Index

a
absolute rate theory (See also Transition State Theory) 277
absorption line shape (NMR) 312–315
activated carbon
 – adsorbents 520–524
 – with hierarchical pore structure 542–543
activation energy (diffusion) 99, 521, 524, 825, 826
 – variation with carbon number (5A and NaX) 593, 616
 – in DDR-3 569
 – for diffusional motion 131
 – for intracrystalline diffusion 354, 476
 – for linear paraffins 593, 616
 – for long-range self-diffusion 549
 – for low-occupancy diffusion 258
 – for self-diffusion 108
 – van der Waals diameter 585
 – in NaX 638
active sites 732, 820
 – for guest molecules 752
additivity of resistances, principle 146
adsorption–desorption cycles 408
adsorption equilibrium 40, 93, 434, 443, 460, 743, 783
adsorption isotherms 743
 – of CO$_2$ and CH$_4$ in ZIF-8 745
adsorption/desorption kinetics 143–189
 – effective diffusivity ratios 172
 – from liquid phase 686–688
 – numerical simulations 173
AlPO$_4$-5 membrane 780
aluminophosphates 3
amorphous microporous materials
 – diffusion in microporous carbon 520–524
 – diffusion in microporous glass 518–520
 – angular velocity 243, 308
anisotropic diffusion 10, 601, 703–710, 759
 – in binary adsorbed phase 710
 – diffusion/rearrangement model 451
anisotropy of real crystals 710–712
anomalous diffusion 27, 47
 – fractal geometry 49–52
 – probability distribution functions
 – of residence time and jump length 47–49
aromatic hydrocarbons, diffusion 300, 624–631, 676–686
 – benzene 627–631, 676–681
 – C$_4$ aromatics 624–627, 681–686
 – Arrenhius plots 369, 573, 576, 583, 595, 600, 662, 668–672, 678, 681, 708, 761, 813
atomistic modeling 202, 203
axial diffusion 42
3A zeolite
 – reduction in window size 593
4A zeolite
 – activation energies 585
 – diffusion in 571–573
 – gravimetric uptake curves 591
 – near isothermal behavior 430
 – summary of diffusivity of data for 574, 575
5A zeolite
 – comparison of zeolite samples 581, 582
 – for cyclopropane and cis-butene in 476
 – diffusion in 573–582, 595–596
 – general patterns for diffusion in 582–586
 – dimensionless HETP (H/d) vs. (Dm/evd) for sorbates in 479
 – experimental uptake curves 184, 572, 579
 – HETP vs. cyclopropane and cis-butene in 476
 – intra-cage jumps 581

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
Index

- measurement techniques 581, 582
- with different crystal sizes 579, 580
- uptake rate 576, 579
- PFG NMR signal attenuation curves 580

b
- bed of microporous particles, diffusion 545
- expressions for diffusion in a continuum with 547
- mathematical modeling, approaches by 546
- multicomponent systems 550–552
- temperature dependence 548–550
- benzene, diffusion of (see also aromatic hydrocarbons) 676–686
- Arrhenius plot 678, 680
- benzene microdynamics 680, 681
- concentration dependence of 679
- diffusivity data in silicalite/ZSM-5 676, 677
- frequency response spectra, in silicalite 454
- self- and transport diffusion 680

Berty reactor 441

binary Langmuir isotherm (see also Langmuirian system) 14, 15, 46, 65–71, 74, 185, 784, 795

biporous adsorbent 143, 144, 156, 158, 429, 445, 461, 463, 465
- dual diffusion resistance model for 157
- transient concentration profile, schematic diagram 144
- uptake curves 156

boggsite (BOG) 130

Boltzmann distribution
- initial momenta 287
- of velocities 271, 282

Boltzmann factor 100, 212, 283, 307

Boltzmann–Matano method 414

Boltzmann transformation 162, 414

Born’s approximation 328
boundary, absorbing 37–39
boundary conditions
- absorbing and reflecting boundaries 35–38
- diffusion and permeation, combined impact of 40–42
- matching conditions 39, 40
- partially reflecting boundary 38, 39
boundary surfaces 298, 299
branched and cyclic paraffins 666
- C8 isomers, comparison of diffusivities for 670–673
- cyclohexane and alkyl cyclohexanes 669, 670
- diffusion
- isobutane at high loadings 674–676
- linear and branched hydrocarbons, comparison 673, 674
- 2,2-dimethylbutane 670
- isobutane at low loadings 667–669
- summary of diffusivity data 667

Brownian migration 7, 8

brute force molecular dynamics 275, 277, 287, 291, 294, 297, 299
- self diffusivity 297
- time scale limitation of 287

isobutane:
- diffusion of isobutane in silicalite 668, 676
- MOFs 737
- NaX 610, 613, 615, 622, 623, 642

n-butane
- n-butane-perfluoromethane, selective diffusion measurement 641
- central torsion angle 209
- counter-diffusion of isobutane and 720
- diffusivity data in CuBTC 738
- diffusion in 5A 578–581
- diffusion in silicalite 660, 661, 666
- effective self-diffusion coefficient for 549
- evolution of distribution 401
- gravimetric sorption curves, in Linde 5A crystals 579
- influence of loading on the selectivity 781
- in NaX crystals 614
- and n-hexane, diffusivities for 673
- NMR relaxation times 581
- perm-selectivity 776, 799
- self-diffusivities of 715, 737
- variation of diffusivity, with ion exchange 592

c
Ca2+ cations 369, 562–564, 591, 619
cage-to-cage jumps 104–106
cage-type zeolites 64
Cahn balance 428
canonical partition function 197, 286
capillary condensation 97, 98, 216, 217, 518, 534, 544, 552
Carberry mixer 614, 615
carbonaceous materials, oxidation of 520
carbon molecular sieves 18, 521–524
- size-selective feature of 524
carbon nanotubes 64, 118
carbon number, variation of diffusivity with 593–595, 616, 661, 662
C8 aromatics (see also aromatic hydrocarbons)
- diffusion of 624–627, 681, 682
- equilibrium concentration of isomers 828
– frequency response data for p-xylene 684, 685
– gravimetric uptake curves 683
– isomerization of 826
– loop for typical refinery 826
– macroscopic measurements 624, 625
– membrane permeation studies, evidence from 685, 686, 782
– microscopic measurements, comparison with 625, 626
– molecular sieve behavior 659
– o-xylene and m-xylene, diffusion of 624–626, 686
– in silicalite/ZSM-5 682
– uptake curves 681, 683
– ZLC and TZLC measurements 683, 684
Car–Parrinello molecular dynamics (CPMD) 257
carrier gas, effect of 644, 645
Carr–Purcell–Meiboom–Gill (CPMG) pulse sequences 323–325
Cartesian coordinates 195, 235, 236, 242, 249, 251, 254
– cascades for separation processes 802
catalytic cracking 670, 823–825
cation-free eight-ring structures 567
– diffusion of CO$_2$ and CH$_4$ in DDR 569–571
– effect of window dimensions 567–569
– window dimensions, effect of 567–569
central limit theorem 30, 31, 55, 365, 759
Cerjan–Miller type algorithms 292
CHA zeolites
– diffusion in 568, 601, 791
– structure 562
chabazite 562, 564, 565
Chapman–Enskog kinetic theory 94
chemical diffusion 8
chemical potential 12–16, 215, 217
chemical shielding 318
chemical shift 318–320, 361, 362, 602, 647
chromatographic methods 459–482
– chromatographic column, element of 461
– chromatographic column, mathematical model for 460
– – form of response curves 463–464
– – time domain solutions 462–463
– inert carrier 460
– intraparticle diffusion
– – with adsorbable components 481–483
– – chromatographic column, mathematical model for 460–464
– – concentration profile, direct measurement of 480–481
– – limited penetration regime 480
– – moments analysis 464–468
– – step response 479–480
– – wall-coated column 480
– – moments analysis 464–468
– – first/second moments 464–466
– – HETP/van Deemter equation 466–468
– – higher moments, use of 466
C$_6$ hydrocarbons 522 (see also benzene, hexane)
closed-system simulation 222
clustering effect 32
CO$_2$–CH$_3$/SAPO-34 system 74
CO$_2$–CH$_3$ separation 798
– membranes performance 798
crude-graining 222–224
coefficients of transport diffusion 8
coherent scattering function 331, 332
coke deposition 827, 833, 834
– on diffusion of methane in H-ZSM-5, effect of 834
COMPASS force field 198
compensation effect 40, 311, 315, 383, 416, 549, 550, 802
competitive adsorption 87
composite particles 545
– approaches by mathematical modeling 546
– MCM-41 556
– multicomponent systems 550–552
– temperature dependence 548–550
– variation of long-range diffusivity, for composite pellet 548
computer reconstruction 204
concentration dependent systems, adsorption/desorption curves 172
concentration profiles, measurement of 480, 481, 819
– frequency ranges of different techniques 396
– intracrystalline, of isobutane 700
– simulated 759
– through membrane 785
– transient 152, 695
– – of deuterated propane 748
– – of propane in nanoporous crystal 749
condensation in capillaries 97, 98, 216, 217, 534, 552
condensed phase 552, 553
condition number 238
configurational integral 197
configurationally biased insertions 220
configuration-space probability density 207, 211
conservation equation 5, 62
correlation-diffusivity system 148, 151, 756
constant field gradient NMR 359, 377
calorimeter (infinite volume) 175
constant pressure 210
constraint forces 250, 251
continuous time random walk (CTRW) 47
correlated diffusion (DC) 14, 397, 523, 524, 525
controlled porosity glasses (CPG) 339
corrected diffusivities (D_0) 13, 14, 70, 73, 74, 77–79, 185, 233, 258, 265, 333, 520, 536, 537, 566, 570, 573, 581, 595, 625, 627, 629, 635, 636, 676, 683, 687, 689, 712, 736, 737, 738, 742, 753, 785, 790, 832
correlation effects 33–35
– correlated anisotropy 35
– vacancy correlations 33–35
– diffusion 519, 520, 672
– in hierarchical activated carbon 543
– measurements with 519
– PFG NMR 541
– sorption times 694
– transient uptake curves 554
dDanckwerts boundary conditions 468
Darken equation 13, 101, 233
DDR-3 membrane 790
– diffusion of CO$_2$–CH$_4$ mixtures in 570
– SEM photomicrographs 772
– variation of permeance with kinetic diameter 774
DDR (ZSM-58),
– diffusion in 567–571
– structure of 565
de Broglie wavelength 326
density functional theory (DFT) 201, 257
– approximation 204
desorption curves
– theoretical 161, 178, 179
– experimental 168, 169, 179
desorption kinetics 160–179
– effective diffusivity ratios 172
– experimental concentration profiles 154, 409, 705, 749
– theoretical profiles 164–167
detours 760
deuterated benzene molecules, theoretical 2H
– NMR line shapes 322
deuterated species in PFG NMR 362, 640
deuterium NMR 322, 323
diatomic molecule, description of
– configuration 195
diffusion
– activated 87, 99–106, 151
– face-centered cubic crystal 99
– anisotropy (See diffusion anisotropy)
– barriers 336
– bed 158, 159, 160, 179, 180, 431, 432, 444, 591, 624
– in binary adsorbed phase 64
– in carbon sieves 522, 524
– cation in zeolite 402
– of CO$_2$ and CH$_4$ in DDR 569–571
– co-and counter 395, 400, 438, 718
– in composite particles 494, 545
– concentration dependence 5, 14, 74, 101, 114, 172, 508, 535, 536, 609, 621, 629, 634, 643, 734, 737, 749, 790
– configurational 17, 85
– corrected 13, 14, 74, 77, 104, 268, 536, 566, 571, 583, 636, 684, 742, 785, 832
– deviation from ordinary 114
– driving force 5, 14, 60, 177, 230, 743, 773, 776
– elementary process 21, 45, 317, 395
– in fractals 49, 50, 53, 54, 56, 113, 114
– gas 4, 5, 43, 91, 98, 151, 160, 382
– inter, two identical species 65
– in ion exchange resins 500
– Knudsen 96, 370, 503, 518, 533, 792
– limitation (of reaction) 811
– in liquid filled pores 80, 538, 687
– low-temperature 299
– macroscopic 42
– measurements (See diffusion measurements)
– model 172, 173, 462
– molecular dynamics (MD) simulation
– of 72, 117, 249, 257, 271, 319, 661, 736, 753, 754
– molecular 92, 96, 532, 548
– momentum transfer in 5, 94, 271
– Monte Carlo simulation of 44, 123, 206, 294, 295, 588, 618, 701, 713, 714

