)
next-generation, 31
Digital video broadcasting (DVB) standards, 26
Direct bandgap semiconductor, 55–56
Directional couplers, 86–89
Directional coupling, 66–71, 72
Direct modulation, 71
Direct sequence spread spectrum (DSSS), 20, 22
Discovery GATE message, 150, 160
Discovery process, 114
Discrete multitone (DMT) modulation method, 8
Dispersion, chromatic, 111–112. See also Fiber dispersion
Dispersion coefficient, of standard-mode fibers, 65
Dispersion-flattened fibers, 51
Dispersion limit, 99–100
Dispersion-shifted fiber, 51
Dispersion slope, 51, 55
Distance-dependent path loss, 230
Downstream encryption mechanisms, EPON, 154–155
Downstream payload length indicator, 138
Downstream physical control block, 137–138
Downstream PLOAM, 126. See also Physical-layer operation, administration, and maintenance (PLOAM) cell format
Downstream PLOAM field, 138
Downstream PLOAM messages, 127
Downstream transmission frame, 127–128
Downstream transmission, in SUCCESS-DWA PON, 190–192
Driver circuits, 103
DSL access multiplexer (DSLAM), 7. See also Digital subscriber line/loop (DSL)
DSL configuration, 7
DSL standards, 7
Duplex scheme, WiMAX, 222
DVB-RCS (Digital Video Broadcasting–Return Channel via Satellite), 26
DWDM RNs, 196–197. See also Dense wavelength-division multiplexing (DWDM); Remote nodes (RNs)
Dynamic bandwidth allocation (DBA), 13, 114, 153–154. See also DBA protocol
BPON, 130–133
Dynamic sensitivity recovery, 103
Dynamic wavelength allocation (DWA), 186, 191. See also SUCCESS-DWA; SUCCESS-DWA PON
EDFA pump schemes, 82. See also Erbium-doped fiber amplifiers (EDFAs)
EH modes, 43
Electrical multiplexing technique, 169
Electrical–optical (EO) converter, 60
Electrical power distribution grid, 18
Electroabsorption effect, 70
Electroabsorption-modulated laser, 71
Electroabsorption modulators (EAMs), 70–71, 174. See also Reflective electroabsorption modulators (REAMs); Semiconductor electroabsorption modulators
Electromagnetic field, in fiber core and cladding, 42
Electron density, 61, 62
Electron-hole pair, 73
Electron injection, 75
Electrooptic effect (electroreflection effect), 66
Element management system (EMS), 143
Emerging technologies, 30–31
Energy consumption, distribution of, 164
Energy-saving techniques, for PONs, 163–164
Enhanced data rates for GSM evolution (EDGE), 24
Enhancement band, 143
EPON autodiscovery process, 148–151. See also Ethernet PON (EPON); Passive optical networks (PONs)
EPON bandwidth enhancements, 168
EPON deployments, 189
EPON downstream encryption mechanisms, 154–155
EPON framing, 146–147
EPON header, 146
EPON parameters, comparison with BPON and GPON parameters, 116
EPON physical media-dependent layer, 13
EPON physical medium-dependent sublayer, 144–145
EPON PMD options, 145. See also Physical medium-dependent (PMD) layer
EPON point-to-multipoint MAC control (MPMC), 147–152
EPON security weaknesses, 155–156
EPON standards, 111
development of, 116
EPON sublayer extensions, 145–146
Erbium-doped fiber, 82
Erbium-doped fiber amplifiers (EDFAs), 78, 81–83, 86, 201. See also L-band EDFA
Ethernet frames, 203, 207
Ethernet in the first mile (EFM), 144
Ethernet in the first-mile 802.3ah study group, 108
Ethernet over fiber, 15–16
Ethernet PON (EPON), 29, 108–109, 110, 112–116, 144–156, 167. See also EPON entries; GPON/EPON; Passive optical networks (PONs)
open implementations in, 152–155
report process for, 151–152
Excess noise factor, 76
Excitons, 71
Expected transmission count (ETX), 228–229
Expected transmission time (ETT), 229
Extended Total Access Communication System (ETACS), 24
External cavity lasers, 60, 174
External modulators, 66, 71–72
External modulators, 106
Fabry–Pérot cavity, 74
Fabry–Pérot interferometer (FP etalon), 89–91
Fabry–Pérot (FP) lasers, 57–59, 173
injection-locked, 104, 174, 178–179
Failures in time (FTT), 114
Fast clock recovery, 103–104
FEC code word boundary, 159. See also Forward error correction (FEC)
Feeder fibers, 195
Fiber Bragg gratings, 91–92. See also Optical fiber entries
Fiber dispersion, 47–52, 93, 99–100
Fiber dispersion parameter, 49–50
Fiber-lean deployment, 187–188
Fiber-lean evolution, 188–189
Fiber-lean tree upgrade, 188
INDEX

