Contents

Volume 1

Prologue XXV

Dedication XXIX

Foreword XXXI

Foreword XXXV

Quotes XXXVII

Executive Summary XLI

List of Contributors CXXIII

Introduction

Current Status of Biopharmaceuticals: Approved Products and Trends in Approvals 1

Gary Walsh

1 What are Biopharmaceuticals? 2
2 A Global Snapshot 2
3 Upstream and Downstream Processing 3
4 Trends in Approvals 6
5 Declining Number of Approvals 8
6 Products Approved for Human Use 9
7 Products Approved for Veterinary Use 25
8 Likely Future Directions 27
9 Concluding Remarks 33
From Genome to Clinic – Correlation Between Genes, Diseases and Biopharmaceuticals 37

1 Beginning to Understand the End of the Chromosome 37
 Thomas R. Cech
 1.1 Introduction 37
 1.2 Telomere Terminal Transferase 38
 1.3 Telomerase Contains an Essential RNA 38
 1.4 Finally, the Protein: Telomerase Reverse Transcriptase 39
 1.5 Current Picture of Telomerase 40
 1.6 Regulation of Telomerase 42
 1.7 Cellular Immortality 44
 1.8 Cancer 44

2 The Role of Pharmacogenetics/Pharmacogenomics in Drug Development and Regulatory Review: Current Status 49
 Shiew-Mei Huang and Lawrence J. Lesko
 2.1 Introduction 50
 2.2 Variability in Drug Response 50
 2.3 Drug-metabolizing Enzymes and Transporters 52
 2.4 Applications of Pharmacogenetics and Pharmacogenomics in Drug Development and Regulatory Review 54
 2.5 Determination of Different Genotype Groups based on Known Valid and Probable Valid Biomarkers 56
 2.6 Drug Interactions 60
 2.7 Voluntary versus Required Submissions 60
 2.8 Labeling Implications 63
 2.9 Conclusion 64

3 Large-scale Detection of Genetic Variation: The Key to Personalized Medicine 71
 Joerg Geistlinger and Peter Ahnert
 3.1 Genetic Variation, Disease Susceptibility and Drug Response 73
 3.2 Pharmacogenetics and Pharmacogenomics 74
 3.3 Personalized Medicine 76
 3.4 SNPs in Clinical Applications 78
 3.5 Strategies in SNP Discovery 80
 3.6 SNP Technologies 83
 3.7 Polydimensional SNP-Chips: The Array-On Technology 88
 3.8 Outlook 93

4 A Systems Biology Approach to Target Identification and Validation for Human Chronic Disease Drug Discovery 99
 Bonnie E. Gould Rothberg, Carol E. A. Peña, and Jonathan M. Rothberg
 4.1 Limitations in the Chronic Disease Drug Discovery Process 100
4.2 Creating the Pharmaceutically Tractable Genome 104
4.3 Integrated Systems Biology Approaches to Drug Target Validation for Specific Clinical Indications 110
4.4 Conclusion 123

5 The Development of Herceptin®: Paving the Way for Individualized Cancer Therapy 127
Thorsten S. Gutjahr and Carsten Reinhardt
5.1 Introduction 128
5.2 HER2 129
5.3 Herceptin Mechanism of Action and Effects on Cellular Processes 130
5.4 Preclinical Evidence 131
5.5 HER2 Testing as a Prerequisite for Herceptin Therapy: Development of Commercially Available and Validated Testing Methodologies 133
5.6 HER2 Testing Algorithm 135
5.7 Herceptin in Clinical Use 136
5.8 Future Prospects for Herceptin and other Targeted Therapies 143
5.9 Herceptin in Early Breast Cancer 143
5.10 Herceptin Adjuvant Trials 143
5.11 Conclusion 145

6 Adenovirus-based Gene Therapy: Therapeutic Angiogenesis with Adenovirus 5 Fibroblast Growth Factor-4 (Ad5FGF-4) in Patients with Chronic Myocardial Ischemia 151
Michael McCaman, Francisco J. Castillo, Farah Fawaz, Yasushi Ogawa, Erik Whiteley, Elisabeth Lehmberg, Mei Tan, Jacob Kung, Bruce Mann, Erno Pungor Jr., and Gabor M. Rubanyi
6.1 Introduction 152
6.2 Therapeutic Angiogenesis and the Importance of Collateral Vessels 153
6.3 Designing an Intervention Suitable for Therapeutic Angiogenesis 153
6.4 Production and Characterization of the Ad5FGF-4 Vector 156
6.5 Pre-clinical Efficacy and Safety of Ad5FGF-4 in Pigs 172
6.6 Clinical Studies 175
6.7 Summary and Conclusions 178

7 MIDGE Vectors and dSLIM Immunomodulators: DNA-based Molecules for Gene Therapeutic Strategies 183
Manuel Schmidt, Barbara Volz, and Burghardt Wittig
7.1 Vectors for Gene Therapy 184
7.2 Immunomodulatory Molecules 193
7.3 Application of MIDGE Vectors and dSLIM Immunomodulators 198
8 Nonprotein-coding RNAs and their Potential as Biopharmaceuticals 213
Maciej Szymanski, Jan Barciszewski and Volker A. Erdmann
8.1 Introduction 213
8.2 The Contents of the Genomes 214
8.3 npcRNAs 215
8.4 Functions of npcRNAs 217
8.5 npcRNAs and Human Diseases 219
8.6 miRNAs 222
8.7 Future Prospects 223

9 Double-stranded Decoy Oligonucleotides as new Biopharmaceuticals 229
Andreas H. Wagner and Heiko E. von der Leyen
9.1 Introduction 230
9.2 Therapeutic Decoy ODN Application 232

