Contents

Preface to the Second Edition XI

Preface to the First Edition XIII

1 Ideal Fluids 1
 1.1 Modeling by Euler’s Equations 1
 1.2 Characteristics and Singularities 10
 1.3 Potential Flows and (Dynamic) Buoyancy 14
 1.4 Motionless Fluids and Sound Propagation 29

2 Weak Solutions of Conservation Laws 33
 2.1 Generalization of What Will Be Called a Solution 33
 2.2 Traffic Flow Example with Loss of Uniqueness 37
 2.3 The Rankine–Hugoniot Condition 42

3 Entropy Conditions 49
 3.1 Entropy in the Case of an Ideal Fluid 49
 3.2 Generalization of the Entropy Condition 53
 3.3 Uniqueness of Entropy Solutions 59
 3.4 Kruzkov’s Ansatz 69

4 The Riemann Problem 73
 4.1 Numerical Importance of the Riemann Problem 73
 4.2 The Riemann Problem for Linear Systems 75
 4.3 The Aw–Rascle Traffic Flow Model 77

5 Real Fluids 79
 5.1 The Navier–Stokes Equations Model 79
 5.2 Drag Force and the Hagen–Poiseuille Law 85
 5.3 Stokes Approximation and Artificial Time 90
 5.4 Foundations of the Boundary Layer Theory and Flow Separation 95
 5.5 Stability of Laminar Flows 102
5.6 Heated Real Gas Flows 104
5.7 Tunnel Fires 106

6 Proving the Existence of Entropy Solutions by Discretization Procedures 113
6.1 Some Historical Remarks 113
6.2 Reduction to Properties of Operator Sequences 114
6.3 Convergence Theorems 117
6.4 Example 120

7 Types of Discretization Principles 127
7.1 Some General Remarks 127
7.2 Finite Difference Calculus 131
7.3 The CFL Condition 135
7.4 Lax–Richtmyer Theory 136
7.5 The von Neumann Stability Criterion 141
7.6 The Modified Equation 144
7.7 Difference Schemes in Conservation Form 146
7.8 The Finite Volume Method on Unstructured Grids 148
7.9 Continuous Convergence of Relations 151

8 A Closer Look at Discrete Models 155
8.1 The Viscosity Form 155
8.2 The Incremental Form 156
8.3 Relations 158
8.4 Godunov Is Just Good Enough 159
8.5 The Lax–Friedrichs Scheme 164
8.6 A Glimpse of Gas Dynamics 168
8.7 Elementary Waves 171
8.8 The Complete Solution to the Riemann Problem 178
8.9 The Godunov Scheme in Gas Dynamics 184

9 Discrete Models on Curvilinear Grids 187
9.1 Mappings 187
9.2 Transformation Relations 190
9.3 Metric Tensors 192
9.4 Transforming Conservation Laws 193
9.5 Good Practice 196
9.6 Remarks Concerning Adaptation 203

10 Finite Volume Models 205
10.1 Difference Methods on Unstructured Grids 205
10.2 Order of Accuracy and Basic Discretization 208
10.3 Higher-Order Finite Volume Schemes 209
10.4 Polynomial Recovery 211
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.5</td>
<td>Remarks Concerning Non-polynomial Recovery</td>
<td>216</td>
</tr>
<tr>
<td>10.6</td>
<td>Remarks Concerning Grid Generation</td>
<td>218</td>
</tr>
</tbody>
</table>

Index

Suggested Reading

227