crystal framework 747
crystallite radii 353, 354, 365, 367, 402
cyclohexane
– diffusion 519, 520, 672
– in hierarchical activated carbon 543
– measurements with 519
– PFG NMR 541
– sorption times 694
– transient uptake curves 554
<table>
<thead>
<tr>
<th>Phenomena</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>In porous glass</td>
<td>518, 519, 530, 554</td>
</tr>
<tr>
<td>Principles</td>
<td>143</td>
</tr>
<tr>
<td>And reaction</td>
<td>807–809, 816, 832</td>
</tr>
<tr>
<td>Regimes, size-selective molecular sieving</td>
<td>85–87</td>
</tr>
<tr>
<td>Resistances</td>
<td>94, 156–160, 184</td>
</tr>
<tr>
<td>In macropore and micropore</td>
<td>17</td>
</tr>
<tr>
<td>In nanoporous media</td>
<td>17, 18</td>
</tr>
<tr>
<td>Restricted</td>
<td>75, 125, 276, 381, 382, 530 (See also diffusional restrictions, zeolite catalysts)</td>
</tr>
<tr>
<td>Self and transport</td>
<td></td>
</tr>
<tr>
<td>Single file</td>
<td>34, 49, 56, 111–121, 123, 135–138, 750</td>
</tr>
<tr>
<td>In sinusoidal field</td>
<td>107</td>
</tr>
<tr>
<td>In solids</td>
<td>99</td>
</tr>
<tr>
<td>Stefan-Maxwell</td>
<td>13, 45, 68, 69 (see also Maxwell-Stefan)</td>
</tr>
<tr>
<td>Steric hindrance</td>
<td>75, 498, 539, 566, 623, 688, 779, 825</td>
</tr>
<tr>
<td>Surface</td>
<td>75, 89, 93, 96, 98, 530, 531, 533–536, 539</td>
</tr>
<tr>
<td>Tensor</td>
<td>11, 296, 362, 363, 708</td>
</tr>
<tr>
<td>Thermal</td>
<td>63</td>
</tr>
<tr>
<td>Tracer</td>
<td>21, 32, 741, 743</td>
</tr>
<tr>
<td>In zeolite A</td>
<td>45, 104, 566–567, 571–600</td>
</tr>
<tr>
<td>In zeolite X and Y</td>
<td>208, 607–648</td>
</tr>
<tr>
<td>In ZSM-5 (see also silicalite)</td>
<td>653–720</td>
</tr>
<tr>
<td>With simple jump model</td>
<td>44–47</td>
</tr>
<tr>
<td>Diffusional restrictions, zeolite catalysts</td>
<td>822</td>
</tr>
<tr>
<td>Activation energies</td>
<td>825, 826</td>
</tr>
<tr>
<td>Catalytic cracking over HZSM-5</td>
<td>824, 825</td>
</tr>
<tr>
<td>Catalytic cracking over zeolite Y</td>
<td>823, 824</td>
</tr>
<tr>
<td>MTG reaction</td>
<td>830, 831</td>
</tr>
<tr>
<td>MTO Process</td>
<td>831–833</td>
</tr>
<tr>
<td>Size exclusion</td>
<td>822, 823</td>
</tr>
<tr>
<td>Toluene, selective disproportionation</td>
<td>828–830</td>
</tr>
<tr>
<td>Xylene isomerization</td>
<td>826–828</td>
</tr>
<tr>
<td>Diffusion anisotropy</td>
<td>10, 601, 703–710, 759</td>
</tr>
<tr>
<td>Comparison of measured profiles</td>
<td>704</td>
</tr>
<tr>
<td>Correlation rule for structure-directed</td>
<td></td>
</tr>
<tr>
<td>Diffusion anisotropy</td>
<td>703, 704</td>
</tr>
<tr>
<td>Evidence by PFG NMR measurements</td>
<td>705–707</td>
</tr>
<tr>
<td>Host structure, evidence</td>
<td>364</td>
</tr>
<tr>
<td>Limits of correlation rule</td>
<td>707–710</td>
</tr>
<tr>
<td>Powder measurement</td>
<td>363, 364</td>
</tr>
<tr>
<td>Single-crystal measurements</td>
<td>362, 363</td>
</tr>
<tr>
<td>Diffusion coefficients</td>
<td>13</td>
</tr>
<tr>
<td>Anomalous transport diffusion</td>
<td>45</td>
</tr>
<tr>
<td>Liquid phase</td>
<td>67</td>
</tr>
<tr>
<td>Measurement</td>
<td>504</td>
</tr>
<tr>
<td>Thermodynamically corrected</td>
<td>13</td>
</tr>
</tbody>
</table>

Diffusion-controlled system	
Concentration profiles during desorption	496
Dynamic behavior of	462
Uptake scales	421
Diffusion measurements	
Alternative approaches	362
Data analysis	356–358
With different nuclei	379, 380
Different regimes of	364–379
Intracrystalline	365
Long-range	368, 369
In long-time limit	367, 368
In short-time limit	365–367
Tortuosity factor and mechanism	369, 370
Experimental conditions, limitations, and	
Options for	355
Experimental issues for observing light	
Scattering phenomena	339–343
Extra-large stray-field gradients, benefit	359
Filter techniques	341–343
Fourier-transform	361, 362
Gradient pulse mismatch	358
Impedance by contaminants	360
Impedance by internal gradients	359, 360
Index matching	339, 340
Interference microscopy technique	404
By light scattering	337–343
Mechanical instabilities	358, 359
By monitoring molecular displacement	347
Multicomponent systems, self-diffusion	
Measurement	361
Optical mixing techniques	340, 341
By PFG NMR technique	348
Pitfalls	358
Sample preparation	355, 356
Single-molecule observation	383
Fluorescence microscopy, basic principles	
Of	384, 385
Nanoporous materials, correlating	
Structure/mass transfer	388, 389
Time averaging vs. ensemble averaging	385–388
Theory	337–339
Diffusion statistical mechanics	227–235
Mass fluxes in microporous medium	229–232
Transport in pure and mixed sorbates	232–234
Self-diffusivity	227–229
Diffusivities	160, 161, 176, 411 (See also diffusion)
Definition of	4
Index