10 Rational siRNA Design for RNA Interference: Optimizations for Therapeutic Use and Current Applications 243
Anastasia Khvorova, Queta Boese, and William S. Marshall
10.1 RNAi: History and Mechanism 244
10.2 Early siRNA Design Parameters 248
10.3 Current siRNA Design Considerations 251
10.4 Therapeutic Applications of RNAi 259
10.5 Summary: The Future of RNAi in Biopharmaceutical Development 264

Mobilis in Mobile – Human Embryonic Stem Cells and Other Sources for Cell Therapy 269

11 The First Cloned Human Embryo: An Unlimited Source of Stem Cells for Therapeutic Cloning 269
Woo Suk Hwang, Byeong Chun Lee, Sung Keun Kang, and Shin Yong Moon
11.1 Introduction 270
11.2 Human Somatic Cell Nuclear Transfer (SCNT) 270
11.3 Establishment and Characterization of Human SCNT ES Cells 276
11.4 Reprogramming Adult Cells into an Embryonic State 277
11.5 Discussion and Conclusion 279

12 Myocardial Regeneration Strategies using Human Embryonic Stem Cells 283
Izhak Kehat, Oren Caspi, and Lior Gepstein
12.1 Introduction 284
12.2 Derivation of Human Embryonic Stem Cells 286
12.3 Cardiomyocyte Differentiation of ES Cells 289
12.4 Possible Research and Clinical Applications of the hES-derived Cardiomyocytes 293
12.5 Early Cardiac Lineage Differentiation 293
12.6 Myocardial Regeneration Strategies using hES-derived Cardiomyocytes 295
12.7 Functional Integration of the Cell Grafts 296
12.8 Cardiomyocyte Enrichment, Purification, and Up-scaling Strategies 298
12.9 Prevention of Immunological Rejection 299
12.10 Conclusions 300

13 Gene and Cell-based Therapies for Cardiovascular Disease 305
Abeel A. Mangi
13.1 Introduction 306
13.2 Gene Therapy as Novel Drug Delivery 306
13.3 Cell-based Gene Therapy and Regenerative Cardiovascular Medicine 319
13.4 Future Directions and Challenges 321

14 Spheramine®: A Cell Therapeutic Approach to Parkinson's Disease 325
Elke Reissig, Hermann Graf, and Friedrich-Joachim Kapp
14.1 Introduction 326
14.2 PD 326
14.3 Spheramine 334
14.4 Randomized, Double-blind, Placebo-controlled Multicenter Study of the Safety, Tolerability and Efficacy of Spheramine Implanted Bilaterally into the Postcommissural Putamen of Patients with Advanced PD 343
14.5 Summary and Outlook 348

15 Applying Human Cells to Organogenesis and Transplantation 353
Benjamin Dekel and Yair Reisner
15.1 Growing Demands for Kidney Allograft Transplantation 354
15.2 Alternative Sources for Human Renal Allografts 354
15.3 Conclusions 367

Volume 2

Part II Biopharmaceuticals and Their Mode of Action

Quid pro Quo – Lysis vs. Coagulation in the Fine-tuned Balance of the Clotting Cascade 377

1 Mechanisms of Serine Proteinase Activation: Insights for the Development of Biopharmaceuticals for Coagulation and Fibrinolysis 377
Rainer Friedrich
1.1 Introduction 378
1.2 Bacterial Activators of Host Zymogens 381
1.3 Some Remarks on Nonproteolytic Activators 388

2 Application of the Principle of Polyvalency to Protease Inhibition 395
Luis Moroder
2.1 Introduction 395
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>Thermodynamic Model of Bivalent Ligand Binding</td>
<td>396</td>
</tr>
<tr>
<td>2.3</td>
<td>Homo- and Heterobivalent Inhibitors of the Yeast 20S Proteasome</td>
<td>398</td>
</tr>
<tr>
<td>2.4</td>
<td>Bivalent Inhibition of Mast Cell β-Tryptase</td>
<td>405</td>
</tr>
<tr>
<td>2.5</td>
<td>Heterobivalent Inhibition of Thrombin</td>
<td>411</td>
</tr>
<tr>
<td>2.6</td>
<td>Perspectives</td>
<td>414</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>420</td>
</tr>
<tr>
<td>3.2</td>
<td>Development of rFVIII</td>
<td>428</td>
</tr>
<tr>
<td>3.3</td>
<td>Production of rFVIII</td>
<td>430</td>
</tr>
<tr>
<td>3.4</td>
<td>Pathogen Safety</td>
<td>433</td>
</tr>
<tr>
<td>3.5</td>
<td>Quality Control</td>
<td>435</td>
</tr>
<tr>
<td>3.6</td>
<td>Purity and Potency</td>
<td>435</td>
</tr>
<tr>
<td>3.7</td>
<td>Preclinical Studies</td>
<td>436</td>
</tr>
<tr>
<td>3.8</td>
<td>Clinical Studies</td>
<td>439</td>
</tr>
<tr>
<td>3.9</td>
<td>Summary</td>
<td>447</td>
</tr>
<tr>
<td>4.1</td>
<td>Biotechnologically Produced Proteins and Peptides as Approved Drugs</td>
<td>452</td>
</tr>
<tr>
<td>4.2</td>
<td>Potential Agents from Non-mammalian Sources as Leads to Novel Therapies</td>
<td>481</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>498</td>
</tr>
<tr>
<td>5.2</td>
<td>Principles of Targeted In situ Radiotherapy of Malignancies</td>
<td>499</td>
</tr>
<tr>
<td>5.3</td>
<td>RIT of Non-Hodgkin's B-Cell Lymphomas: The Pre-eminent Success Story</td>
<td>500</td>
</tr>
<tr>
<td>5.4</td>
<td>Other Strategies for In situ Radiotherapy of Non-Hodgkin's Lymphoma</td>
<td>505</td>
</tr>
<tr>
<td>5.5</td>
<td>Radioimmunotherapy of AML: Success but not Cure</td>
<td>505</td>
</tr>
<tr>
<td>5.6</td>
<td>RIT of Solid Tumors: Encouraging Results in Minimal Residual Disease</td>
<td>507</td>
</tr>
<tr>
<td>5.7</td>
<td>Pre-Targeting Strategies: Improving the Therapeutic Index of RIT</td>
<td>511</td>
</tr>
<tr>
<td>5.8</td>
<td>Peptide-Directed In situ Radiotherapy: Targeting Somatostatin Receptors</td>
<td>516</td>
</tr>
<tr>
<td>5.9</td>
<td>Auger Electron Radiotherapy: Anti-tumor Effects at the Single Cell Level</td>
<td>519</td>
</tr>
<tr>
<td>5.10</td>
<td>α-Particle RIT: Anti-tumor Effects at the Multi-cell Level</td>
<td>525</td>
</tr>
<tr>
<td>5.11</td>
<td>Conclusion</td>
<td>526</td>
</tr>
</tbody>
</table>
6 New Directions in Tumor Therapy – Amino Acid Depletion with GlutaDON® as Treatment for Cancer
Rolf Kalhammer and Natarajan Sethuraman
6.1 Rationale for GlutaDON® Therapy 537
6.2 Preclinical Studies 539
6.3 PEGylation and Protection from Inactivation 541
6.4 Toxicology 545
6.5 Clinical Trial 545
6.6 Summary and Conclusions 546