Fiber loss, 45–47, 93
 fundamental limit on, 46
Fiber loss coefficient, 111
Fiber loss spectrum, factors contributing to, 45
Fiber mode, 38–44
Fiber nonlinearities, 93
Fiber optical backhaul, 240
Fiber optic communication system, 34
Fiber-rich deployment, 187, 188
Fiber-rich evolution, 190
Fiber structure, 35–38
Fiber to the building (FTTB), 117
Fiber to the cabinet (FTTC), 117
Fiber to the home (FTTH), 117. See also FTTH connections
Fiber to the node (FTTN), 117
Fiber to the x (FTTx), 12. See also FTTx entries
Field distribution, 40
 in fiber core and cladding, 40–42
 for a single-mode fiber, 44
Field-programmable gate arrays (FPGAs), 195, 251
Field radius, 44
Field theory, 87–88
Filter transfer functions, 90–91
First-generation satellites, 25
First-last-mile bottleneck, 5
First mile, 4
Flow control, 260
Forward error correction (FEC), 136–137, 157, 168. See also FEC code word boundary
Fourth-generation wireless networks, 20
Four-wave mixing effects, 54
Frame formats, 203–204
Frame synchronization (Psynch), 137
Franz–Keldysh effect, 70–71
Free carriers, 74
Free-space optical communications, 32
Free-space optical networks, 16–17
Free-space optical technologies, 240
Free spectral range (FSR), 90
Frequencies, below 11 GHz, 219
Frequency chirp, 64–66
Frequency-division-duplex (FDD), 222
Frequency hopping direct sequence (FHSS), 22
Frequency modulation, 66
Frequency reuse, in WiMAX, 222
Frequency shift keying (FSK), 20
FSAN NGA road map, 162–163. See also Full service access network (FSAN)
FTTH connections, 30. See also Fiber to the house (FTTH)
FTTx applications, optical transceivers for, 101–102. See also Fiber to the x (FTTx)
FTTx deployments, 30, 116–117
FTTx networks, 1, 5, 6, 11
Full service access network (FSAN), 144
Full service access networks working group, 12, 13, 108, 169
G.983 recommendations, 133
G.984.6 standard, 163
G.984 Series Standards/Revisions/Amendments, 142–143
Gain, 57–58
Gain coefficient, 79, 85
Gain peak, 85
Gain ripple, 84
Gain saturation, 79, 81
Gain spectrum, 84
Gated service, 154
GATE messages, 147, 148, 154. See also Discovery GATE message; Normal GATE message
Gateway association, 260
Gateway router look-ups, 260
Gateway routers (GRs), 227, 231–237, 243
Gaussian distribution, 44
Gaussian function, 97
GEM fragmentation/reassembly process, 142. See also GON encapsulation method (GEM)
GEM header error correction (HEC), 141
GEM payload length indicator (PLI), 140
GEM payload-type indicator (PTI), 141
GEM port identification (Port-ID), 141
General packet radio service (GPRS), 24
Generic flow control (GFC) field, 122
Generic framing procedure (GFP), 113
Geostationary orbit, 26
Gigabit-capable PON (GPON), 29, 108–109, 110, 112–116, 133–143, 167. See also GPON entries; Passive optical networks (PONs)
Global communication infrastructure development of, 1
 hierarchical architecture of, 2
Global positioning system (GPS), 25
GPON architecture, 134. See also Gigabit-capable PON (GPON); Passive optical networks (PONs)
GPON bandwidth enhancements, 168–169
GPON deployments, 189
GPON downstream encryption method, 142
GPON encapsulation method (GEM), 13, 113, 137, 140–142
INDEX

GPON/EPON, fiber dispersion in, 100. See also Ethernet PON (EPON)
GPON forward error correction, 136–137
GPON parameters, comparison with BPON and EPON parameters, 116
GPON physical medium-dependent layer, 134–137
GPON standards, 12–13, 111
GPON transmission convergence downstream frame, 137–138
GPON transmission convergence (GTC) layer, 134
GPON transmission convergence layer, 137–142
GPON transmission convergence upstream frame, 138–140
GPON upstream overhead, allocation of, 135
Graded-index fibers, 37
Grants, 127
Group velocity, 47
Group velocity dispersion, 49, 59, 65
Group velocity dispersion parameter, 49–50
Guard time, 128
HDSL, 8. See also Digital subscriber line/loop (DSL)
Header error check (HEC), 123
HE modes, 43, 44
Hierarchical architecture, 237
Hierarchical wireless access networks, 238
TDM-PON for upgrade of, 242–244
High-bit-rate long-reach communication systems, 66
High-capacity research issues, xii
High-definition (HD) TV, 120
High load resistor, 77
High-performance optical communication systems, 55
High-priority (HP) traffic, 210, 211
High-speed access over power lines, 18
High-speed data, 10
High-speed fiber optic communication systems, 66
polarization mode dispersion in, 52
Hybrid fiber coax (HFC), 5, 9–11
in networks, 3, 16
Hybrid IP/analog video delivery architecture, 121
Hybrid modes, 43
Hybrid optical–wireless access network architecture
reconfigurable optical backhaul architecture and, 247–257
TDM-PON technology and, 242–244
Hybrid optical–wireless access networks, 216–266
generic, 241
integrated routing algorithm for, 258–262
upgrading path and, 244–247
Hybrid TDM/WDM-PON, 184–202. See also Passive optical networks (PONs);
TDM/WDM (Time-division multiplexing/wavelength-division multiplexing)
Hybrid tree topology evolution, 186–195
Hybrid video delivery architecture, 121
Hybrid WDM-TDMA technique, 161. See also Time-division multiple access (TDMA);
Wavelength-division-multiplexing entries
ICT ALPHA, xiv
ICT OASE, xiv
ICT SARDANA, xiv
IDENT (identification) field, 126, 127, 138
IEEE standards
802.11 standards and technologies, 21–22, 227–228
802.11s mesh networking, 226
802.16 WiMAX, 217–225
802.3ah EPON, 112, 152–153. See also Ethernet PON (EPON)
802.3av 10GEPON, 156, 158, 162, 163
802.3z gigabit Ethernet (GbE) frame format, 113
In-band IP video delivery, 120
Incumbent local exchange carriers (ILECs), 29
Index ellipsoid, 67
Infrastructure wireless mesh networks, 226–227
PHY and MAC layers of, 227–228
Injection current, 62
Injection-locked Fabry–Pérot (FP) lasers, 104, 174, 178–179
In-line amplifier, 80
Integrated access services, 30
Integrated interferometer, 175
Integrated routing algorithm for hybrid access networks, 258–262
simulation results and performance analysis of, 260–262
Integrated routing paradigm, steps in, 258–260
Intensity modulation, 66
frequency chirp associated with, 65
Intensity modulation–direct detection (IM-DD) scheme, 66
Intensity modulator, 69
INDEX