– long-range 354
– permeabilities 757
diffusivity ratio 170
– variation 163
digital (photo-count) autocorrelation techniques 341
2,2-dimethylbutane (2,2-DMB), permeation fluxes and profiles 788
Death delta function 280, 460
discrepancy between micro and macro diffusivity values 632, 633
DDR
– diffusion of CO₂ and CH₄ in 569–571
– structure of 565
domain decomposition 241
Doppler shift 326
double refraction method, schematic representation 398
drag 45, 60, 98, 742
drift velocity 267
driving force, for diffusion 5, 12
– experimental evidence 15, 16
– gradient of chemical potential 12–15
– transport and self-diffusivities, relationship between 16, 17
dual control volume grand canonical molecular dynamics (DCV-GCMD) 269–272
– application 269
– role of control volumes 272
dual diffusion resistance model, for biporous particle 157
dusty gas model 94
dynamical correction factor 281–283, 291
dynamically corrected transition state theory 296
echo attenuation, for two-region diffusion 376
effective diffusivity 151, 170, 171, 524, 525
effectiveness factor 808
n-eicosane, atomistic and coarse grained representation 224
eight-ring zeolites 561–603
– anisotropic diffusion in CHA 602, 603
– 3A zeolites 592
– carbon number, variation of diffusivity with 593–595
– cation hydration 563, 564
– concentration and temperature dependence of diffusivity 566, 567
– diffusion in NaCaA zeolites 591, 592
– effective medium approximation 590, 591
– effective medium approximation 590, 591
– kinetic behavior of commercial 5A 597–599
– loading dependence of self-diffusivity 595
– Monte Carlo simulations 588–590
– pelletization, effects of 599–602
– self-diffusivity of water in ZK4 596
– structure of
— CHA 564, 565
— DDR 565
— LTA 562, 563
– water vapor, effects of 596, 597
– window dimensions 565
Einstein relation 7, 28, 41, 294, 305, 356, 357, 421
– for ordinary diffusion 113, 114
– regime of diffusion 275
Einstein–Smoluchowski equation 28
electric field (in light scattering) 337, 338, 340
electron spin resonance (ESR) 402, 403
elementary diffusion processes
measurement 305–343
– by light scattering 337–343
– by neutron scattering 326–336
– NMR spectroscopy 306–326
empirical tortuosity factors, for diffusion in liquid-filled pores 538
energy of activation. See activation energy
entropy 61, 87, 103, 524
– production by internal processes 66
– rate of generation of 61–63
entropy of sorption, alkanes in silicalite 221
equations of motion 195, 196, 236, 242, 244, 247, 251, 252, 255, 257, 267, 287
equilibrium-controlled permeation 779
equilibrium isotherm 382, 437, 449, 536, 569, 776, 789
equilibrium molecular dynamics (EMD) simulations 227, 235–265, 271
– constraint dynamics in Cartesian coordinates 249–253
– domain decomposition 241
– extended ensemble molecular dynamics 253–257
– integrating the equations of motion, velocity Verlet algorithm 235–238
– to mixed sorbates, application 259–265
– multiple time step algorithms, rRESPA 238–240
– to pure sorbates, example application 257–259
– rigid linear molecules, molecular dynamics of 241–244
– rigid nonlinear molecules 245–249
equipartition theorem 255
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>ergodic hypothesis</td>
</tr>
<tr>
<td>ethane selectivity, for permeation</td>
</tr>
<tr>
<td>ethyl benzene, piezometric uptake curve</td>
</tr>
<tr>
<td>Euler angles</td>
</tr>
<tr>
<td>Ewald summation technique</td>
</tr>
<tr>
<td>excess chemical potential</td>
</tr>
<tr>
<td>relation to fugacity</td>
</tr>
<tr>
<td>calculation by Widom insertion</td>
</tr>
<tr>
<td>calculation by configurationally biased insertion</td>
</tr>
<tr>
<td>experimental evidence</td>
</tr>
<tr>
<td>findings referred to single-file diffusion</td>
</tr>
<tr>
<td>catalysis</td>
</tr>
<tr>
<td>pulsed field gradient NMR</td>
</tr>
<tr>
<td>quasi-elastic neutron scattering</td>
</tr>
<tr>
<td>tracer exchange and transient sorption experiments</td>
</tr>
<tr>
<td>ideal vs. real structure of single-file host systems</td>
</tr>
<tr>
<td>experimental methods</td>
</tr>
<tr>
<td>classification</td>
</tr>
<tr>
<td>external field non-equilibrium molecular dynamics (EFNEMD)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabry–Perot interferometers</td>
</tr>
<tr>
<td>fast tracer desorption</td>
</tr>
<tr>
<td>Feynman–Hibbs correction</td>
</tr>
<tr>
<td>Fickian diffusivity</td>
</tr>
<tr>
<td>dependencies</td>
</tr>
<tr>
<td>equation</td>
</tr>
<tr>
<td>model</td>
</tr>
<tr>
<td>Fick's first law</td>
</tr>
<tr>
<td>Fick's second law</td>
</tr>
<tr>
<td>film resistance</td>
</tr>
<tr>
<td>filter techniques (light scattering)</td>
</tr>
<tr>
<td>Fincham's LEN algorithm</td>
</tr>
<tr>
<td>finite single-file systems</td>
</tr>
<tr>
<td>catalytic reactions</td>
</tr>
<tr>
<td>adapting analysis for normal diffusion</td>
</tr>
<tr>
<td>dynamic Monte Carlo simulations</td>
</tr>
<tr>
<td>molecular traffic control</td>
</tr>
<tr>
<td>rigorous treatment</td>
</tr>
<tr>
<td>mean square displacement</td>
</tr>
<tr>
<td>tracer exchange</td>
</tr>
<tr>
<td>flame ionization detector (FID)</td>
</tr>
<tr>
<td>flexible zeolite model</td>
</tr>
<tr>
<td>fluctuation in number of sorbed molecules</td>
</tr>
<tr>
<td>fluctuations in composition</td>
</tr>
<tr>
<td>fluid–solid contactors</td>
</tr>
<tr>
<td>fluorescence microscopy</td>
</tr>
<tr>
<td>fluorine compounds (diffusion of)</td>
</tr>
<tr>
<td>focal plane array (FPA) detector</td>
</tr>
<tr>
<td>force fields</td>
</tr>
<tr>
<td>Fourier transform</td>
</tr>
<tr>
<td>of PFG NMR spin echo attenuation</td>
</tr>
<tr>
<td>of stationary NMR spectrum</td>
</tr>
<tr>
<td>Fourier transform IR spectroscopy (FTIR)</td>
</tr>
<tr>
<td>fractal geometry</td>
</tr>
<tr>
<td>fractal model, for system of parallel cylindrical pores</td>
</tr>
<tr>
<td>frames of reference</td>
</tr>
<tr>
<td>for binary system</td>
</tr>
<tr>
<td>diffusivity for adsorbed phase</td>
</tr>
<tr>
<td>interdiffusion process</td>
</tr>
<tr>
<td>total volumetric flux</td>
</tr>
<tr>
<td>framework type code (FTC)</td>
</tr>
<tr>
<td>free energy methods</td>
</tr>
<tr>
<td>free induction decay</td>
</tr>
<tr>
<td>free volume theory</td>
</tr>
<tr>
<td>frequency response</td>
</tr>
<tr>
<td>experimental systems</td>
</tr>
<tr>
<td>in flow system</td>
</tr>
<tr>
<td>measurements</td>
</tr>
<tr>
<td>limits</td>
</tr>
<tr>
<td>temperature frequency response</td>
</tr>
<tr>
<td>theoretical model</td>
</tr>
<tr>
<td>tracer exchange rates</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>gas diffusion</td>
</tr>
<tr>
<td>gaseous adsorption systems</td>
</tr>
<tr>
<td>gasoline range (C_5–C_{10})</td>
</tr>
<tr>
<td>hydrocarbons</td>
</tr>
<tr>
<td>gasoline yield</td>
</tr>
<tr>
<td>gas–solid adsorption systems</td>
</tr>
<tr>
<td>gauche–trans conformational isomerizations</td>
</tr>
<tr>
<td>Gaussian approximation</td>
</tr>
<tr>
<td>Gaussian curve</td>
</tr>
<tr>
<td>Gaussian distributions</td>
</tr>
<tr>
<td>probability</td>
</tr>
<tr>
<td>Gaussian response</td>
</tr>
<tr>
<td>Gear predictor-corrector algorithm</td>
</tr>
<tr>
<td>Geiger-Müller counter</td>
</tr>
<tr>
<td>generalized Maxwell–Stefan equations</td>
</tr>
<tr>
<td>(see also Maxwell-Stefan model)</td>
</tr>
<tr>
<td>application of</td>
</tr>
<tr>
<td>diffusion in adsorbed phase</td>
</tr>
<tr>
<td>general formulation</td>
</tr>
</tbody>
</table>
Gibbs–Duhem equation 229, 231
Gibbs energy 98, 210, 218, 286
Gibbs ensemble Monte Carlo (GEMC) 215
Glueckauf approximation 465
Gorring’s diffusion measurements 825
gradient relaxation molecular dynamics (GRMD) 265, 266, 268
Graham’s law 4
grand canonical Monte Carlo (GCMC) simulations 212, 257, 264, 265, 269, 332, 745
– selection criteria 269
grand partition function 211
gravimetric methods
– gravimetric uptake (GU) measurements 427–432, 520
– tracer exchange rates 427
– bed diffusional resistance, intrusion of 431–432
– experimental system 428–429, 432
– heat effects, intrusion of 429–430
– negligible thermal effects, criterion for 430–431
– response curves analysis 429
Green–Kubo equation 229, 233
guest diffusion
– in ferrierite 722, 723
– in nanoporous materials 35
guest uptake, nanoporous host 413
gyromagnetic ratio 308, 330, 352, 357, 369, 637, 639
H
Habgood model 785, 789
Hahn echo (HE) pulse sequences 323
Hahn’s spin echo (runners’ model) 323, 324
Hamilton’s equations of motion 196
Hartree–Fock theory 201
H₂/CH₄ perm-selectivity 800
heat fluxes 62, 63, 816
heat transfer
– limitations 455
– resistance 182, 184, 429, 470, 815–817
Heaviside step function 279, 280, 290
He–CH₄ carriers 483
height equivalent to theoretical plate (HETP) 467, 476
Heisenberg’s uncertainty principle 197
Helmholtz energy 197, 211, 218, 286
Henry constants 491, 633, 775
– of alkanes in silicalite 221
Henry’s law 14, 201, 218, 233, 460, 510
– region 482, 503, 506, 774, 813
heptane–benzene mixture, experimental uptake curves 188
Hermite interpolation scheme 202
Hessian matrix 284, 288
hexamethyldisilazane 533
n-hexane 519
– activation energies for long-range self-diffusion 549
– adsorption branch perm-porosimetry curves for 795
– Arrhenius plot 672
– blocking effect 835
– cracking 823, 825, 830
– diffusivities
– derived from high temperature 673
– measurements 519
– in Na75CaX 619
– in porous silicon 537
– in silicalite 208, 687, 795, 796
– effective self-diffusion coefficient 549
– hydroisomerization of 139
– and 3-methylpentane, over NaA 822
– relative effective diffusivities for 366
– saturation capacities for H-ZSM-5 and silicalite. 657
– self-diffusivities of 536
n-hexane–silicalite
– experimental perm-porosimetry curves, comparison of 796
hierarchical pore systems 539
– activated carbon with interpenetrating micro- and mesopes 541–544
– in mesoporous zeolites 544, 545
– ordered mesoporous material SBA-15 539–541
HKUST-1 structure 732, 733
homodyne measurement 340
van Hove correlation function 329
hydrogen bonding 521
hydrothermal treatment (of zeolite A) 597, 598
hyperpolarization 308
hysteresis effects 215, 541, 553–555, 554, 631
HZSM-5 based catalysts 824, 831
i
ideal adsorbed solution theory (IAST) 789
ideal gas 12, 209, 210, 215, 219, 220
imidazolate (IM) 739
inert carrier 460, 644, 645
inertia tensor 245
infrared microscopy measurements
(IRM) 397, 519
infrequent event techniques 105, 275–301
– dynamical correction factor 281–283
– example applications 296–300
– kinetic Monte Carlo simulation 293–295
 -- diffusivities in zeolites 296–300
– master equation 292, 293
 -- analytical solution 295, 296
– multidimensional transition state theory 283–289
 -- of multistate multidimensional systems 290, 291
– numerical methods for 291, 292
– rate constant expression 276–281
– self-diffusivity
 -- at high occupancy 300
 -- at low occupancies 296–300
– for simulating diffusion in microporous solids 275–300
– statistical mechanics 276–292
– time scale separation 276–281
– tracking temporal evolution in network of states 292–296
– transition state theory (TST) approximation 281–283