Mundus Vult Decipi – High Mutation Rates of HIV and New Paradigms for Treatment 549

7 AIDS Gene Therapy: A Vector Selectively Able to Destroy Latently HIV-1-infected Cells
Francisco Luque Vázquez and Ricardo Oya
7.1 The Genes and Life Cycle of HIV-1 551
7.2 Gene Therapy of AIDS 553
7.3 Viral Latency: the Real Challenge 557
7.4 A Vector Able Selectively to Destroy Latently Infected Cells 559

8 Combinatorial RNA-based Therapies for HIV-1
Kevin V. Morris and John J. Rossi
8.1 Introduction 569
8.2 RNA-based Antiviral Agents 570
8.3 RNAi: Diversity of Viral Targets 571
8.4 Delivery of siRNAs to Target Cells 573
8.5 Challenges for RNA-based Therapies 577
8.6 Summary and Conclusion 577

Part III Improving the Development of Biopharmaceuticals

Citius, Altius, Fortius – Acceleration by High Throughput and Ultra-HT 583

1 Design of Modern Biopharmaceuticals by Ultra-high-throughput Screening and Directed Evolution
Markus Rarbach, Wayne M. Coco, Andre Koltermann, Ulrich Kettling, and Manfred Eigen
1.1 Modern Biopharmaceuticals 584
1.2 Directed Evolution Fundamentals 585
1.3 Generation of Protein Diversity 586
1.4 Selection Strategies 593
1.5 High-throughput and High-content Screening of Protein Libraries 594
1.6 Directed Evolution of Biopharmaceuticals 598
1.7 Conclusions 601
2 Learning from Viruses: High-throughput Cloning using the Gateway® System to Transfer Genes without Restriction Enzymes 605
Jonathan D. Chesnut
2.1 Introduction 605
2.2 Background 606
2.3 Engineering the Lambda System to Create Gateway 609
2.4 The Gateway Reactions 610
2.5 Creating Gateway Entry Clones 611
2.6 Gateway Destination Vectors 613
2.7 Applications Enabled by Gateway Cloning 614
2.8 HTP Expression Analysis in Mammalian Cells 614
2.9 HTP Cloning and Expression in a Baculovirus System 615
2.10 Multisite Gateway 616
2.11 Creation of Entry Vectors and Three-fragment Multisite Assembly Reaction 618
2.12 Perspective 621

In Vivo Veritas – Early Target Validation in Knock-out Mice and More 621

3 Target Validation: An Important Early Step in the Development of Novel Biopharmaceuticals in the Post-genomic Era 621
Christoph P. Bagowski
3.1 Introduction 622
3.2 RNA- and DNA-based Techniques for Post-transcriptional Regulation of Molecular Targets, and their Potential as Biopharmaceutical Drugs 624
3.3 Peptide and Protein-based Approaches 636
3.4 Protein Kinases as Targets for Drug Development 639
3.5 Cell-based Assays for In vitro Target Validation in the Drug Discovery Process 640
3.6 Animal Models as the Ultimate Target Validation 645
3.7 Summary and Conclusions 645

4 Genetically Modified Mice in Medical and Pharmaceutical Research 649
Cord Brakebusch
4.1 Disease-oriented Research in Genetically Modified Mice 649
4.2 Generation of Genetically Modified Mice by Gene Targeting 651
4.3 Analysis of Genetically Modified Mice 659
4.4 Alternative Methods 659

5 An NIH Model Organism for Biopharmaceutical and Biomedical Research: The Lower Eukaryote Dictyostelium discoideum 661
Thomas Winckler, Ilse Zündorf, and Theodor Dingermann
5.1 Introduction 664
5.2 The Gene Discovery Tool Box or Dictyostelium Research 665
5.3 Production of Recombinant Proteins in D. discoideum 672
5.4 *Dictyostelium discoideum* in Biomedical Research 685
5.5 Conclusions 689