Interexchange carriers (IXCs), 29
Interference, in wireless networks, 22
Interframe gap (IFG), 145
Interleaved polling and adaptive cycle time (IPACT) DBA, 153–154. See also Dynamic bandwidth allocation (DBA)
Intermodal dispersion, 47–49
Internal quantum efficiency, 62
Internet
growth of, 1
bottlenecks in, 31
Internet group management protocol (IGMP), 120
Internet protocol (IP) technologies, 4. See also In-band IP video delivery; IP entries
Internet users, as drivers of broadband applications, 28
Interoperability, BPON, 121
Intersymbol interference (ISI), 220
Intramodal dispersion, 47, 49–51
Intrinsic layer, 73–74
Inverse fast Fourier transform (IFFT), 221
IP-based mobile system, 24. See also Internet protocol (IP) technologies
IP over WDM optical networks, 30
IP packets, 203
IP TV, 4, 31. See also Internet protocol (IP) technologies
IP video delivery architecture, 121
ITU G.983.3 amendment, 169
ITU standards, 108, 109
ITU-T BPON, 112. See also Broadband PON (BPON)
ITU-T G.983.x recommendations, 133
ITU-T G.984.5 standard, 163
ITU-T G.984 series standard, 133–134
ITU-T G.7041 generic framing procedure, 13
ITU-T standardization, 108, 115
Japan, broadband subscribers in, 30
Just-in-time DBA scheme, 154. See also Dynamic bandwidth allocation (DBA)
Just-in-time scheduling strategy, 153
Ka-band, 25
Kazovsky, Leonid, xi–xii
Key churning, 142
Korea Telecom, 164, 179
Ku-band, 25
Large-scale fading/shadowing, 230
Laser control field (LCF), 127
Laser diodes, 173
Laser driver design, 72
Laser on/off time, adjustable, 160–161
Laser oscillation, 58
Laser power control, 135–136
Lasers. See also Continuous wave semiconductor lasers; Couple-cavity semiconductor lasers; Distributed Bragg reflector (DBR) lasers; Distributed feedback (DFB) lasers; External cavity lasers; Fabry–Pérot (FP) lasers; Multisection DFB/DBR lasers; Semiconductor lasers; Single-longitudinal-mode lasers; Tunable lasers (TLs); Vertical-cavity surface-emitting lasers (VCSELs)
modes of oscillation of, 58
tunable, 174–175, 176, 194, 197, 203
tunable semiconductor, 60
Laser wavelength, laser cavity and, 58
Last mile, 4
Last-mile bottleneck, 4–5, 32
Last-mile point-to-multipoint wireless access technology, 26
L-band EDFA, 82. See also Erbium-doped fiber amplifiers (EDFAs)
Legacy infrastructure, 185
Level recovery, 103
License-exempt frequencies, below 11 GHz, 219
Light modulation, 66
Light ray travel, 36
Light sources, WDM, 104–106
Light-wave propagation, in optical fibers, 54–55
Light waves, propagation constant of, 38–39
Limiting amplifiers, 77
Line-coding technique, 171
Line-of-sight (LOS) propagation environment, 219
Line rate enhancements research, 169
Linewidth enhancement factor, 65
Link capacity, upgrading, 233
Lithium niobate crystal, index ellipsoid of, 67
Lithium niobate modulators, 66–70
operation of, 70
LMDS architecture, 27. See also Local multipoint distribution service (LMDS)
Local area networks (LANs), 2–3
Local loss minima, wavelength regions for, 45
Local multipoint distribution service (LMDS), 26–28
Local WMN route calculation, 259–260
Logical link ID (LLID), 146. See also Broadcast LLID
INDEX

