Contents

Preface to the Technical Series xv
Preface xvii
Contributors xxi

1 Chemistry of Milk – Role of Constituents in Evaporation and Drying 1
H.C. DEETH AND J. HARTANTO

1.1 Introduction 1

1.2 Chemical components of liquid, concentrated and dried milk products 1
1.2.1 Protein 1
1.2.2 Fat 6
1.2.3 Carbohydrate 8
1.2.4 Minerals 9
1.2.5 Water 11
1.2.6 Air 11

1.3 Surface composition of powders 12

1.4 Quality issues 14
1.4.1 Heat stability 14
1.4.2 Fouling 18
1.4.3 Age thickening 19
1.4.4 Maillard reactions 19
1.4.5 Oxidation 20

1.5 Conclusions 22

References 22

2 Current Legislation on Concentrated and Dried Milk Products 28
M. HICKEY

2.1 Introduction 28

2.2 European Union legislation 31
2.2.1 Access to EU legislation 31
2.2.2 Vertical–legislation on concentrated and dried milk products 31
2.2.3 Horizontal–hygiene and food safety requirements 41
2.2.4 Horizontal–food additives legislation 45
2.2.5 Horizontal–labelling requirements for foods 52
2.2.6 Horizontal–packaging legislation 53

2.3 United Kingdom legislation 54
 2.3.1 Legislative basis 54
 2.3.2 Background 54
 2.3.3 Present legislation on composition 56
 2.3.4 Present legislation on hygiene 58
 2.3.5 The Dairy UK Code of Practice for HTST pasteurisation 58
2.4 Irish legislation 59
 2.4.1 Introduction 59
 2.4.2 Present legislation on hygiene 60
 2.4.3 Present legislation on specific products 60
2.5 United States legislation 61
 2.5.1 Introduction and background to US legislation 61
 2.5.2 The ‘Code of Federal Regulations’ 63
 2.5.3 Hygiene requirements for milk and certain milk products 64
 2.5.4 US standards of identity and labelling 66
 2.5.5 The USDA specifications and grading schemes for certain milk products 71
 2.5.6 Food additives in US legislation 72
2.6 Legislation in Australia and New Zealand 73
 2.6.1 Introduction 73
 2.6.2 The ‘Joint Food Standards Code’ 73
 2.6.3 New Zealand-specific legislation 74
2.7 The international perspective–Codex Alimentarius 75
 2.7.1 What is Codex Alimentarius? 75
 2.7.2 Codex Alimentarius Commission membership and structure 76
 2.7.3 Codex Alimentarius standards 76
 2.7.4 Codex Alimentarius–general standards 79
 2.7.5 Codex Alimentarius standards for concentrated and dried milks 84
2.8 Private standards and specifications 87
2.9 Conclusions and possible future developments 88
References 88

3 Technology of Evaporators, Membrane Processing and Dryers 99
M. CARIĆ, J.C. AKKERMAN, S. MILANOVIĆ, S.E. KENTISH AND A.Y. TAMIME

3.1 Introduction 99
3.2 Evaporators 100
 3.2.1 Principles of evaporation 100
 3.2.2 Evaporation techniques and systems 101
 3.2.3 Plant design of evaporator configuration 104
 3.2.4 Heat economy in evaporator installation 104
 3.2.5 Cleaning of evaporators 105
 3.2.6 Evaporation versus membrane filtration 106
3.3 Membrane filtration technology
- 3.3.1 Principles of membrane filtration 108
- 3.3.2 Membrane filtration techniques and systems 112
- 3.3.3 Membrane filtration configurations 114
- 3.3.4 Heat economy in membrane filtration 115
- 3.3.5 Application of membrane filtration in the dairy industry 115
- 3.3.6 Cleaning of membrane filtration systems 116

3.4 Spray drying technology
- 3.4.1 Principles of spray drying 123
- 3.4.2 Spray drying techniques and systems 127
- 3.4.3 Plant design of spray drying configuration 130
- 3.4.4 Heat economy of spray drying 132
- 3.4.5 Cleaning of dryers 133

3.5 Conclusions 142

References 143

4 Production of Evaporated Milk, Sweetened Condensed Milk and ‘Dulce de Leche’

M.N. OLIVEIRA, A.L.B. PENNA AND H. GARCIA NEVAREZ

- 4.1 Background 149
- 4.2 Evaporated milk
 - 4.2.1 Introduction 151
 - 4.2.2 Evaporated milk production 154
 - 4.2.3 Product properties 154
- 4.3 Sweetened condensed milk
 - 4.3.1 Introduction 156
 - 4.3.2 Production stages 156
- 4.4 ‘Dulce de leche’
 - 4.4.1 Background 158
 - 4.4.2 ‘Dulce de leche’ production 160
 - 4.4.3 Product properties 164
 - 4.4.4 Rheological parameters 165
 - 4.4.5 Results of a research on ‘dulce de leche’ using the UF process 166
- 4.5 Conclusions 176