Revolution by Evolution – Rational Design for Desire and Scientific Art of Optimization 695

6 Releasing the Spring: Cofactor- and Substrate-assisted Activation of Factor IXa 695
Hans Brandstetter and Katrin Sichler

6.1 Introduction 695
6.2 The Zymogen Form of fibrinogen is Fully Inactive 697
6.3 Relevance of Tyr99 on the Stability of the 99-loop 697
6.4 Lys98 Hinders Substrate Binding to fibrinogen both Sterically and Electrostatically 698
6.5 Tyr177 Locks the 99-loop in an Inactive Conformation, which is Released by Cofactor fibrinogen VIIIa and Modified by the Physiologic Substrate fibrinogen X 699
6.6 S1 Site Mutations Decrease the Activity of fibrinogen IXa 699
6.7 Evolutionary Relation of fibrinogen IXa and fibrinogen X is Reflected in the Dependence of Activity Changes on Arg/Lys Substrates 700
6.8 By Binding at the 60-loop Ethylene Glycol Indirectly Reorganizes the 99-loop and AllostERICally Stimulates the Activity of fibrinogen IXa 700
6.9 Summary and Conclusion 701

7 Accelerating Diagnostic Product Development Process with Molecular Rational Design and Directed Evolution 703
Harald Sobek, Rainer Schmuck, and Zhixin Shao

7.1 Introduction 704
7.2 Strategies for Optimizing Diagnostic Proteins 705
7.3 Examples 709
7.4 Summary 717

Volume 3

Part IV Production of Biopharmaceuticals

The Industry’s Workhorses – Mammalian Expression Systems 723

1 Manufacture of Recombinant Biopharmaceutical Proteins by Cultivated Mammalian Cells in Bioreactors 723
Florian M. Wurm

1.1 Introduction 724
1.2 Vectors, Transfections, and Cell Line Generation 727
1.3 Host Cell Engineering 731
1.4 Gene Transfer and Gene Amplification in Mammalian Cells 733
1.5 Production Principles for Mammalian Cells: Anchorage-dependent Cultures and Suspension Cultures 737
1.6 Large-scale Transient Expression 744
5.2 Advantages and Disadvantages of Transgenic Systems for the Production of Biopharmaceuticals 845
5.3 Commercial Biopharmaceuticals with Human Clinical Experience for Therapeutic, Immunoprophylactic, and Medical Device Use derived from Transgenic Systems 852
5.4 Conclusions 873

6 Production of Recombinant Proteins in Plants 893
Victor Klimyuk, Sylvestre Marillonnet, Jörg Knäblein, Michael McCaman, and Yuri Gleba
6.1 Introduction 893
6.2 Plant-based Expression Systems 894
6.3 Plant-made Recombinant Proteins available Commercially, and under Development 903
6.4 Comparative Analysis of the Expression Systems and Production Platforms 907
6.5 Summary and Conclusion 909

7 Humanized Glycosylation: Production of Biopharmaceuticals in a Moss Bioreactor 919
Gilbert Gorr and Sabrina Wagner
7.1 Introduction 919
7.2 Mosses: Some General Aspects 920
7.3 Cell Culture 922
7.4 Recombinant Expression 923
7.5 N-Glycosylation 924
7.6 Conclusions and Outlook 927

8 ExpressTec: High-level Expression of Biopharmaceuticals in Cereal Grains 931
Ning Huang and Daichang Yang
8.1 Introduction 931
8.2 Development of ExpressTec for High-level Expression of Recombinant Proteins in Cereal Grains 932
8.3 High-level Expression of Biopharmaceuticals in Cereal Grain using ExpressTec 938
8.4 Impact of Expression Level on the Cost of Goods 945
8.5 Perspectives of Expressing Biopharmaceuticals in High Plants 946

9 Biopharmaceutical Production in Cultured Plant Cells 949
Stefan Schillberg, Richard M. Twyman, and Rainer Fischer
9.1 Introduction 950
9.2 Recombinant Proteins Produced in Plant Cell Suspension Cultures 951
9.3 Challenges and Solutions for the Production of Recombinant Proteins 954
9.4 Process Engineering 958
9.5 Downstream Processing 959
9.6 Regulatory Considerations 960
9.7 Conclusions 961

10 Producing Biopharmaceuticals in the Desert: Building an Abiotic Stress Tolerance in Plants for Salt, Heat, and Drought 967
Shimon Gepstein, Anil Grover, and Eduardo Blumwald
10.1 General Comments on Abiotic Stresses 968
10.2 Drought and Salt Tolerance 969
10.3 High-temperature Stress 981
10.4 Conclusions and Perspectives 989

11 The First Biopharmaceutical from Transgenic Animals: ATryn® 995
Yann Echelard, Harry M. Meade, and Carol A. Ziomek
11.1 Introduction 996
11.2 Recombinant Production of AT 998
11.3 Characterization of rhAT 1003
11.4 Preclinical Studies 1007
11.5 Clinical Trials with rhAT 1011
11.6 Conclusions 1016

Alea Non Iacta Est – Improving Established Expression Systems 1021

12 Producing Modern Biopharmaceuticals: The Bayer HealthCare Pharma Experience with a Range of Expression Systems 1021
Heiner Apeler
12.1 The Escherichia coli Expression Platform 1022
12.2 The Saccharomyces cerevisiae Expression Platform 1027
12.3 The HKB11 Expression Platform 1029
12.4 Outlook and Conclusion 1031