275

Longitudinal modes, 58–59
Long-period fiber grating, 92
Long-wavelength VCSELs, 60. See also
Vertical-cavity surface-emitting lasers (VCSELs)
Loss mechanisms, 45
Low-attenuation fibers, 45
Low loss, 52–53
Low-loss optical fibers, 45
Low-pass filter (LPF), 249
Mach–Zehnder interferometer, 66, 68–69, 91
MAC layer, of wireless mesh networks, 227–228.
See also Media access control (MAC) protocols
MAC layer control, 22
MAC layer MPCP clock, 145
MAC protocol global status variables, 205
MAC scheduler, 223
Management information base (MIB), 133
Manchester coding, 172
Masquerade attack, 155–156
Material absorption, 46
Material dispersion, 49
Material dispersion parameter, 50
Material purification, 46
MAX, 205
Maxwell's equations, 38–39
Media access control (MAC) protocols, 203–204.
See also MAC entries
WiMAX, 223
Medium access protocol (MAP)-based signaling scheme, 224. See also Multiple access protocol (MAP)
Mesh access, 21
Mesh backhaul, 21
Mesh layer, 237
Mesh network, 17
Mesh routers (MRs), 231–234
Mesh topology, 23
Metropolitan area networks (MANs), 3
research in, xiii
Microelectromechanic system (MEMS) structure, 60
Midspan reach extension, 143
Millimeter-wave technologies, 240
Minimum cell rate (MCR), 123
Minimum modal dispersion, 37
Mixed-mode autodiscovery process, 160
MMDS architecture, 28
Mobile ad hoc networks (MANETs), 225, 226
Mobile broadband wireless access (MBWA), 6
Mobile multihop relay WiMAX networks, 224–225
Mobile switching center, 24, 25
Mobile WiMAX. See also Worldwide interoperability for microwave access (WiMAX)
modulations and code rates for, 221
RF bands specified in, 219
Mobile WiMAX network architecture, 218
Mobile WiMAX system capacity, 218
Modal dispersion, 36, 47–49
Mode coupling, 49
Mode field diameter, 44
Models, of wireless mesh networks, 230–231
Mode partition noise (MPN), 136
Modes of oscillation, 58
Modulation dynamics, 62–64
Modulation methods, 8
Modulation speed, 61
Modulator/demodulator (modem), 7. See also
Cable modem broadband over power lines, 19–20
Modulator drivers, 72
Modulators. See also Electroabsorption modulators (EAMs); External modulators; Intensity modulator; Lithium niobate modulators; Modulator/demodulator (modem); MZ modulators; Optical modulators; Reflective electroabsorption modulators (REAMs); Semiconductor electroabsorption modulators
electroabsorption, 70–71
EAMs; Electroabsorption, 70–71
lithium niobate, 66–70
MPCPDU messages, 248. See also Multiple point control protocol (MPCP)
MPCPDU modifications, 160–161
Multicarrier modulation (MCM) scheme, 219
Multichannel multipoint distribution service (MMDS), 27–28
Multihop wireless communications, 21
Multilongitudinal mode (MLM) laser, 136
Multimedia applications, 29
bandwidth demands and, 11
bandwidth requirements of, 5
emerging, 4
Multimedia networks, striving to build, 1
Multimedia streams, 167
Multimode fibers (MMFs), 35–37, 181–184
Multipath fading, 230
Multiple access protocol (MAP), 11–12. See also
Medium access protocol (MAP)-based signaling scheme
Multiple-frequency channels, 6
276 INDEX

Multiple point control protocol (MPCP), 110, 147–152
Multiplication factors, 75–76
Multiplying mean time to repair (MTTR), 114
Multisystem operators (MSOs), 16, 29
MUX/DEMUX, 198. See also DEMUX; OLT
MUX; ONT MUX; Transmission multiplexer (MUX); WDM MUX/DEMUX
AWG, 190
MZ modulators, 200, 202
National information highways, ramps and access routes to, 4
Network architectures. See also Hybrid
optical–wireless access network architecture;
Mobile WiMAX network architecture;
Next-generation broadband optical access networks; Optical access network architectures; Passive optical network architectures; Topologies;
Wavelength-division multiplexed passive optical networks (WDM-PONs); WDM-PON network architectures
based on injection-locked lasers, 179
BPON, 118–121
GPON, 134
SUCCESS-HPON, 181
TDM-PON, 109–110
WDM-PON, 172–184
Network dimensioning, 110
Networking bottleneck, xiii
Network–network interface (NNI), 122
Network terminal (NT), 248
New services, launching, 170
Next-generation broadband optical access networks, 166–215
hybrid TDM/WDM-PON, 184–202
TDM-PON evolution, 167–172
WDM-PON components and network architectures, 172–184
WDM-PON protocols and scheduling algorithms, 202–211
Next-generation broadband technologies, 29
Next-generation optical access system development, 162–164
NGA-2 networks, 163
Noise, avalanche-process, 76
Noise figure, 80
of an SOA, 84–85
Noise sources, 94
Non-ATM-based service network interfaces, 133.
See also Asynchronous transfer mode (ATM)
Nonlinear effects, 54
Nonlinear refraction, 53–54
Nonlinear scattering, 53
Nonlinear Schrödinger equation, 54
Non-LOS (NLOS) scenarios, 219
Non-return-to-zero (NRZ) code, 110
Non-return-to-zero (NRZ) format, 170–171
Normal GATE message, 151
Null subcarriers, 219–220
Numerical methods, 54
OCDM PON, 16. See also Passive optical networks (PONs)
ODN interface, 124, 125. See also Optical distribution networks (ODNs)
OFDMA, 222
OLT DBA function, 152. See also Dynamic bandwidth allocation (DBA); Optical line terminal (OLT)
OLT functional blocks, 124
OLT idle cell monitoring scheme, 132
OLT MUX, 124. See also MUX/DEMUX
OLT power measurement, 138
OLT receiver, 135–136
OLT transmitting end, 199, 200
1GEPON coexistence options, 161
ONT functional blocks, 125. See also Optical networking terminals (ONTs)
ONT management and control interface specification (OMIC), 133
ONT management and control channel (OMCC), 133
ONT MUX, 125. See also MUX/DEMUX
ONT status reporting (SR) scheme, 131
ONT synchronization, 129
ONU clock, 145. See also Optical network units (ONUs)
ONU designs, 181
ONU sleep-mode option, 163
ONU_TIMEOUT, 205
Open implementations, in EPON, 152–155
Open systems interconnection (OSI) reference model, 144
Operating expenses (OPEX), 29
Operation, administration, maintenance, and provisioning (OAMP), 16
Optical access network architectures, 117
standardized, 6
Optical access networks, 11–17
additional types of, 15–17
next-generation, 30
types of, 116–117
Optical access solutions, 216, 217
Optical access system development, next-generation, 162–164
Optical amplification gain, 85
Optical amplifier performance, 80–81
Optical amplifier power gain, 79
Optical amplifiers, 45, 78–86, 107
Raman amplifiers, 85–86
rare-earth-doped fiber amplifiers, 81–83
semiconductor optical amplifiers, 83–85
Optical backhaul architecture, reconfigurable, 247–257
Optical code-division multiplexing (OCDM), 16
Optical coding gain, 136, 157
Optical communication components/systems, 34–107
optical amplifiers, 78–86
optical fibers, 35–55
optical receivers, 72–78
optical transceiver design for TDM-PONS, 101–106
optical transmitters, 55–72
passive optical components, 86–93
system design and analysis, 93–100
Optical communication system design, 93–100
power budget in, 98–99
receiver sensitivity in, 93–98
Optical communication systems
fiber loss in, 45–47
system performance of, 107
Optical communication technology, growth of, 34
Optical couplers, 88
Optical coupling, 87
Optical detector, 34
Optical distribution networks (ODNs), 11, 109–110, 167. See also ODN interface
Optical–electrical–optical (O-E-O) repeater, 78
Optical fiber(s), 34, 35–55, 106. See also Fiber entries
light-wave propagation in, 54–55
nonlinear effects in, 52–53
Optical fiber access networks, xiii
Optical fiber deployment techniques, 240–241
Optical fiber loss spectrum, 46
Optical filters, 86, 89–93, 101
Optical gain, of a Raman amplifier, 85
Optical input power, 69
Optical isolator, 81
Optical line terminal (OLT), 11, 14, 101, 102, 104–106, 109–110, 168, 172–173. See also OLT entries; SUCCESS-HPON OLT TL-buffering scheme in, 210–211
Optical modulators, 55, 66–71
Optical multiplexers, 86
278 INDEX