inhomogeneous field effect 316
integral measurements 169, 443
integral sorption curves
 -- analysis 170
 -- for butylene and propylene 169
 -- interaction energy 102, 103, 307, 317, 320, 325, 380, 567, 743
interference microscopy (IFM) 154, 379, 395, 397, 399, 400, 819, 821
-- diffusion measurements 750
-- monitoring intracrystalline concentration profiles 403–408, 408–415
 -- Boltzmann’s integration method 414–415
 -- data analysis 406–408
 -- principles of measurement 403–406
 -- self-diffusivities and transport diffusivities 412
 -- surface resistances, relevance of 413
 -- transient sorption experiments, visualizing guest profiles 412–413
interferometer, Fabry-Perot 342
intermolecular interactions 219
interstitial diffusion 283
intracrystalline barriers 696, 697
-- evidence from PFG NMR diffusion studies 701, 702
-- for hydrocarbons in H-ZSM-5 819
 -- measurements 486
 -- PFG NMR measurements of 358, 377
intracrystalline mean life time 124, 137–139, 375
intraparticle diffusion 459
-- chromatographic measurements 470
 -- dead volume 471
 -- experimental conditions 470–472
 -- chromatographic method
 -- with adsorbable components 481–483
 -- chromatographic column, mathematical model for 460–464
 -- concentration profile, direct measurement of 480–481
 -- limited penetration regime 480
 -- moments analysis 464–468
 -- step response 479–480
 -- wall-coated column 480
-- experimental data, analysis of 472–473
-- axial dispersion, intrusion of 477–479
-- liquid systems 473
-- vapor phase systems 473–477
-- long-column approximation 468
-- heat transfer resistance 470
-- nonlinear equilibrium 469–470
-- pressure drop 468–469
-- membrane permeation measurements 501–510
-- temporal analysis of products (TAP) system 500–501
-- zero-length column (ZLC) method 483
 -- counter-current ZLC (CCZLC) 498
 -- deviations 489
 -- extensions of 497–500
 -- fluid film resistance 489
 -- fluid phase hold-up 490–491
 -- heat effects 492–493
 -- intraparticle diffusion control, theory 485–486
 -- isotherm nonlinearity, effect of 491–492
 -- liquid phase measurements 498–500
 -- macroporous particles, diffusion 488–489
 -- practical considerations 493–497
 -- principle of 483–485
 -- short-time behavior 486–488
 -- surface resistance, measurement 489–490
 -- tracer ZLC 497–498
 -- intrinsic diffusivity 776
 -- intrinsic selectivity 774
IR micro-imaging/microscopy (IRM) 379, 395, 400, 403, 740
-- intracrystalline concentration profiles, monitoring 403–408, 408–415
 -- Boltzmann’s integration method 414–415
--- data analysis 406–408
--- principles of measurement 403–406
--- self-diffusivities and transport
diffusivities 412
--- surface resistances, relevance of 413
--- transient sorption experiments, visualizing
guest profiles 412–413
irreversible adsorption model 176
irreversible process 351
isosteric heat of sorption 214, 218
– of alkanes in silicalite 221
isomerization of xylenes 659, 826, 827
isothermal approximation 63, 64, 182–185, 492
isothermal binary system 5
isothermal diffusion model 167
isothermal–isostress simulations 210
isothermal linear dual-resistance
systems 151–160
– surface resistance plus internal
diffusion 151, 152
– transient concentration profiles 152–156
– two diffusional resistances (biporous
solid) 156–160
isothermal linear single-resistance
systems 145–151
– external fluid film/surface resistance
control 145, 146
– macropore diffusion control 149–151
– micropore diffusion control 146–149
– particle shape effect 149
isothermal MD simulation 132
isothermal nonlinear systems 160–179
– adsorption/desorption rates and effective
diffusivities 170–172
isotherm nonlinearity effect 491
isotropic diffusion 7, 363
isotropic medium 10

\(k \)
Kelvin equation 793
kinetic energy function 196
kinetic equation 278
kinetic Monte Carlo simulation (KMC) 276, 293–295
– for prediction of diffusivities in
zeolites 296–300
kinetic theory of gases 88, 421
Kirchhoff’s law 293
Knudsen diffusion 17, 49, 88, 89, 92, 150, 382, 501, 503, 504, 518, 525, 800
Knudsen flux 96, 98, 792
Koch curve 50, 51

\(l \)
LaGrange multipliers 251, 252
Lambert–Beer law 406
laminar fluid film 145
Langmuirian systems 162, 167, 176, 431, 491, 503, 776, 787, 789
– effective integral diffusivity with diffusivity
ratio, variation 171
– flow through membrane and time
delay 507
– theoretical adsorption and desorption curves
for 178
– transient behavior of 506
Langmuir isotherm 46, 74, 101, 173, 736, 784, 795
Laplace transform 444, 467
large-scale atomic molecular massively parallel
simulator (LAMMPS) 241
Larmor condition 308, 311
Larmor frequencies 314, 315
– of nuclear spins 361
lattice coordination number 34
Legendre transformation 196, 210, 211
LEN algorithm 243, 244
Lennard–Jones interactions 254
Lennard–Jones (LJ) potential 199, 202, 238
Lennard–Jones simulations 271
levitation effect 131, 132, 617
light scattering 305, 326, 337, 339, 340
linear alkanes
– Arrhenius plots 662
– comparison of self-diffusivities of \(n \)-alkanes
at low loadings 661
– diffusivity data for \(n \)-alkanes 660
– loading dependence of diffusivity 665
– macroscale measurements 663, 664
– microdynamic behavior 665
– microscale measurements 661
– molecular simulations 665, 666

\(j \)
jump models 331
Juttner modulus 808

--- data analysis 406–408
--- principles of measurement 403–406
--- self-diffusivities and transport
diffusivities 412
--- surface resistances, relevance of 413
--- transient sorption experiments, visualizing
guest profiles 412–413
irreversible adsorption model 176
irreversible process 351
isosteric heat of sorption 214, 218
– of alkanes in silicalite 221
isomerization of xylenes 659, 826, 827
isothermal approximation 63, 64, 182–185, 492
isothermal binary system 5
isothermal diffusion model 167
isothermal–isostress simulations 210
isothermal linear dual-resistance
systems 151–160
– surface resistance plus internal
diffusion 151, 152
– transient concentration profiles 152–156
– two diffusional resistances (biporous
solid) 156–160
isothermal linear single-resistance
systems 145–151
– external fluid film/surface resistance
control 145, 146
– macropore diffusion control 149–151
– micropore diffusion control 146–149
– particle shape effect 149
isothermal MD simulation 132
isothermal nonlinear systems 160–179
– adsorption/desorption rates and effective
diffusivities 170–172
– adsorption profiles 162–165
– approximate analytic representations 172
– desorption profiles 165–167
– experimental uptake rate data 167–170
– linear driving force approximation
172, 173
– macropore diffusion control 160, 161
– micropore diffusion control 160
– semi-infinite medium 161, 162
– shrinking core model 173–176
– surface resistance control–nonlinear
systems 176–179
isotherm nonlinearity effect 491
isotropic diffusion 7, 363
isotropic medium 10