13 Advanced Expression of Biopharmaceuticals in Yeast at Industrial Scale: The Insulin Success Story 1033
Asser Sloth Andersen and Ivan Diers
13.1 Introduction 1033
13.2 Design and Optimization of the Insulin Precursor Molecule 1036
13.3 Production of Insulin 1041
13.4 Conclusions and Future Aspects 1042

14 Baculovirus-based Production of Biopharmaceuticals using Insect Cell Culture Processes 1045
Wilfried Weber and Martin Fussenegger
14.1 Introduction 1045
14.2 Molecular Tools for the Construction of Transgenic Baculoviruses 1046
14.3 Insect Cell Culture 1047
14.4 Insect Cell Glycosylation and Glycoengineering 1047
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.5 Nutrient and Kinetic Considerations for Optimized BEVS-based</td>
<td>1048</td>
</tr>
<tr>
<td>Protein Production</td>
<td></td>
</tr>
<tr>
<td>14.6 Scaling-up Baculovirus-based Protein Production</td>
<td>1050</td>
</tr>
<tr>
<td>14.7 Generic Protocol of Optimized Protein Production</td>
<td>1050</td>
</tr>
<tr>
<td>14.8 Case study: Rapid Optimization of Expression Conditions and</td>
<td>1053</td>
</tr>
<tr>
<td>Large-scale Production of a Brutons Tyrosine Kinase Variant (BTK)</td>
<td></td>
</tr>
<tr>
<td>14.9 Conclusion</td>
<td>1058</td>
</tr>
<tr>
<td>15 Robust and Cost-effective Cell-free Expression of Biopharmaceuticals:</td>
<td>1063</td>
</tr>
<tr>
<td>Escherichia Coli and Wheat Embryo</td>
<td></td>
</tr>
<tr>
<td>Luke Anthony Miles</td>
<td></td>
</tr>
<tr>
<td>15.1 Introduction</td>
<td>1064</td>
</tr>
<tr>
<td>15.2 Transcription</td>
<td>1066</td>
</tr>
<tr>
<td>15.3 Translational</td>
<td>1068</td>
</tr>
<tr>
<td>15.4 Treatment of Extracts for Synthesis of Disulfide-bonded Proteins</td>
<td>1072</td>
</tr>
<tr>
<td>15.5 ATP Regeneration Systems</td>
<td>1074</td>
</tr>
<tr>
<td>15.6 Reaction Conditions</td>
<td>1075</td>
</tr>
<tr>
<td>15.7 Conclusion</td>
<td>1079</td>
</tr>
<tr>
<td>16 Contract Manufacturing of Biopharmaceuticals Including Antibodies</td>
<td>1083</td>
</tr>
<tr>
<td>or Antibody Fragments</td>
<td></td>
</tr>
<tr>
<td>J. Carsten Hempel and Philipp N. Hess</td>
<td></td>
</tr>
<tr>
<td>16.1 Introduction</td>
<td>1084</td>
</tr>
<tr>
<td>16.2 Expression Systems and Manufacturing Procedures</td>
<td>1085</td>
</tr>
<tr>
<td>16.3 Outsourcing and Contract Manufacturing</td>
<td>1089</td>
</tr>
<tr>
<td>16.4 Summary and Outlook</td>
<td>1100</td>
</tr>
<tr>
<td>Part V Biopharmaceuticals used for Diagnostics and Imaging</td>
<td></td>
</tr>
<tr>
<td>From Hunter to Craftsman – Engineering Antibodies with Nature’s</td>
<td>1105</td>
</tr>
<tr>
<td>Universal Toolbox</td>
<td></td>
</tr>
<tr>
<td>1 Thirty Years of Monoclonal Antibodies: A Long Way to Pharmaceutical</td>
<td>1105</td>
</tr>
<tr>
<td>and Commercial Success</td>
<td></td>
</tr>
<tr>
<td>Uwe Gottschalk and Kirsten Mundt</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1107</td>
</tr>
<tr>
<td>1.2 Making Monoclonal Antibodies</td>
<td>1109</td>
</tr>
<tr>
<td>1.3 Other Antibody Formats: Antibody Fragments</td>
<td>1113</td>
</tr>
<tr>
<td>1.4 Medical Application Areas for MAbs</td>
<td>1116</td>
</tr>
<tr>
<td>1.5 From Initial Failure to Success: Getting the Target Right</td>
<td>1117</td>
</tr>
<tr>
<td>1.6 The Market Perspective</td>
<td>1119</td>
</tr>
<tr>
<td>1.7 Drug Targeting: The Next Generation in Cancer Treatment</td>
<td>1122</td>
</tr>
<tr>
<td>1.8 Developing a Manufacturing Process for MAbs</td>
<td>1126</td>
</tr>
<tr>
<td>1.9 Routine Manufacture of MAbs</td>
<td>1127</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>1.10 Glycosylation and Other Post-translational Modifications</td>
<td>1132</td>
</tr>
<tr>
<td>1.11 Emerging Issues in MAb Production</td>
<td>1134</td>
</tr>
<tr>
<td>1.12 The Future of MAbs</td>
<td>1136</td>
</tr>
<tr>
<td>2 Modern Antibody Technology: The Impact on Drug Development</td>
<td>1147</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>1147</td>
</tr>
<tr>
<td>2.2 Immunogenicity</td>
<td>1148</td>
</tr>
<tr>
<td>2.3 Technology</td>
<td>1153</td>
</tr>
<tr>
<td>2.4 Reaching the Target: The Importance of Specificity, Affinity and Format</td>
<td>1163</td>
</tr>
<tr>
<td>2.5 Exerting an Effect at the Target</td>
<td>1168</td>
</tr>
<tr>
<td>2.6 Antibodies in their Natural Habitat: Infectious Diseases</td>
<td>1175</td>
</tr>
<tr>
<td>2.7 Opportunities for New Therapeutic Applications Provided by Synthetic Antibodies</td>
<td>1176</td>
</tr>
<tr>
<td>2.8 Future Directions and Concluding Statements</td>
<td>1177</td>
</tr>
<tr>
<td>3 Molecular Characterization of Autoantibody Responses in Autoimmune Diseases: Implications for Diagnosis and Understanding of Autoimmunity</td>
<td>1187</td>
</tr>
<tr>
<td>3.1 Autoantibodies in Autoimmune Diseases</td>
<td>1188</td>
</tr>
<tr>
<td>3.2 Autoantibody Epitopes</td>
<td>1190</td>
</tr>
<tr>
<td>3.3 Visualization of Epitopes</td>
<td>1195</td>
</tr>
<tr>
<td>3.4 Structural Characterization of Autoantibody–Autoantigen Complexes</td>
<td>1199</td>
</tr>
<tr>
<td>3.5 Conclusions</td>
<td>1205</td>
</tr>
<tr>
<td>4 Molecular Imaging and Applications for Pharmaceutical R&D</td>
<td>1211</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>1212</td>
</tr>
<tr>
<td>4.2 Imaging Modalities and Contrast Agents</td>
<td>1213</td>
</tr>
<tr>
<td>4.3 Molecular Imaging</td>
<td>1225</td>
</tr>
<tr>
<td>4.4 Molecular Imaging for Drug Discovery and Development</td>
<td>1230</td>
</tr>
<tr>
<td>4.5 Concluding Remarks</td>
<td>1239</td>
</tr>
<tr>
<td>5 Design and Development of Probes for In vivo Molecular and Functional Imaging of Cancer and Cancer Therapies by Positron Emission Tomography (PET)</td>
<td>1243</td>
</tr>
<tr>
<td>5.1 What is Positron Emission Tomography?</td>
<td>1244</td>
</tr>
<tr>
<td>5.2 Radiochemistry Considerations</td>
<td>1246</td>
</tr>
<tr>
<td>5.3 Pharmacological Objectives in Oncology Imaging Studies</td>
<td>1249</td>
</tr>
<tr>
<td>5.4 The Use of Radiolabeled Drugs to Image Tumor and Normal Tissue Pharmacokinetics</td>
<td>1250</td>
</tr>
</tbody>
</table>
5.5 Pharmacodynamic Studies 1254
5.6 Conclusions 1264