Packet encapsulation methods, 109
Packet switching, 4
PAM signals, 8
Passive optical components, 86–93
Passive optical network architectures, 11, 108–165. See also TDM-PON entries
reliability of, 114–115
security of, 115
Passive optical networks (PONs), xiv, 11–12, 31, 30, 32, 38, 55, 166, 167, 216. See also
ATM-based PON (APON); Broadband PON (BPON); DOCSIS PON (DPON); Ethernet PON (EPON); Gigabit-capable PON (GPON); Radio-frequency PON (RF PON); 10-Gb/s PONs; SUCCESS-HPON entries; Time-division multiplexed passive optical networks (TDM-PONs);
Wavelength-division multiplexed passive optical networks (WDM-PONs)
buffer depth and packet loss of, 250–251
burst-mode operation in, 112–113
channel loss in, 98–99
energy-saving techniques for, 163–164
fiber deployment cost for, 241
traffic allocation between, 249
PAUSE message, 147
Payload-type indicator (PTI), 122
Peak cell rate (PCR), 123
Peer-to-peer Web traffic, 29
Phase matching, 54
Phase-matching condition, 92
Phase modulation, 66
intensity modulation and, 65
Phase shift, 83–84
Photocurrent, 94, 95
Photodetectors, 72–76, 106
Photodiode design, 74
Photogenerated carriers, 74
Photon density, 61–62
rate equation for, 61, 65
Photonics and Networking Research Laboratory (PNRL), xi, xiii
Photonic technologies, development of, 34
PHY layer, of wireless mesh networks, 227–228
Physical coding sublayer (PCS), 146
Physical Layer, DOCSIS, 10
Physical-layer operation, administration, and maintenance (PLOAM) cell format, 125–127.
See also PLOAM entries
Physical medium attachment sublayer (PMA), 146
Physical medium-dependent (PMD) layer, 10, 109
Pilot subcarriers, 219–220
“Ping-Pong” technique, 205
p-i-n junction, 73, 74
PIN photodiodes, 73–74
PIN receivers, 94–95
with optical preamplifiers, 95–96
Planar light-wave circuits (PLCs), 173
PLOAM cell rate, 129
PLOAM cells, 128
PLOAM messages, 248. See also Downstream
PLOAM entries; Upstream PLOAM entries
downstream, 127
upstream, 127
p-n junction, 73, 74
Point-to-multipoint (P2MP) architecture, 109
Point-to-multipoint fiber, 144
Point-to-multipoint topology, 244
Point-to-multipoint wireless access, 22–23
Point-to-point emulation (P2PE), 113
Point-to-point-emulation function, 146
Point-to-point Ethernet optical access networks, 15
Point-to-point optical wireless links, 17
Polarization mode dispersion, 47, 51–52
Polarization mode dispersion parameter, 52
Polarization modulation, 66
PON bandwidths, 110. See also Passive optical networks (PONs)
PON deployment, convergence of, 186
PON dimensioning, 110
PON packet format/encapsulation, 113–114
PON standards, 115–117
development of, 12–13
history of, 115–116
Population inversion, 56–57
Population inversion factor, 80
Power attenuation, 45
Power budget, 98–99, 110–112
10GEPON standard, 156–157
Power coupling coefficient, 88, 89
Power-leveling sequence (PLS) mechanism, 140
Power-line communication technology, 18–19
Power reflection coefficient, 58
Power transfer function, 91
Power transmitted, 69
Pr-doped fiber amplifiers, 83
Preamble, 128
Preamplifier, 76, 77, 80–81
Primary photocurrent, 74–75
Proactive routing protocols, 228
Probability density function, 97
Propagation constant, 41, 38–39, 43, 48
Propagation delay, 36, 47–48, 49
Propagation environments, of wireless mesh networks, 230–231
Propagation equation, 54
Proprietary wireless technologies, 237
INDEX

