Contents

HISTORICAL DEVELOPMENT AND PERSPECTIVES OF THE SERIES v
PREFACE TO VOLUME 4 vii
CONTRIBUTORS TO VOLUME 4 xvii
TITLES OF VOLUMES 1–44 IN THE METAL IONS IN BIOLOGICAL SYSTEMS SERIES xxi
CONTENTS OF VOLUMES IN THE METAL IONS IN LIFE SCIENCES SERIES xxiii

1 CRYSTALS AND LIFE: AN INTRODUCTION 1
Arthur Veis

Abstract 2
1. Introduction 2
2. Global Effects 3
3. Minerals within Living Systems 14
4. Concluding Remarks 30
 Acknowledgments 32
 Abbreviations 32
 References 32

2 WHAT GENES AND GENOMES TELL US ABOUT CALCIUM CARBONATE BIOMINERALIZATION 37
Fred H. Wilt and Christopher E. Killian

Abstract 38
1. Introduction 38
2. One Gene–One Protein Approaches 39
3. Many Genes–One Structure Approaches 50
4. General Conclusions 64
CONTENTS

Acknowledgments 64
Abbreviations 64
References 65

3 THE ROLE OF ENZYMES IN BIOMINERALIZATION PROCESSES 71
Ingrid M. Weiss and Frédéric Marin

Abstract 72
1. Introduction 73
2. From Ions to Minerals: A Pathway Paved by Enzymes 91
3. The “Evolution” of Solids: A Complex Network of Regulation 105
5. Conclusions 116
Acknowledgments 116
Abbreviations 116
References 118

4 METAL–BACTERIA INTERACTIONS AT BOTH THE PLANKTONIC CELL AND BIOFILM LEVELS 127
Ryan C. Hunter and Terry J. Beveridge

Abstract 128
1. Introduction 128
2. Planktonic Bacterial Cells 130
3. Metal–Microbe Interactions 137
4. Microbial Biofilm Communities 147
5. Biofilm Microenvironments and Their Impact on Geochemical Interactions 150
6. Concluding Remarks 160
Acknowledgments 160
Abbreviations and Definitions 161
References 161

5 BIOMINERALIZATION OF CALCIUM CARBONATE. THE INTERPLAY WITH BIOSUBSTRATES 167
Amir Berman

Abstract 168
1. Introduction 168
2. Control in Biological Mineralization 173
3. Recent Perspectives on Mineralization Strategies 176
4. CaCO$_3$ Growth in Confinement 182
5. Crystal Assembly 185
6. In Vitro Studies of CaCO$_3$ Mineralization 186
CONTENTS

7. Calcium Carbonate Nucleation and Growth on Artificial Substrates 194
8. Summary and Outlook 200
 Acknowledgments 200
 Abbreviations 201
 References 201

6 SULFATE-CONTAINING BIOMINERALS 207
 Fabienne Bosselmann and Matthias Epple
 Abstract 207
 1. Sulfate-Containing Biominerals: An Overview 208
 2. Gypsum and Bassanite (Calcium Sulfates) 208
 3. Celestite (Strontium Sulfate) 213
 4. Barite (Barium Sulfate) 214
 5. Jarosite (Potassium Iron Hydroxide Sulfate) 214
 6. Concluding Remarks 215
 Acknowledgments 215
 References 216

7 OXALATE BIOMINERALS 219
 Enrique J. Baran and Paula V. Monje
 Abstract 220
 1. Introduction 220
 2. Metallic Oxalates: Physico-Chemical and Structural Properties 221
 3. Calcium Oxalates in Plants 226
 4. Calcium Oxalates in Other Forms of Life 232
 5. Other Oxalate Biominerals 234
 6. Pathological Oxalates 240
 7. Oxalates in the Environment 242
 8. Oxalate Degrading Systems 245
 9. Conclusions and Perspectives 246
 Acknowledgments 247
 Abbreviations 248
 References 248

8 MOLECULAR PROCESSES OF BIOSILICIFICATION IN DIATOMS 255
 Aubrey K. Davis and Mark Hildebrand
 Abstract 256
 1. Introduction 257
 2. Silicon Transport 262
 3. Silica Structure Formation 270
 4. Regulation of Structure Formation 281
CONTENTS

5. Manipulation of Diatom Silica Structure 284
6. Concluding Remarks and Future Directions 288
 Acknowledgments 288
 Abbreviations 289
 References 289