6 Ligand-based Targeting of Disease:
From Antibodies to Small Organic (Synthetic) Ligands 1271
Michela Silacci and Dario Neri
6.1 Introduction 1272
6.2 Ligands 1273
6.3 Classes of Diseases 1276
6.4 From a Ligand to a Product 1288
6.5 Concluding Remarks 1289

7 Ultrasound Theranostics: Antibody-based Microbubble Conjugates as Targeted In vivo
Contrast Agents and Advanced Drug Delivery Systems 1301
Andreas Briel, Michael Reinhardt, Mathias Mäurer, and Peter Hauff
7.1 Motivation: “Find, Fight and Follow!” 1302
7.2 Ultrasound: “Hear the Symptoms” 1304
7.3 Ultrasound Contrast: “Tiny Bubbles” 1305
7.4 The Perfect Modality: “Sensitive Particle Acoustic Quantification (SPAQ)” 1308
7.5 Targeting and Molecular Imaging: “The Sound of an Antibody” 1309
7.6 Drug Delivery: “The Magic Bullet” 1315
7.7 Ultrasound, Microbubbles and Gene Delivery:
“Noninvasive Micro-Gene Guns” 1318
7.8 Summary: Ultrasound Theranostics
“Building a Bridge between Therapy and Diagnosis” 1320

Getting Insight – Sense the Urgency for Early Diagnostics 1325

8 Development of Multi-marker-based Diagnostic Assays with the ProteinChip®
System 1325
Andreas Wiesner
8.1 The Urgency of Earlier Diagnosis 1326
8.2 Proteins are Best Choice Again 1327
8.3 Current Tools for Protein Biomarker Detection 1328
8.4 The ProteinChip® System at a Glance 1329
8.5 Distinctions of the SELDI Process 1333
8.6 The Pattern Track™ Process:
From Biomarker Discovery to Assay Development 1334
8.7 Protein Variants as Disease Markers 1337
8.8 Conclusion and Outlook 1338

9 Early Detection of Lung Cancer: Metabolic Profiling of Human Breath with Ion Mobility
Spectrometers 1343
Jörg Ingo Baumbach, Wolfgang Vautz, Vera Ruzsanyi, and Lutz Freitag
9.1 Introduction 1343
9.2 Material and Methods: IMS 1345
9.3 Results and Discussion 1347
9.4 Clinical Study 1349
9.5 Conclusions 1354

Volume 4

Part VI Advanced Application Routes for Biopharmaceuticals

Getting Inside – Quest for the Best and How to Improve Delivery 1361

1 Advanced Drug Delivery Systems for Biopharmaceuticals 1361
Gesine E. Hildebrand and Stephan Harnisch
1.1 Introduction 1362
1.2 Challenges for the Administration of Biopharmaceuticals 1363
1.3 Drug Delivery Strategies 1366
1.4 Outlook 1384