Protection switching, 133
Pseudorandom bit sequence (PRBS), 201
Psynch. See Frame synchronization (Psynch)
Public key infrastructure (PKI) cryptography technique, 155
Public-switched telephone networks (PSTN), 3, 4
Pulse broadening, 52, 59
Pulse distortion, 49, 51
Pumping schemes, 81–82
Pump power, 86
QAM/OFDM data signals, 27. See also
Orthogonal frequency-division multiplexing (OFDM); Quadrature amplitude modulation (QAM)
QoS traffic scheduling, SUCCESS-DWA, 210–211. See also Quality of service entries
QPSK (quadrature phase-shift keying) modulation, 9, 10
Quadrature amplitude modulation (QAM), 8
Quadrature amplitude modulation (QAM), 10
Quadrature amplitude modulation (QAM). See also QAM/OFDM data signals
Quality of service (QoS), 3. See also QoS traffic scheduling
Quality-of-service controls, 121
Quality of service support, 223–224
Quantum-confined Stark effect, 70, 71
Quantum efficiency, 73
Quantum wells, 71
Radio access technologies, 21
Radio-frequency PON (RF PON), 16. See also
Passive optical networks (PONs); RF entries
Radio over fiber (ROF) technology, 242
Radio signal propagation, characterizing and modeling components of, 230–231
Raman amplifiers, 78, 85–86
Raman–Brillouin scattering, 46
Raman gain coefficient, 85
Ranging, 114
Ranging process, 115, 129–130
EPON, 148
Rare-earth-doped fiber amplifiers, 81–83
Rate equations, 60–61
Rayleigh backscattering, 180, 181
Rayleigh scattering, 46–47, 86
Reactive routing protocols, 228
Real-time voice/video, 30
Receiver optical subassembly (ROSA), 101
Receivers, tunable, 175, 176
Receiver sensitivity, 93–98
Reconciliation sublayer (RS), 145–146
Reconfigurable optical backhaul, experimental testbed of, 251–255
Reconfigurable optical backhaul architecture, 247–257
Reconfigurable optical back-performance simulation, 249–251
Reconfiguration control interfaces (RCIs), 251–254
Reconfiguration testbed, experimental results of, 257
Reed–Solomon (RS) coding, 136
Reflective electroabsorption modulators (REAMs), 174
Reflective semiconductor optical amplifiers (RSOAs), 174
centralized light sources with, 179–181 self-seeding, 106
Refractive index (indices), 67
temperature and, 64
Refractive index fluctuation, in fiber materials, 46
Refractive index inhomogeneities, 47
REGISTER_ACK message, 148, 150, 151, 160.
See also Acknowledgment (ACK) signal
REGISTER message, 147, 150–151
REGISTER_REQ message, 147, 149–150, 160
Remote nodes (RNs), 196–197, 199
modification of, 188
Replay attack, 155–156
REPORT message, 147, 152
Resource scheduling, SUCCESS-HPON, 204–210
Responsivity
APD, 75
photodiode, 73–74
RF bands, in mobile WiMAX, 219. See also
Radio-frequency PON (RF PON)
RF interference, 22
RF signals, 20, 21
RF technologies, 32
RF video broadcasting signals, over optical fibers, 16
Rms (root mean square) fiber dispersion, 99, 100
Round-trip time (RTT), 114, 148, 202, 205
Route cost report, 260
See also Gateway router entries; Integrated routing entries; Local WMN route calculation; Mesh routers (MRs); Optimized link state routing (OLSR); Proactive routing protocols; Reactive routing protocols; Throughput per router; Wireless gateway router reassociation; Wireless mesh routers
Routing algorithm, integrated, 243
Routing paths, 258
INDEX

Satellite communication, 32
Satellite Earth station, 26
Satellite systems, 25–26
Scalability, of wireless mesh networks, 231–237
Scheduling algorithms, 205–208
WDM-PON, 204–211
Scheduling algorithm throughput, 209
Second-order dispersion parameter, 51
Security weaknesses, EPON, 155–156
Self-phase modulation, 54
Self-seeding RSOAs, 106. See also Reflective semiconductor optical amplifiers (RSOAs)
Semiconductor electroabsorption modulators, 66
Semiconductor lasers, 55–66. See also Continuous wave semiconductor lasers; Couple-cavity semiconductor lasers
amplitude modulation in, 64
direct modulation of, 66–71
frequency chirp of, 64–65
operation of, 55–60
pulse response of, 64
response to injection current, 63
Semiconductor materials, population inversion in, 56–57
Semiconductor optical amplifiers (SOAs), 78, 83–85, 84–85, 106, 180, 200
Sequential scheduling algorithm, 206
Sequential scheduling with schedule-time framing algorithm, 206
Service convergence, 3–4
Service-level agreements (SLAs), 117, 123, 154
Service network interface (SNI), 110, 116
Service port, 124
SHDSL, 8. See also Digital subscriber line/loop (DSL)
Short-period gratings, 92
Shot noise, 94, 95, 96
Side-mode suppression ratio (SMSR), 59
Signal-spontaneous beat noise, 96
Signal-to-noise ratio (SNR), 80, 93
for APD receivers, 95
for PIN receivers, 94–95
Silica fibers, refractive index of, 53
Single-longitudinal-mode lasers, 59–60
Single-mode condition, 43–44
Single-mode fibers (SMFs), 35, 37–38, 173, 181
dispersion parameter of, 50–51
fiber loss of, 45
intramodal dispersion in, 49
Single-sided reach extension, 143
Small-scale fading, 230
Small-signal frequency response, 63
SONET/SDH links, 119
Spectral line coding technique, 169, 170
Spectral-shaping line codes, 170
Spectral (spectrum) sliced broadband light sources, 104, 174, 176–178
Splitter loss, 98–99
Spontaneous emission, 56
Spontaneous emission factor, 80
Spontaneous emission-induced noise, spectral density of, 80
Spontaneous-shot beat noise, 96
Spontaneous-spontaneous noise, 96
Spot size, 44, 52
Stable amplitude of oscillation, 58
Stanford University aCCESS (SUCCESS) project, 186. See also SUCCESS entries
Start of data (SOD) delimiter, 159
Star topology, 23
Steady-state conditions, 61–62
Steady-state oscillation, 57
Step-index fibers, 36
Stimulated Brillouin gain spectrum, 53
Stimulated Brillouin scattering, 53
Stimulated emission, 55, 56–57
Stimulated Raman gain spectrum, 53
Stimulated Raman scattering, 53, 85
Subcarrier multiplexing (SCM) technique, 119, 170
Subchannelization, 224
Subchannels, reuse pattern of, 222
Submarine links, 3
SUCCESS-DWA, 186
SUCCESS-DWA downstream architecture, 191
SUCCESS-DWA experimental testbed, 194–195
SUCCESS-DWA PON, 190–195
SUCCESS-DWA QoS traffic scheduling, 210–211
SUCCESS-DWA upstream architecture, 194
SUCCESS-DWA upstream schemes, 193
SUCCESS-HPON, 186, 195–202. See also Passive optical networks (PONs)
SUCCESS-HPON architecture, 181
SUCCESS-HPON colorless ONU, 199. See also Optical network units (ONUs)
SUCCESS-HPON experimental testbed, 199–202
SUCCESS-HPON frame formats, 203–204
SUCCESS-HPON framing, 207
SUCCESS-HPON MAC protocol, 203–204
SUCCESS-HPON OLT, 197–198, 203. See also Optical line terminal (OLT)
SUCCESS-HPON protocol, 205
SUCCESS-HPON resource scheduling, 204–210
INDEX 281