\(k \)
Kelvin equation 793
kinetic energy function 196
kinetic equation 278
kinetic Monte Carlo simulation (KMC) 276, 293–295
– for prediction of diffusivities in
zeolites 296–300
kinetic theory of gases 88, 421
Kirchhoff’s law 293
Knudsen diffusion 17, 49, 88, 89, 92, 150, 382, 501, 503, 504, 518, 525, 800
Knudsen flux 96, 98, 792
Koch curve 50, 51

\(l \)
LaGrange multipliers 251, 252
Lambert–Beer law 406
laminar fluid film 145
Langmuirian systems 162, 167, 176, 431, 491, 503, 776, 787, 789
– effective integral diffusivity with diffusivity
ratio, variation 171
– flow through membrane and time
delay 507
– theoretical adsorption and desorption curves
for 178
– transient behavior of 506
Langmuir isotherm 46, 74, 101, 173, 736, 784, 795
Laplace transform 444, 467
large-scale atomic molecular massively parallel
simulator (LAMMPS) 241
Larmor condition 308, 311
Larmor frequencies 314, 315
– of nuclear spins 361
lattice coordination number 34
Legendre transformation 196, 210, 211
LEN algorithm 243, 244
Lennard–Jones interactions 254
Lennard–Jones (LJ) potential 199, 202, 238
Lennard–Jones simulations 271
levitation effect 131, 132, 617
light scattering 305, 326, 337, 339, 340
linear alkanes
– Arrhenius plots 662
– comparison of self-diffusivities of \(n \)-alkanes
at low loadings 661
– diffusivity data for \(n \)-alkanes 660
– loading dependence of diffusivity 665
– macroscale measurements 663, 664
– microdynamic behavior 665
– microscale measurements 661
– molecular simulations 665, 666

\(j \)
jump models 331
Juttner modulus 808
– variation of PFG NMR self-diffusivity 666
linear and branched hydrocarbons, differences
in diffusional behavior 702, 703
linear driving force (LDF) model 462, 465
– approximation 173
linear response theory 230
linear system 165, 171
line width 312–314, 317, 320, 361, 647
liquid-filled pores
– diffusion 538, 539
— at high loadings 80, 81
– flux expressions reduce to 81
– Habgood model 81
– mutual diffusion effects 81
liquid phase diffusion 538
liquid scintillation counting (LSC) 446, 447
liquid ZLC measurements 500
loading dependence 75
– molecular simulation 78
– self-diffusivities 75–77
– structural defects, effect of 78, 80
– transport diffusivities 77, 78
long tail behavior 470
Löwenstein’s rule 201
LTA zeolites (see also Zeolite A)
– cation sites 562, 563
– diffusion in 565–567, 571–601
– structure 562–564
– diffusion of water vapor 595, 596
– membrane 797

m
macrodiffusivity 43
macro FTIR technique 437
macro IR sorption rate measurements,
experimental system 438
macro/meso-pore sizes 518
macropore control 150, 169, 493
macropore diffusion 42–44, 151, 176, 179,
463
– analysis 185
– controlled system 160, 164
– determination, in catalyst particle under
reaction conditions 526, 527
– diffusional resistance 476
macropores 17, 18, 143, 463, 510, 546, 550,
556
macroporous catalysts 807
macroscopic experiments 761
macroscopic flux 267
macroscopic TZLC technique 541
magic angle spinning (MAS) 323, 324
– PFG NMR 358
–– self-diffusion studies 745
magnetic dipole moment 308
magnetic field, spin orientations in 309
magnetic interaction energy 307
magnetic moments, superposition 310
magnetic resonance tomography (MRT) 348
magnetization, specific (nuclear)
– longitudinal 315
– transverse 308
Markov chain 206, 207
mass fluxes 229
mass transfer processes 9, 47, 149, 456
– coefficient 41, 145, 483
– resistance at interface 40
mass transfer rates 145
mass transfer resistance 455, 460, 469, 477
master equation 292, 293, 295, 296
– analytical solution 295, 296
matching condition 39, 40, 113
mathematical modeling of sorption
kinetics 145–185
matter wave 326
Maxwell–Boltzmann distribution 235
Maxwell–Stefan diffusivities 227, 234, 262,
263, 737, 741, 742, 744, 748
Maxwell–Stefan model 68–72, 784–791
– diffusion in macro- and mesopores 74, 75
– membrane permeation 73, 74, 784–791
– parameter estimation 72, 73
McBain balance 428
MCM-41 crystal
– anisotropic self-diffusion of water in 530
– high-accuracy localized reaction 822
– source and characterization 528, 529
mean free path 88, 91, 368, 369, 551
mean jump lengths 48
mean square displacement 7, 8, 27, 28, 33, 48,
56, 117, 119, 275, 349, 363, 381, 525, 701,
710, 711
membrane permeation measurements
501–510, 673, 684
– steady-state permeability
measurements 501–502
– time lag measurements
– linear systems 504–505
– nonlinear systems 506–507
– single-crystal membrane technique,
evaluation of 507–508
– single-crystal zeolite membrane 505–506
– transient and steady-state measurements,
comparison 510
– transient Wicke–Kallenbach
experiment 508–510
– Wicke–Kallenbach steady-state
method 503
intracrystalline diffusion 503–504
– macro/mesopore diffusion measurements 503
memory 9, 31, 47, 113, 114, 235, 276, 708, 710
Menger sponge 50, 51
mesopores 17, 75, 87, 96, 528, 544, 608, 619
mesoporous membranes, diffusion through 530
– measurement 400
mesoporous silica 531, 532
– modified mesoporous membranes 533
– permeance measurements 532, 533
mesoporous Vycor glass 530, 531
metal organic frameworks (MOFs) 4, 113, 264, 416, 729, 730
– breathing effects 751–754
– CuBTC, guest diffusion 736–738
– diffusion in MIL-53 751–754
– HKUST-1 732
– for H₂ separation 799–800
– membranes 771
– MOF-5, guest diffusion 733–736
– pore segments in single-file arrangement 747–751
– porous solids, class of 730–732
– potential use of 732
– surface resistance 754
– activation energies 761–762
– experimental observations 754–757
– generalization of model 761
– intracrystalline barriers 761
– simulation results 758–759
– surface barrier, conceptual model 757
– surface permeability and intracrystalline diffusivity 759–760
– with three-dimensional pore networks 760
– unblocked entrance windows, fraction of 760–761
– zeolitic imidazolate framework 8 (ZIF-8) 739
– experimental self- and transport diffusivities 740–744
– membrane-based gas separation 744–746
– Zn(tbip) 747–751
methane
– capillary condensation, binodal curves for 217
– NMR diffusivity of 835
– self-diffusivity 261
methanol
– adsorption 155
– concentration, transient profiles 409
– deuterated 387
– diffusion and reaction 832
– to gasoline (MTG) reaction 830–831
– in NaX crystals 77
– to olefins (MTO) reaction 831–833
– over HZSM-5 831
– uptake 417
– to yield dimethyl ether (DME) 831
methanol–ferrierite, theoretical transient adsorption and desorption curves 178, 179
3-methylpentane, cracking 823
– in silicalite 208
2-methylpentane (2-MP), permeation fluxes 788
Methuselah Monte Carlo 206
MFI crystal structure 654, 655, 697–699
– molecular sieve behavior 659
– saturation capacity 655–659
– for H-ZSM-5 and silicalite 657
– zeolite crystals, self-diffusivity of water 381
MFI-type zeolites 653
micropore-controlled systems 151
micropore diffusion 149
– diffusional resistances 465, 807
micropore/macropore diffusivities 445
– chromatographic method, application of 464
microporous carbon 398. See also carbon molecular sieves
– diffusion in 520, 521, 524
– PFG NMR 521
– properties 52
microscale studies 688
– ammonia 689–691
– hydrogen 691 692
– tetrafluoromethane 688–689
– water and methanol 689
microscopic diffusivities 42–44
microscopic techniques 412
MIL-88A–D 752
MIL-53 (Al, Cr), breathing behavior 751
MIL-88 solids 731
MIL-47 yield self-diffusivities 753
mixed adsorbed phase, diffusion in 712
– blocking effects by co-adsorbed second guest species 712
– methane in presence of benzene 712, 713
– methane in presence of pyridine and ammonia 713, 714
– n-butane in presence of isobutane 714–716
mobile phase model 106
– diffusivity in self-diffusion experiment 107
– transport diffusivity 107
MOF crystal 423, 747
MOF-5 (IRMOF-1) material 734
– activation energies 735
– PFG NMR spin echo attenuations 734
– self-diffusion coefficients of n-alkanes in 735
MOF ZIF-8 752, 800
– cage arrangement in 740
MOF Zn(tbip) 423
molecular diffusion 17, 19, 96, 347, 501, 808
molecular displacements 114, 115
– probability distribution 353
molecular dynamics (MD) 116–118, 235–272
– equilibrium molecular dynamics simulations 235–265
– extended ensemble molecular dynamics simulations 253–257
– non-equilibrium molecular dynamics simulations 265–272
– predictions 262
molecular mechanics-type expression 204
molecular migration, feature of 305
molecular models construction 193–224
– coarse-graining and mean force potentials 222–224
– Monte Carlo simulation methods 206–217
– sorption equilibria, free energy methods for 217–222
– zeolite–sorbate systems, models and force fields 194–206
molecular orientation 245
molecular relaxation time 231
molecular sieve behavior 659
molecular simulations 78
– effect of structural defects 78–80
molecular traffic control (MTC) 130
– for CH₄ and CF₄ 130
– conditions, to be fulfilled by 131
molecule–molecule interactions 520
molecule–wall collisions 91
moments, method of 21, 378, 444–445
momentum transfer (in neutron scattering) 5, 271
– in gas distribution 94
Monte Carlo (MC) simulation methods 44, 134, 206–217, 370, 371
– adapting analysis for normal diffusion 123–125
– canonical Monte Carlo 207–210
– Gibbs ensemble and gage cell Monte Carlo 215–217
– grand canonical Monte Carlo 210–214
– metropolis Monte Carlo algorithm 206, 207
– of random walk 588
morphology, influence on diffusion 193, 541
Mulliken population analysis 200
multicomponent systems, self-diffusion in 67, 73, 185, 361, 441, 637, 640, 645, 784
– evolving during catalytic conversion 645
– cyclopropane into propene 645–647
– isopropanol into acetone and propene 647, 648
– hydrocarbons 640–643
– benzene–perfluorobenzene 641
– ethane–ethene 642, 643
– n-butane–perfluoromethane 641, 642
– n-heptane–benzene 640, 641
– under influence of co-adsorption and carrier gases 643
– effect of inert carrier gas 644, 645
– effect of moisture 643
– water and ammonia 643, 644
multidimensional transition state theory 283–289
multi-region approach 374
multistate multidimensional systems 290, 291