Pathfinder – New Ways for Peptides, Proteins and Co 1393

2 Poly(ethylene) Glycol Conjugates of Biopharmaceuticals in Drug Delivery 1393
Michael D. Bentley, Mary J. Bossard, Kevin W. Burton, and Tacey X. Viegas
2.1 Introduction 1394
2.2 The Polymer 1394
2.3 Safety and Disposition of PEG 1396
2.4 PEG Reagents and Conjugation 1397
2.5 Biopharmaceutical Conjugates 1400
2.6 PEGylation of Peptides 1407
2.7 Formulations of PEGylated Biopharmaceuticals 1408
2.8 Analysis of PEG-conjugates 1411
2.9 Summary and Future Outlook 1415

3 Novel Vaccine Adjuvants Based on Cationic Peptide Delivery Systems 1419
Karen Lingnau, Christoph Klade, Michael Buschle, and Alexander von Gabain
3.1 Vaccines and their Importance in the Fight against Human Diseases 1420
3.2 Adjuvants: An Overview 1423
3.3 Cationic Peptides as Novel Vaccine Adjuvants 1426
3.4 Cationic Antimicrobial Peptides (CAMP) as Novel Adjuvants 1433
3.5 Cationic Peptide Delivery Systems in Combination with Other Adjuvants 1437
3.6 The Development of IC31 and Future Prospects 1440
3.7 Conclusions 1440
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>The Evolving Role of Oralin™ (Oral Spray Insulin) in the Treatment of Diabetes using a Novel RapidMist™ Diabetes Management System</td>
<td>1445</td>
</tr>
<tr>
<td></td>
<td>Pankaj Modi</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>1446</td>
</tr>
<tr>
<td>4.2</td>
<td>Rationale for Oralin™ Development</td>
<td>1446</td>
</tr>
<tr>
<td>4.3</td>
<td>The Benefits of Oralin™</td>
<td>1447</td>
</tr>
<tr>
<td>4.4</td>
<td>The Preparation and Pharmaceutical Properties of Oralin™</td>
<td>1448</td>
</tr>
<tr>
<td>4.5</td>
<td>Phase II, Long-term Safety and Efficacy Study</td>
<td>1457</td>
</tr>
<tr>
<td>4.6</td>
<td>Conclusions</td>
<td>1460</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Improvement of Intestinal Absorption of Peptide and Protein Biopharmaceuticals by Various Approaches</td>
<td>1463</td>
</tr>
<tr>
<td></td>
<td>Akira Yamamoto</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Improvement of Peptide and Protein Absorption</td>
<td>1464</td>
</tr>
<tr>
<td>5.2</td>
<td>Use of Protease Inhibitors</td>
<td>1467</td>
</tr>
<tr>
<td>5.3</td>
<td>Chemical Modification of Peptide and Protein Biopharmaceuticals</td>
<td>1472</td>
</tr>
<tr>
<td>5.4</td>
<td>Chitosan Capsules for the Colon-specific Delivery of Insulin</td>
<td>1480</td>
</tr>
<tr>
<td>5.5</td>
<td>Conclusion</td>
<td>1484</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>DNA Vaccine Delivery from Poly(ortho ester) Microspheres</td>
<td>1487</td>
</tr>
<tr>
<td></td>
<td>Chun Wang, Herman N. Eisen, Robert Langer, and Jorge Heller</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>1488</td>
</tr>
<tr>
<td>6.2</td>
<td>Poly(Ortho Esters)</td>
<td>1494</td>
</tr>
<tr>
<td>6.3</td>
<td>Preparation and Characterization of Microspheres</td>
<td>1496</td>
</tr>
<tr>
<td>6.4</td>
<td>In vivo Evaluation of Immune Responses</td>
<td>1500</td>
</tr>
<tr>
<td>6.5</td>
<td>Concluding Remarks</td>
<td>1503</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Liposomal In vivo Gene Delivery</td>
<td>1507</td>
</tr>
<tr>
<td></td>
<td>Shigeru Kawakami, Fumiyoshi Yamashita, and Mitsuru Hashida</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Cationic Charge-mediated In vivo Gene Transfer to the Lung</td>
<td>1510</td>
</tr>
<tr>
<td>7.2</td>
<td>Asialoglycoprotein Receptor-mediated In vivo Gene Transfer to Hepatocytes</td>
<td>1512</td>
</tr>
<tr>
<td>7.3</td>
<td>Mannose Receptor-mediated In vivo Gene Transfer to Macrophages</td>
<td>1513</td>
</tr>
<tr>
<td>7.4</td>
<td>Folate Receptor-mediated In vivo Gene Transfer to Cancer Cells</td>
<td>1515</td>
</tr>
<tr>
<td>7.5</td>
<td>Transferrin Receptor-mediated In vivo Gene Transfer to Brain</td>
<td>1517</td>
</tr>
<tr>
<td>7.6</td>
<td>Conclusions</td>
<td>1517</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Programmed Packaging: A New Drug Delivery System and its Application to Gene Therapy</td>
<td>1521</td>
</tr>
<tr>
<td></td>
<td>Kentaro Kogure, Hidetaka Akita, Hiroyuki Kamiya, and Hideyoshi Harashima</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>New Concept for Gene Delivery</td>
<td>1521</td>
</tr>
<tr>
<td>8.2</td>
<td>Controlled Intracellular Trafficking</td>
<td>1525</td>
</tr>
</tbody>
</table>
Contents

8.3 Transgene Expression and Gene Correction 1531
8.4 Towards Clinical Applications of Transgene Expression and Gene Correction 1534