9 HEAVY METALS IN THE JAWS OF INVERTEBRATES 295
Helga C. Lichtenegger, Henrik Birkedal, and J. Herbert Waite

Abstract 295
1. Introduction 296
2. Iron Biomineralization in Chitons and Limpets 297
3. Copper and Zinc in Marine Worm Jaws 300
4. Zinc and Manganese in Arthropods 307
5. Heavy Metals and Jaw Mechanics 311
6. General Conclusions 319
 Acknowledgment 321
 Abbreviations and Definitions 321
 References 322

10 FERRITIN. BIOMINERALIZATION OF IRON 327
Elizabeth C. Theil, Xiaofeng S. Liu, and Manolis Matzapetakis

Abstract 327
1. Introduction 328
2. Protein Nanocage Structures 329
3. Iron Entry: The Protein Ferroxidase Site 330
4. Mineral Precursor Translocation, Nucleation, and Mineralization 334
5. Ferritin Demineralization and the Nanocage Gated Pores 334
6. Summary and Perspective 336
 Acknowledgments 337
 Abbreviations and Definitions 338
 References 338

11 MAGNETISM AND MOLECULAR BIOLOGY OF MAGNETIC IRON MINERALS IN BACTERIA 343
Richard B. Frankel, Sabrina Schübbe, and Dennis A. Bazylinski

Abstract 344
1. Introduction. Magnetotactic Bacteria 344
2. Molecular Biology of Magnetosome Chain Formation 353
CONTENTS

3. Magnetic Properties of Magnetosomes 359
4. Conclusions 371
 Acknowledgments 372
 Abbreviations 372
 References 372

12 BIOMINERALS. RECORDERS OF THE PAST? 377
 Danielle Fortin, Sean Langley, and Susan Glasauer

 Abstract 378
 1. Introduction 378
 2. What Are Biominerals? 380
 3. Biominerals as Biosignatures? 389
 4. Tools to Study Biosignatures 398
 5. General Conclusions 404
 Acknowledgments 405
 Abbreviations 405
 References 406

13 DYNAMICS OF BIOMINERALIZATION AND BIODEMINERALIZATION 413
 Lijun Wang and George H. Nancollas

 Abstract 414
 1. Introduction 414
 2. Nucleation and Crystal Growth 415
 3. Dissolution 437
 4. Conclusion and Future Directions 448
 Acknowledgments 450
 Abbreviations and Definitions 450
 List of Symbols 451
 References 452

14 MECHANISM OF MINERALIZATION OF COLLAGEN-BASED CONNECTIVE TISSUES 457
 Adele L. Boskey

 Abstract 458
 1. Introduction 458
 2. Function of Collagen in the Regulation of Vertebrate Biomineralization 472
 3. Comparative Composition of the Organic Components of Collagenous Mineralized Tissues 475
 4. Is there a Uniform Theory of Vertebrate Mineralization? 489
 Acknowledgments 492
 Abbreviations 493
 References 494
15 MAMMALIAN ENAMEL FORMATION
Janet Moradian-Oldak and Michael L. Paine

Abstract
1. Introduction
2. Delineation of the Extracellular Space
3. Ion Composition and Transport
4. The Organic Matrix Components
5. Function of Organic Matrix in Enamel Formation
6. Matrix Degradation
7. Conclusions
Acknowledgments
Abbreviations
References

16 MECHANICAL DESIGN OF BIOMINERALIZED TISSUES. BONE AND OTHER HIERARCHICAL MATERIALS
Peter Fratzl

Abstract
1. Introduction
2. Growth, Self-Repair, and Structural Hierarchies
3. Hierarchical Structure of Bone
4. Hierarchical Structure of a Silica Sponge Skeleton
5. Some Structural Elements with Mechanical Function
6. Conclusions
Acknowledgments
References

17 BIOINSPIRED GROWTH OF MINERALIZED TISSUE
Darilis Suárez-González and William L. Murphy

Abstract
1. Introduction
2. Natural Development of Bone
3. Connective Tissue Progenitor Cells
4. Inductive Soluble Factors
5. Bone Structural Properties
6. Scaffold Materials for Bioinspired Mineralized Tissue Fabrication
7. Summary
Acknowledgments
Abbreviations and Definitions
References
18 POLYMER-CONTROLLED BIOMIMETIC MINERALIZATION OF NOVEL INORGANIC MATERIALS 607
Helmut Cölfen and Markus Antonietti

Abstract 608
1. Introduction 608
2. Different Crystallization Modes and Ways to Modify Crystallization 609
3. Polymer-Controlled Crystallization 615
4. Conclusion 632
5. Current Trends and Outlook to the Future 634
 Acknowledgments 635
 Abbreviations 636
 References 636

SUBJECT INDEX 645