n
NaCaA crystals 402 (see also LTA)
nanoporous host materials
– bulk phase of 422
– host–guest systems 35
nanoporous materials, deviations from normal diffusion in 55–57
nanoporous particles 305
– two-dimensional model bed of 372
nanoporous sol–gel glass, single-particle trajectories 386
Nath, Escobedo, de Pablo (NERD) force fields parameters 200
NaX, diffusion in 607–648
NaX–methanol, transient temperature response 437
– self and transport diffusivities 78
NaX zeolite crystals 165, 187, 205
– gravimetrically measured transient sorption curves 432
– model bed 205
neutron scattering 305, 326, 327, 336, 337
– diffusion measurements 326–336
– evidence on elementary steps of diffusion 334
– experimental procedure 326, 327
– fundamental relations 330, 331
– intermediate scattering function 334, 335
– measurements 520
index

- principle of method 326, 327
- range of measurement 335, 336
- scattering patterns and molecular motion 330–336
- theory 327–330
- thermodynamic factor 331–334
- neutron spin echo
- applications 335
- experiments 334
- Newton–Raphson method 252
- Newton's second law of motion 196
- nitrogen 639, 640
- 4Å micropores 476
- curves for 522
- experimental pore diffusivities 89
- experimental studies 421
- gyromagnetic ratio 639
- kinetic selectivity 522
- long-range diffusivity of 369
- permeation properties of 717
- sorption isotherms 213
- in zeolite NaCaA 369, 572–573
- non-adsorbing carrier. See inert carrier
- non-equilibrium molecular dynamics (NEMD) approaches 227, 265–272
- dual control volume grand canonical molecular dynamics 269–272
- external field NEMD 266–269
- gradient relaxation method 265, 266
- simulations 267
- trajectory 266
- non-isothermal systems 5, 179–185, 430, 451, 470, 815–817
- experimental non-isothermal uptake curves 183–185
- intraparticle diffusion control 181–183
- nonisotropic system 10
- nonlinear system, transient behavior 506
- Nosé MD method 256
- nuclear magnetic resonance spectroscopy (NMR) 305, 306–326, 307, 446
- anisotropy of the chemical shift 320
- basic principles, behavior of isolated spins 306–309
- behavior of nuclear spins in compact material 309–318
- classical treatment 306–308
- experiments 204, 310
- field gradient method 379
- fundamentals of line shape 311
- imaging 481
- impact 323–326
- molecular motion effect on line shape 311–314
- pulse measurements fundamentals 314–318
- quadrupole NMR 320–323
- quantum mechanical treatment 308, 309
- resonance shifts by different surroundings 318–323
- schematic representation of 314
- self-diffusion measurements 352
- signal intensity 356
- spin echo 327, 335
- spin-mapping 348
- spins in different chemical surroundings 318–320
- tracer desorption curves 376, 380
- tracer desorption experiment 377
- tracer exchange measurements 383
- zeugmatography 348, 402
- nuclear spin 306, 308, 309, 348, 380, 400, 402

o

n-octane 223
- diffusion in NaY, USY and NaX 618, 619
- extrapolation of 619
- intracrystalline diffusivities of 619
- in NaX 621
- NMR self-diffusivity 610
- PFG NMR measurements 618
- Ohm’s law 61
- olefins
- in AgNaX 623
- C₃/C₂, equilibrium ratio of 832
- crystal size on 833
- higher 831
- light 623
- methanol to 831
- reduction in diffusivity 623
- translational mobility of 623
- yield, influence of crystal size on 833
- one-component sorbate system 214
- one-dimensional system 153
- one-dimensional transport 112
- Onsager coefficients 61, 230, 234, 264
- Onsager reciprocity relations 61, 234
- Onsager’s regression theorem 339
- open micropore systems 106, 527, 528
- estimating loading dependence 108
- mobile phase model 106, 107
- sinusoidal field 107, 108
- organic linkers 731
- oxygen
- in Bergbau-Forschung sieve 522
- bridges in zeolites 739
- centers of 608
- zeolite crystal structure 201
paraffins
- HZSM-5 824
- selectoforming process 825
- solubility of 696
paramagnetic centers 312
Parrinello–Rahman extended ensemble algorithm 210
particle–particle interaction 127
partition function 197, 255
n-pentane
- cracking of 826
- diffusion in silicalite/HZSM-5 660, 661, 663
- experimental uptake curves 183
- in porous Vycor glass 518
- QENS diffusion studies 612
- supercritical transition 555
periodically continuous model systems 200
permeabilities 411, 774
permeability–diffusivity ratio 760
permeability measurement, through silicalite 506
permeation efficiency 760
permeation, zeolite layer 792
perm-porosimetry 793
perturbation theory 309
PFG NMR. See pulsed field gradient NMR (PFG NMR)
phase-space probability density 285
phenomenological transport coefficients 230
piezometric method 156, 433, 435
piezometric system 435
- components of 433
- theoretical response curves for 435
Planck’s relation 309, 317, 318
Poiseuille flow (see also viscous flow) 90, 94, 501, 532, 793, 501, 792
Poisson process 294
polar angle 96
copolymerizable membranes 773
copolyethylene oxide 527
copolymer–zeolite interface 801
copolypropylene oxide 527
copolymer particles
- in controlled porous glasses (CPG) 339
diffusion measurements by light scattering 340
pore network, diffusion in 94
capillary condensation 97, 98
dusty gas model 94, 95
effective medium approximation 95
effective medium model 94, 95
parallel pore model 96, 97
random pore model 97
tortuosity factor 95, 96
pore radius 86
pore size 85, 87, 535
distribution 96
porosity 525
porous adsorbent particles, diffusion 159
porous catalyst particle
- diffusion and reaction 809
direct measurement of tortuosity in 525, 526
porous coordination polymers (PCPs) 730
porous glasses 518
porous Vycor glass, diffusion in 553–555
positron emission profiling (PEP) 397, 481
potential of mean force 222, 223, 278
pre-exponential factor 105, 107, 288, 584–587
probability density 214, 282
probability distribution function (PDF) 47, 48, 276
probability ratios 293
propagator function 29–31, 114
propane
- comparison of diffusion in NaX, 5A and silicalite 666
- diffusion in LTA 582
- diffusion in silicalite 662
- transient concentration profiles 748
- transient intracrystalline concentration profiles of 749
propene 645
- conversion of cyclopropane 645, 646
- conversion of isopropanol in NaX 647
- cyclopropane 645–647
- isopropanol 647, 648
- in NaX 646
- transport inhibition of 648
propylene polymerization 831
Pt/H-mordenite 139
Pt/SiO₂ catalysts 139
pulsed field gradient NMR (PFG NMR) 347, 348, 353, 358, 497
- application of 365
- Arrhenius plot of 373
- attenuation curve 376
- complete evidence of
- - diffusivity, concept of 354–355
- - mean propagator, concept 352–355
- - consistency, experimental tests of 379
- - crystal size, determination of 381–382
- - crystal size, variation of 379
- - diffusion measurements with different nuclei 379–380
- - external magnetic field, influence of 380
-- extracrystalline space, blocking of
380–381