SUCCESS-HPON ring topology, 198
SUCCESS-HPON scalability, 209–210
SUCCESS-HPON subnetworks, 197
SUCCESS-LCO service overlay, 169–172
Sustainable cell rate (SCR), 123
Symmetrical connections, 8
Synchronization bytes (SYNCH), 126
System margin, 98

TCM technique, 205
T-CONT layer structure, 141. See also Traffic container (T-CONT) buffers
TDM-PON architecture, 109–110. See also Passive optical networks (PONs);
 Time-division multiplexed passive optical networks (TDM-PONs)
TDM-PON deployments, 167, 186
TDM-PON enhancements, 167–168
TDM-PON evolution, 167–172
TDM-PON line bit-rate enhancements, 169
TDM-PON ONUs, 189. See also Optical network units (ONUs)
TDM-PON technology, hierarchical wireless access networks and, 242–244
TDM-PON upgrading, 170
TDM-PON WDM enhancements, 187
TDM/WDM (Time-division multiplexing/wavelength-division multiplexing), 31
Telecommunication fibers, 44
Telecommunication industry, transmission capacity of, 4
TE mode, 43
10-Gb/s PONs, 30–31. See also Passive optical networks (PONs)
10GEPON coexistence architecture, 161
10GEPON coexistence options, 161–162
10GEPON framing, with FEC consideration, 159
10GEPON MAC modifications, 158–161
10GEPON PMD architecture, 156–158
10GEPON system, coexistence with 1GEPON system, 158
10 to 66-GHz licensed bands, 219
TE polarization, 67, 68
Thermal noise, 93–94, 95
Thermoelectric cooler (TEC), 180
Thin-film filters, 90–91
Thin-film resonant multicyclety filter, 90
3-dB bandwidth, 63–64
of an avalanche photodiode, 76
3-dB coupler, 91
Three-phase power, 18–19
Threshold current, 62

Throughput per router, 234–235
Time-division-duplex (TDD), 222
Time-division multiplexed passive optical networks (TDM-PONs), 12, 30, 32, 166, 192.
 See also Passive optical networks (PONs);
 TDM-PON entries
evolution to WDM-PON, 184–186
fiber loss in, 45
optical transceiver design for, 101–106
time-Division multiple access (TDMA), upstream, 129
Time-varying optical phase, 53–54
Time-varying refractive index, 53
TL-buffering scheme, OLT, 210–211
TM mode, 43
TM polarization, 67, 68
Topologies. See also Network architectures
 LAN, 3
 mesh, 23
 point-to-multipoint, 244
 star, 23
 SUCCESS-HPON ring, 198
tree, 186–195
WiMAX network, 23
Topology evolution
 hybrid tree, 186–195
tree to ring, 195
Total current, 74–75
Total internal reflection, 36
Total modal dispersion, 48–49
Traffic container (T-CONT) buffers, 130–133.
 See also T-CONT layer structure
Traffic estimators (TEs), 248
Traffic-monitoring (TM), 140
Traffic scheduling, SUCCESS-DWA, 210–211
Transceiver performance monitoring, 143
Transceivers, 111. See also Optical transceivers
 Transfer functions, 90
 filter, 90–91
Transimpedance amplifier, 77
Transmission convergence (TC) layer, 109
GPON, 137–142
Transmission frames, BPON, 127–129
Transmission multiplexer (MUX), 124, 125.
 See also MUX/DEMUX
Transmission timing diagrams, 202
Transmitter optical subassembly (TOSA), 101
Traveling-wave semiconductor optical amplifiers (SOAs), 83, 84. See also Semiconductor optical amplifiers (SOAs)
Tree topology evolution, hybrid, 186–195
tree to ring topology evolution, 195
Triple play, 29
INDEX