Getting Beyond – Rocket Science vs. Science Fiction 1537

9 Bionanotechnology and its Role to Improve Biopharmaceuticals 1537
 Oliver Kayser
 9.1 Introduction 1537
 9.2 Drug and Gene Delivery 1539
 9.3 Gene Delivery 1543
 9.4 Biosensors 1544
 9.5 Implants and Tissue Engineering 1546
 9.8 Safety Aspects 1548
 9.7 Conclusions and Future Trends 1550

Part VII From Transcription to Prescription of Biopharmaceuticals

Dosis Facit Venenum – The Therapeutic Window between Systemic Toxicity and Lack of Efficacy 1557

1 Analytics in Quality Control and In vivo 1557
 Michael Hildebrand
 1.1 Introduction 1558
 1.2 Quality Control 1559
 1.3 Classes of Biopharmaceuticals 1560
 1.4 Analytical Methods and Specifications 1560
 1.5 International Guidelines on Quality Control 1571
 1.6 Analytics In vivo 1573
 1.7 Conclusions 1577

2 Design, Development and Optimization: Crystal Structures of Microsomal Cytochromes P450 1581
 Dijana Matak Vinković, Sheena Whyte, Harren Jhoti, Jose Cosme, and Pamela A. Williams
 2.1 P450: The Background 1581
 2.2 Importance of P450s for Drug Development 1582
 2.3 Variability and Drug Metabolism 1583
 2.4 The Structure of Cytochrome P450 1584
 2.5 Conclusions 1599

3 Mettox™: A Suite of Predictive In silico and In vitro Assays for Metabolic and Genotoxicological Profiling of Preclinical Drug Candidates 1603
 Michael Murray
 3.1 Issues and Economics of Early ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) Assessment 1604
3.2 Phase I Metabolism Prediction: Computational Approaches 1608
3.3 Phase I Metabolism Prediction: In vitro Techniques 1613
3.4 Genotoxicity Prediction 1624
3.5 Conclusions 1634

Happy End: Claim to Fame and Approval 1637

4 Considerations for Developing Biopharmaceuticals: FDA Perspective 1637

Kurt Brorson, Patrick G. Swann, Janice Brown, Barbara Wilcox, and Marjorie A. Shapiro

4.1 Introduction 1638
4.2 Regulatory Authority 1639
4.3 Overview of Product Development: CMC Perspective 1643
4.4 Chemistry, Manufacturing and Controls Considerations 1645
4.5 Quality Control and Assurance 1647
4.6 Microbial Issues Specific to Biopharmaceuticals 1650
4.7 Process Validation 1653
4.8 Inspectional Considerations 1653
4.9 Biotech Development: Lessons Learned and Issues Overcome by Industry and FDA 1654
4.10 FDA Initiatives to Improve the Pharmaceutical and Biopharmaceutical Development Process 1661

5 The Regulatory Environment for Biopharmaceuticals in the EU 1669

Axel F. Wenzel and Carina E.A. Sonnega

5.1 Introduction 1673
5.2 History and Background 1673
5.3 The Competent Regulatory Bodies 1676
5.4 What is the EU Authorities’ Definition of a Biotechnological Product? 1681
5.5 The Regulatory Framework 1682
5.6 CP: The “Biotech” Procedure 1683
5.7 From Transcription to Prescription: What is Different for Biotechnological Drugs? 1688
5.8 Biogenerics 1700
5.9 Conclusions and Outlook 1701

Part VIII From Bench to Bedside – The Aftermaths

Think Big and Dealmaking for Growth – Global Changes in the Health-care Sector 1711

1 Healthcare Trends and their Impact on the Biopharmaceutical Industry: Biopharmaceuticals Come of Age 1711

Alexander Moscho, Markus A. Schäfer, and Kristin Yarema

1.1 Introduction 1712
1.2 Despite Robust Demand the Industry Faces Severe Challenges 1713
Contents

1.3 Why Biopharmaceuticals can Succeed in Rougher Markets 1724
1.4 Biopharmaceutical Players Will Need to Adapt their Portfolios and Business Models 1728
1.5 Conclusions and Outlook 1738

News and Views – Quo Vadis, Biopharmaceuticals? 1741

2 mondoBIOTECH: The Swiss biotech BOUTIQUE 1741
Dorian Bevec and Fabio Cavalli
2.1 Introduction
2.2 Product Platforms 1742
2.3 Interferon-γ + Genechip 1750
2.4 Bacteriophages 1751
2.5 Outlook for the Company 1752

3 G-CSF and Bioequivalence: The Emergence of Healthcare Economics 1755
James Harris, III
3.1 Introduction 1756
3.2 Biogenerics and Bioequivalence 1756
3.3 Summary and Outlook 1767

Light at the End of the Tunnel or Back to the Roots? 1771

4 Bioinformatics: From Peptides to Profiled Leads 1771
Paul Wrede and Matthias Filter
4.1 Introduction 1772
4.2 Basic Concepts of Virtual Drug Discovery 1773
4.3 Pep2Lead Concept 1778
4.4 ADMETox Profiling 1785
4.5 Outlook 1798

5 Engineering and Overproduction of Polyketide Natural Products 1803
Martha Lovato Tse and Chaitan Khosla
5.1 Introduction 1804
5.2 Polyketide Synthases 1806
5.3 Engineering PKSs to Produce Novel Polyketides 1815
5.4 Development of Scalable Production Processes 1820
5.5 Conclusions 1825

Epilog 1833

More about the Editor 1835

Supplement CD-ROM 1837

Subject Index 1841