-- long-range diffusion 382

-- self-diffusion vs. tracer desorption
measurements 380

-- tracer exchange measurements 382–383

-- diffusion anisotropy

-- host structure, evidence 364

-- measurements of 364

-- powder measurement 363–364

-- single-crystal measurements 362–363

-- diffusion measurements 151, 330, 335,
366, 371, 400

-- alternative approaches 362

-- application 325

-- data analysis 356–358

-- different regimes of 364–379

-- experimental conditions, limitations, and
options for 355

-- extra-large stray-field gradients, benefit of
359

-- Fourier-transform 361–362

-- gradient pulse mismatch 358

-- impedance by contaminants 360

-- impedance by internal gradients 359–360

-- mechanical instabilities 358–359

-- multicomponent systems, self-diffusion
measurement 361

-- performance 323

-- pitfalls 358

-- sample preparation 355–356

-- diffusivities 381, 384

-- ethane, long-range self-diffusion of

-- temperature dependence 370

-- fine-tuning 364

-- imaging techniques 353

-- long-range diffusivity measurements 365

-- measurement, principle 348

-- basic experiment 351–352

-- fundamentals 348–351

-- normal diffusion 356

-- pulse sequences 358

-- self-diffusivities 380

-- signal attenuation 357

-- in beds of zeolite crystallites 374

-- curves 371

-- signal-to-noise ratio 359

-- sine-shaped gradient pulses and eddy-
current quench pulses 360

-- spin-echo attenuation 360, 364

-- curve 354

-- Fourier transform of 352

-- surface barriers, observation 377–379

-- tracer desorption technique 376–377, 382

-- two-dimensional Monte-Carlo

simulations 371–374

-- two-region model 374–376

-- zeolite crystallites, molecular transport 355

-- zeolitic diffusion 379

-- pyridine, blocking effect 835

-- pyrolysis 520

q

quadrupole moment 321

quantum mechanics/molecular mechanics

(QM/MM) 194, 200

quartz crystal balance 432–433

quasi-classical approximation 310

quasi-elastic neutron scattering (QENS) 41,
347

-- diffusivities for pentane isomers 616

-- intermediate scattering function 339

-- measurements 223, 259

-- MIL-47, CO2 diffusivities 753

-- qualitatively similar dependencies 754

-- self-diffusion data 754

-- quasi-Newton algorithms 292

-- quaternions 246

r

radiofrequency pulse programs 317

random walk 5

-- diffusion path for 36

rapid recirculation systems 440, 441

-- model

-- Fick's equations, correspondence with 32,
33

-- mean square displacement 27–29

-- propagator 29–31

RATTLE algorithm 252

Reed–Ehrlich model 104, 636, 748

-- for surface diffusion 101

Rees, magnetically driven frequency response
system 453

refractive index (RI) 343, 470

resistor network model 94

resonance line broadening

-- schematic representation 312

reversible reference system propagator

algorithm (rRESPA) 240

-- pseudo-code implementing 240

Reynolds number 21

-- axial dispersion 473, 474

-- region 471, 478, 817

rigid zeolite framework 299

12-ring zeolites 607. See also saturated

hydrocarbons, diffusion of

-- fluorine compounds 637, 638
Index 867

- hydrogen 636
- methanol 635
- PFG NMR diffusion measurements
 -- with different probe nuclei 636–640
- triethylamine 635, 636
- water in NaX and NaY 633–635
- X and Y zeolites, structure of 607–609

Rosenbluth weight 222
Rubotherm balance system 428
Runners model 315

S
Saddle point calculation algorithms 292
SAPO-34 catalysts 835
SAPO-34 membranes 802
- permeation 791
SAPO STA-7 crystals, pore structure 419
saturated hydrocarbons, diffusion of 659
- cyclohexane 616–618
- diffusion in NaCaX 619, 620
- diffusion measurements as evidence of structural imperfection 621–623
- diffusion of branched and cyclic paraffins 666–676
 -- summary of diffusivity data 667
- evidence from NMR 609–615
- isoparaffins 616–618
- linear alkanes 659–666
- NMR and ZLC data for NaX, comparison of 615, 616
- n-octane diffusion in NaY, USY and NaX 618, 619
SBA-15 material 528, 539
- PFG NMR diffusion studies 540, 541
scattering experiments 327
- application of neutrons 326
Schmidt number 478
Schrödinger equation 327
scintillation cocktail 447
selective surface flow 86
selectivity, mutual diffusion effect 790
selectoforming process 825
- coefficient 45, 233, 338, 350, 351
- corrected diffusivity (D_0) 66
- cross coefficients 67
- entropy production by internal processes 66
- experiments 407
 -- at high occupancy 300
 -- loading dependence 75–77
 -- MD simulation 79
- at low occupancies 296–300
- phenomenological equations 65
- relationship
 -- between coefficients 65
 -- between self- and corrected transport diffusivities 66, 77
- of water 521
SHAKE procedure 252
shallow bed kinetic measurements, schematic diagram 442
Sherwood number 817
shielding effect 318
shrinking core model 173–176
Si/Al ratio 653, 654
Sierpinski gasket 50, 51
 -- diffusion in 55
signal-to-noise ratio 439
silicalite (HZSM-5),
 -- anisotropy 703–706
 -- diffusion in 653–722
 -- structure 654–657
 -- sub-structure 696–700, 821
 -- surface resistance 693, 694
 -- surface etching 695
silicalite membranes 686, 772, 781
 -- methane–ethane permeation 785
 -- n-butane–isobutane in 781
 -- single-component fluxes 780
 -- temperature dependence 775
simple point charge (SPC) model 200
simulation box 266
simulations, of multicomponent adsorption and diffusion 738
single-component diffusion equation 186
single-file systems, infinitely extended 112
- molecular dynamics 116–118
- random walk considerations 112–115
single-particle tracking (SPT) 383, 387
single-resistance diffusion model 156
single-step frequency response method 436
singlet density distribution 208
sinusoidal channel segment 223, 297
sinusoidal field, diffusion in 107, 108
 -- approximation 107
 -- self-diffusivity 107
sinusoidal perturbation 452
size-selective molecular sieving 85–87
sodium borosilicate glasses 518
solid–sorbed fluid systems 253
sorbate–sorbate interactions 258, 269
sorbate–sorbate potentials 200
sorbate–zeolite systems 203
sorption/desorption curve 442
sorption isotherms 263
 -- of nitrogen and carbon dioxide 213
sorption kinetics 143–188, 441, 501
– adsorption/desorption curves 161
– for binary mixtures 185–188
– co-diffusion 187, 188
– counter-diffusion 186, 187
– isothermal linear dual-resistance systems 151–160
– isothermal linear single-resistance systems 145–151
– isothermal nonlinear systems 160–179
– mass and heat transfer, resistances to 143, 144
– mathematical modeling of 145–185
– non-isothermal systems 179–185

sorption/tracer exchange rates, direct
– macroscopic measurement 427–428
– differential adsorption bed 441–443
– frequency response measurements 447
– experimental systems 452–454
– in flow system 455–456
– measurement limits 451–452
– results 454–455
– temperature frequency response 451
– theoretical model 448–451

gravimetric methods 427
– bed diffusional resistance, intrusion of 431–432
– experimental checks 432
– experimental system 428–429
– heat effects, intrusion of 429–430
– negligible thermal effects, criterion for 430–431
– response curves analysis 429
– macro FTIR sorption rate measurements 437–440
– piezometric method 433
– mathematical model 434–436
– single-step frequency response 436
– single-step temperature response 436–437
– quartz crystal balance 432–433
– rapid recirculation systems 440
– liquid phase systems 441
– tapered element oscillating microbalance (TEOM) 432–433
– tracer exchange measurements 445
– experimental procedure 447
– radioisotopes detectors 446–447
– transient uptake rate data, analysis
– method of moments 444–445
– time domain matching 443–444
– spin–echo attenuation 363, 367
– curves 376
– spin–lattice relaxation 311
spin quantum number 320

STA-7 (30) crystal
– methanol, concentration profiles 420
static structure factor 333
statistical mechanics
– of diffusion 227–235
– of infrequent events 276–292
statistical mechanics-based simulation techniques 202
steady-state diffusivity 832
Stefan–Maxwell diffusivity (see also Maxwell–Stefan diffusivity) 13, 45, 68–71, 781–791
Stefan–Maxwell formulation 13
steric effects 17
– in larger pores 521
steric hindrance 521, 524
stiff orthorhombic model 297
stochastic simulation algorithms 206
Stokes’ law 60
straight cylindrical pore, diffusion in 87
– combination of diffusional resistances 93, 94
– different mechanisms, relative importance of 92
– Knudsen mechanism 88–90
– molecular diffusion 91
– self-diffusion/tracer diffusion 92
– surface diffusion 92, 93
– transition region 91, 92
– viscous flow 90, 91
stray field gradient 359
string-of-beads system 478
supercritical transition, in adsorbed phase 555, 556
surface diffusion 92, 506, 534
– concentration dependence 535–538
– determination of surface diffusivities 534, 535
– mechanisms 100
– by cage-to-cage jumps 104–106
– Reed–Ehrlich model 101–104
– vacancy diffusion 100, 101
– of propane on silica gel 535
surface permeability 756
– bulk diffusivity 762
– diffusivity 749
– simulated concentration profiles 759
surface resistances 19, 152, 411, 692, 693
– control, concentration profiles during desorption 496
– effect 153
– external resistance to mass transfer 19–21
– macroscopic rate measurements 693, 694
– surface effects 696
– surface etching 694, 695
– theoretical frequency response 450
– transient concentration profiles, measurement of 695, 696