Tunable components, intelligent scheduling of, 204–205
Tunable lasers (TLs), 174–175, 176, 190–191, 194, 197, 203
Tunable laser technologies, 248
Tunable receivers, 175, 176, 254–256
Tunable semiconductor lasers, 60
Tunable transceivers, 247, 248
Tunable VCSELs, 60
TV broadcasting, 31
Twisted pairs, 6, 8 dedicated, 9
Two-way broadband communication links over satellites, 26
Ultrahigh-speed access networks, xi
Universal mobile telecommunication system (UMTS), 24
Upstream bandwidth allocation map (US BW map), 138, 139
Upstream burst framing, 159
Upstream burst overhead/timing, 134–135
Upstream data transmission, 181
Upstream denial of service attack, 155
Upstream divided-slot, 132–133
Upstream dynamic bandwidth report, 140
Upstream physical control block, 138
Upstream physical layer overhead (PLO_{u}), 134–135, 138–139
Upstream PLOAM, 127. See also Physical-layer operation, administration, and maintenance (PLOAM) cell format
Upstream PLOAM field, 139
Upstream queue-length reporting, 132
Upstream time-division multiple access (TDMA), 129
Upstream transmission, in SUCCESS-DWA PON, 192–194
Upstream transmission frame, 128
User end, performance at, 4–5
User network interface (UNI), 110, 122
User port, 125
Valence band, 55–56
V-band, 26
VDSL1, 7
VDSL2, 7–8
VDSL standards, 7–8. See also Very high-speed DSL (VDSL)
Vertical-cavity surface-emitting lasers (VCSELs), 59, 175, 173, 248
tunable, 60
Very high-speed DSL (VDSL), 6. See also Digital subscriber line/loop (DSL); VDSL entries
Very small aperture terminals (VSATs), 25
Video broadcasting, 3–4, 25
Video delivery architectures, in BPON architecture, 119–121
Video on demand (VOD) protocol, 120
Video over IP, 31
Video service provider (VSP), 120
Video services, 29
Virtual circuit identifier (VCI), 122
Virtual path identifier (VPI), 122
Virtue-output-queuing (VOQ), 206, 207, 211
VLAN control, 146
Voice communications, 24
Voice conversation service, 3
Voice over DSL (VoDSL), 8. See also Digital subscriber line/loop (DSL)
Voice over Internet Protocol (VoIP), 4, 218
Waveband combiner/splitters (WCS), 188
Wavefunctions, 71
Waveguide dispersion, 48, 49
Waveguide dispersion parameter, 50
Waveguide imperfections, 47
Waveguide photodiode, 74
Wavelength add/drop filters, 242
Wavelength allocation, in BPON architecture, 118–119
Wavelength blocking filters, 187–188
Wavelength-division multiplexed passive optical networks (WDM-PONs), 13–15, 31, 32, 104, 166–167, 192. See also Passive optical networks (PONs); Wavelength-division-multiplexed (WDM) systems; WDM-PON entries
scheduling algorithms, 204–211
TDM-PON evolution to, 184–186
technology requirements for, 185
Wavelength-division-multiplexed (WDM) systems, xi. See also Wavelength-division multiplexed passive optical networks (WDM-PONs); WDM entries
Wavelength-division multiplexer/demultiplexer, 89
Wavelength-division multiplexing (WDM) technology, 3
Wavelength plan, 10GEPON standard, 158
Wavelength tuning, 60
Wave number, 41
Wave propagation equations, 39
WDM enhancements, 168, 187. See also Wavelength-division-multiplexed (WDM) systems
WDM filter, 101
WDM FTTx network, 14
INDEX 283

WDM light sources, 104
WDM MUX/DEMUX, 176–177. See also MUX/DEMUX
WDM optical communication systems, 54, 81
WDM-PON approach comparison summary, 105. See also Wavelength-division multiplexed passive optical networks (WDM-PONs)
WDM-PON components, 172–184
WDM-PON network architectures, 172–184, 202
WDM-PON ONUs, 189, 199
WDM-PON protocols, 202–204
WDM-PON RN, 199. See also Remote nodes (RNs)
WDM-PON scheduling algorithms, 204–211
WDM technologies, 31
Wide area networks (WANs), 3
research in, xiii
Wideband code-division multiple access (WCDMA), 24
Wi-Fi mesh networks, 21–22. See also Wireless fidelity (Wi-Fi); Wireless mesh networks (WMNs)
WiMAX access networks, 22–24. See also Worldwide interoperability for microwave access (WiMAX)
WiMAX base stations, 23
WiMAX MAC layer, 23
WiMAX modulation schemes, 220–221
WiMAX networks, 23–24
mobile multihop relay, 224–225
topology of, 23
WiMAX standard, 223
WiMAX subcarriers, 219–220
Wireless access networks, 31
Wireless access points, 21
Wireless access solutions, 216, 217
Wireless access technologies, 20–28, 217–241
cellular networks, 24–25
LMDS and MMDS systems, 26–28
satellite systems, 25–26
Wi-Fi mesh networks, 21–22
WiMAX access networks, 22–24
Wireless backhaul, upgrading path of, 245–246
Wireless cable, 27
Wireless cellular networks, 20
Wireless fidelity (Wi-Fi), 6, 31, 32. See also Wi-Fi mesh networks
Wireless gateway router reassociation, 260
Wireless links, 244
Wireless link state update, 258–259
Wireless mesh networks (WMNs), 225–241, 258–259. See also Wi-Fi mesh networks
backhaul network example for, 237
capacity and scalability issues of, 231–237
point-to-multipoint optical backhaul and, 243
propagation environments and models of, 230–231
using TDM-PON to backhaul, 242
versus wireless ad hoc networks, 230
Wireless mesh routers, 226, 227
Wireless multihop networks, routing in, 228–230
Wireless networks, 1
Wireless technologies, 32
advantages of, 6
Worldwide interoperability for microwave access (WiMAX), 6, 31, 32, 217. See also WiMAX entries
duplex scheme and frequency reuse in, 222
MAC protocol of, 223
orthogonal frequency-division multiplexing in,
219–222
“World Wide Wait,” 5

X-cut lithium niobate crystal, 67, 68
xDSL, 7. See also Digital subscriber line/loop (DSL)
ZBLAN fiber, 83
Z-cut lithium niobate crystal, 68