t
tapered element oscillating microbalance (TEOM) 433
Taylor–Golay model 480
temporal analysis of products (TAP) system 500–501
test particle insertion method 218
thermal conductivity 470, 484, 817
thermal wavelength 197, 211
thermodynamic correction factors (see also chemical potential) 257, 333
thermodynamic forces and fluxes 60, 61
Thiele concept 124, 125
Thiele moduli 123–125, 808, 810, 811, 818, 823, 833
– effectiveness factor, variation of 810
– for first-order isothermal system 810
time scale separation 275, 276–281
tortuosity factors 96, 525
total pore diffusivity 90
tracer diffusion, basic principle 447
tracer exchange measurements 445
– experimental procedure 447
– radioisotopes detectors 446–447
tracer permeabilities 417
tracking temporal evolution
– in network of states 292–296
transferable potentials for phase equilibrium calculations (TraPPE) parameters 200
transformation matrix 246
transient adsorption/desorption curves, macroscopic measurement 445
transient concentration profiles imaging 395
– observation options 396
– IR microscopy 399–400
– optical microscopy 398–399
– positron emission tomography (PET) 397
– X-ray monitoring 397–398
– surface barriers, direct measurement of 415
– sticking probabilities to nanoporous particles 421–423
– surface permeability, concentration dependence 415–417
– surface permeability through crystal faces 417–421
transition state theory (TST) 105, 277, 281
– application 277
– approximation 281–283, 290
transport diffusivities 7, 8, 15, 16, 32, 41, 65, 232, 268, 271, 329, 339, 742
– loading dependence 77, 78, 409
– MD simulation 79
– and self-diffusivity, relation between 71, 72
– using thermodynamic factors 520
transport resistances 111
– assessment by micro-imaging 699, 700
transverse nuclear magnetization 313, 325
transverse relaxation times 325
Trotter theorem 239
tubular membrane module, construction of 801
two-component diffusion 716
– co- and counter-diffusion of benzene and toluene 718–720
– counter-current desorption of p-xylene–benzene 717, 718
– counter-diffusion of isobutane and n-butane 720, 721
– methane and ammonia 717
– methane and n-butane 259–262
– methane and tetrafluoromethane 716
– methane and xenon 716, 717
– permeation properties of nitrogen and carbon dioxide 717
type A zeolites, general patterns of behavior in 582–584
– activation energies
– and pre-exponential factors 584–587
– variation, for diffusion on 4A and 5A with molecular diameter 585
– Arrhenius plot 583
TZLC desorption curves 497
– experimental vs. theoretical 498

u
u ultraviolet absorption (UV) detection 470
unit bond vector 244
united-atom representation 195
unsaturated, and aromatic hydrocarbons in NaX 623
– benzene 627–632
– hysteresis 631, 632
– macroscopic and microscopic measurements, comparison of 627, 628
– mechanism, diffusion in zeolites NaX and NaY 628–631
– C8 aromatics 624–627
– discrepancy in measurements 632, 633
– light olefins 623
uptake curve approaches 147–149, 152, 174
Index

\(x \)
- X-ray computed tomography (XCT) 407
- X-ray diffraction (XRD) 202
 - o-xylene
 - CCZLC curves 498
 - gravimetric uptake curves 683
 - in NaX zeolite 626
 - permeance/selectivity, equimolar mixture of 782
 - p-xylene--benzene
 - with benzene counter-adsorbing 718
 - counter-current desorption of 717
 - xylene isomers 826
 - equilibrium mixture 827
 - in NaX zeolite 627
 - NMR PFG self-diffusivities 625
 - p-xylene spectra 827, 829
 - co-diffusion of 440
 - counter-diffusion of 439
 - diffusion time constants, concentration dependence 624
 - experimental uptake curves 624
 - frequency response data 684
 - gravimetric uptake curves 683
 - permeance/selectivity, equimolar mixture of 782
 - set of 439
 - yield, in toluene disproportionation 829
 - X zeolite membranes 802

\(\nu \)
- vacancy diffusion 34, 100
 - self-diffusion, in cubic lattice 34
 - van Deemter equation 468, 480
 - van der Laan’s theorem 444, 464, 467
 - van der Waals interactions 199
 - van Hove correlation functions 329
 - self-correlation function 347
 - van’t Hoff equation 795, 819
 - Verlet algorithm 237, 251
 - leapfrog algorithm 247
 - pseudo-code implementing 237
 - vibration frequency 100
 - Vignes correlation 785, 787
 - viscous flow 90, 94, 532, 793
 - Vycor glass, diffusion in 319

\(\omega \)
- water
 - adsorption 332
 - anisotropic self-diffusion of 530
 - elimination of 831
 - hydrogen bonding of 521
 - in MCM-41 539
 - in MFI-type zeolite crystals 381
 - O-H bond 250
 - oxygen atom 250
 - PFG NMR self-diffusion measurements for 602
 - purification 143
 - self-diffusivities of 521
 - solubility of paraffins 696
 - as solvent 687
 - zeolite–sorbate system 249
 - Wicke–Kallenbach method 534
 - Widom’s test particle insertion method 219
 - Wiener–Khintchine relation 341, 508
 - window blocking 587
 - sorption cut-off 587
 - variation of fraction of open windows, with degree of ion exchange 588

\(\zeta \)
- Zeolite A 562–601
 - cation sites 562, 563
 - deactivation 579, 596–601
 - diffusion in 565–567, 571–596
 - structure 562–564
 - zeolite 4A, micropores of 476
 - zeolite 5A, ZLC response curves for \(\text{N}_2 \) 488
 - zeolite catalysts
 - coking of 833
 - information from fluorescence microscopy 835
 - information from PFG NMR 834–835
 - diffusional effects 807
 - diffusional restrictions 822
 - activation energies 825–826
 - catalytic cracking over \(\text{HZSM-5} \) 824–825
 - catalytic cracking over zeolite Y 823–824
 - MTG reaction 830–831
 - MTO Process 831–833
 - size exclusion 822–823
 - toluene, selective disproportionation of 828–830
 - xylene isomerization 826–828
diffusion and reaction 807
- diffusion-controlled catalytic reaction
 - concentration profiles, direct measurement 819–820
 - HZSM-5 crystal, furfuryl alcohol reaction 820–821
 - mesoporous MCM-41 reaction 821–822
 - diffusion limitation 813, 815
 - effectiveness factor 808–811
 - external mass transfer resistance 811
 - internal and external resistances 816–817
 - intracrystalline diffusivity, determination of 817–819
 - effective diffusivity, temperature dependence of 819
 - non-isothermal systems 815–816
 - pressure dependence 814–815
 - reaction order 814
 - temperature dependence 812–814
 - zeolite crystals 43, 145, 181
 - diffusion 398
 - zeolite frameworks 197, 254
 - reliable flexible models for 256
 - zeolite membranes 771–803
 - behavior of 779
 - binary mixtures, modeling permeation of
 - concentration profile 785–789
 - Maxwell–Stefan model 784–785
 - membrane thickness 791
 - mutual diffusion, importance of 789
 - support resistance 791–792
 - cracks/defects 779
 - gas mixtures, separation of 779
 - diffusion-controlled permeation 781–783
 - equilibrium-controlled permeation 783–784
 - size-selective molecular sieving 779–780
 - membrane characterization
 - bypass flow 792–793
 - isotherm determination 795–796
 - permoporosimetry 793–794
 - transient response analysis 797
 - membrane separation processes
 - alcohols dehydration , pervaporation process 797–798
 - amorphous silica membranes 800
 - barriers to commercialization 802–803
 - butene isomers, separation of 799
 - CO₂–CH₄ separation 798
 - H₂ separation, MOF membranes 799–800
 - membrane modules 801–802
 - membrane reactors 802
 - stuffed membranes 801
 - polymeric membrane 773
 - porosimetry characterization,
 - apparatus 794
 - separations 775, 797
 - single-component permeation 773
 - permeation, modeling of 776–778
 - selectivity/separation factor 774–776
 - synthesis 772–773
 - transport 773
 - zeolite NaCaA (see also LTA)
 - ethane, molecular selfdiffusion 353
 - long-range diffusivities for nitrogen 369
 - zeolite–sorbate interactions 197, 201
 - zeolite-sorbate systems 193, 194, 227, 249, 265
 - ab initio molecular dynamics 203, 204
 - meso/macroporous structure, computer reconstruction 204–206
 - models and force fields 194–206
 - molecular model and potential energy function 194–203
 - zeolite theta, frequency response spectrum 454, 455
 - ZIF-8 membranes, ethene, and ethanol 741
 - self- and transport diffusion 740
 - ZIF-8 membranes 744, 746
 - zero-length column (ZLC) method 459, 483
 - counter-current ZLC (CCZLC) 498
 - curves, for benzene–silicalite 499
 - desorption curves 495, 496, 499
 - for benzene–n-hexane, experimental liquid 500
 - for propane 497
 - desorption, for n-hexadecane 488
 - deviations 489
 - extensions of 497–500
 - fluid phase hold-up 490–491
 - heat effects 492–493
 - intraparticle diffusion control, theory 485–486
- isotherm nonlinearity, effect of 491–492
- liquid phase measurements 498–500
- macroporous particles, diffusion 488–489
- practical considerations 493–497
- principle of 483–485
- response curves 489, 490
 -- for benzene–NaX 491, 492
 -- for CO₂ desorbing 486, 487
 -- isothermal criterion, validity 493
 -- for N₂ 488
- schematic diagram 484
- short-time behavior 486–488
- surface resistance
 -- fluid film resistance 489
 -- measurement 489–490
- tracer ZLC 497–498
ZLC curves for benzene–silicalite 499
Zn(tbip) crystal 418, 761
-- boundary and equilibrium concentrations 755
-- 1D-arrangement of 757
-- mass transfer, structure model 758
-- MOF 755
-- MOF specimen of 747
-- pore system of 757
-- transport diffusion and self-diffusion 750
ZSM-5 (see also silicalite), 2,2-
 dimethylbutane 824