References 177

5 Dried Milk Products

M. SKANDERBY, V. WESTERGAARD, A. PARTRIDGE AND D.D. MUIR

- 5.1 Introduction 180
- 5.2 Definitions
 - 5.2.1 Composition 180
 - 5.2.2 Heat classification 182
 - 5.2.3 Dispersion properties 182
5. Microbial quality
5.3 Raw milk
5.2 Effects of milk processing

5.4 Functionality and certain technical aspects
5.4.1 Heat treatment
5.4.2 Whey protein denaturation
5.4.3 Agglomeration and instantisation

5.5 Specific processes
5.5.1 Ordinary milk powders
5.5.2 Instant milk powders
5.5.3 Other types of milk powders

5.6 Quality assessment
5.6.1 Introduction
5.6.2 Milk
5.6.3 Concentrate
5.6.4 Powder

5.7 Conclusions

References

6. Casein and Related Products

H.S. Rollema and D.D. Muir

6.1 Introduction
6.2 Products—definitions and structure
6.2.1 Acid casein
6.2.2 Caseinates
6.2.3 phosphocasein
6.2.4 Rennet casein
6.2.5 Co-precipitate
6.2.6 Milk protein concentrates and isolates
6.2.7 Isolated and enriched casein fractions
6.2.8 Casein fragments

6.3 Methods of manufacture
6.3.1 Introduction
6.3.2 Acid casein—conventional treatment
6.3.3 Rennet casein
6.3.4 Caseinate
6.3.5 Co-precipitate
6.3.6 Acid casein—supercritical fluid processing
6.3.7 Fractionation of casein
6.3.8 Total milk protein
6.3.9 Casein-derived peptides

6.4 Functionality
6.4.1 Solubility
6.4.2 Heat and alcohol stability
6.4.3 Viscosity
7 Dried Whey, Whey Proteins, Lactose and Lactose Derivative Products
P. JELEN

7.1 Introduction

7.2 Types and composition of raw whey and main whey-based powders
7.2.1 Standard and modified whey powders
7.2.2 Whey protein
7.2.3 Lactose and modified lactose products
7.2.4 Other whey-based powdered products

7.3 Unit operations in the production of concentrated and dried whey and whey-based products

7.4 Technological complexities in the production and storage of whey-based products
7.4.1 Heat sensitivity of whey protein
7.4.2 Low solubility and hygroscopicity of lactose
7.4.3 Content of lactic acid
7.4.4 Propensity for non-enzymatic Maillard browning reaction
7.4.5 Foam formation and its potential detrimental effects during drying
7.4.6 Free moisture in lactose powders

7.5 Modified whey-based products and their uses

7.6 Future trends

7.7 Sources of further information

References

8 Specialised and Novel Powders
P. HAVEA, A.J. BALDWIN AND A.J. CARR

8.1 Introduction

8.2 Principles
8.2.1 Moisture content
8.2.2 Carbohydrate content
8.2.3 High-fat content
8.2.4 Oxidation
8.2.5 Processing control
8.2.6 Particle solubility

8.3 Coffee whitener powders
8.3.1 Chemical composition
8.3.2 Manufacturing process
8.3.3 Functional properties
8.3.4 Recent developments
8.4 Novel whey products
 8.4.1 Whey protein in nutraceutical applications
 8.4.2 Heat-denatured whey protein
 8.4.3 Cold gelling WPCs
 8.4.4 Co-precipitation of whey protein with casein
8.5 Milk mineral
8.6 Cheese powder
8.7 Hydrolysates
8.8 Cream powders
 8.8.1 Why dried cream powders?
 8.8.2 Emulsion stability
 8.8.3 Processing of cream powders
 8.8.4 Physicochemical properties of dairy cream powders
8.9 Concluding remarks
References

9 Infant Formulae – Powders and Liquids
D.-H. MONTAGNE, P. VAN DAEL, M. SKANDERBY
AND W. HUGELSHOFER
9.1 Introduction
9.2 Historical background
9.3 Definition and classification of infant formula
9.4 An overview of the world market of infant formulae
 9.4.1 Annual production figures
 9.4.2 Worldwide manufacturers of infant formulae
9.5 Regulations governing infant formulae
 9.5.1 General background
 9.5.2 Cultural and religious aspects
 9.5.3 Labelling
 9.5.4 Procedures for placing infant food product on the market
9.6 Essential composition
 9.6.1 Introduction
 9.6.2 Proteins
 9.6.3 Lipids
 9.6.4 Carbohydrates
 9.6.5 Minerals
 9.6.6 Vitamins
9.7 Food safety
 9.7.1 Food additives
 9.7.2 Hygiene and microbiological standards
9.8 Raw materials/ingredients
 9.8.1 General aspects
 9.8.2 Milk
 9.8.3 Oils
 9.8.4 Carbohydrates
9.9 Manufacture of dried infant formulae (powders)
9.9.1 Introduction
9.9.2 The ‘wet mix’ processing line
9.9.3 Preparation of the mix
9.9.4 Evaporation
9.9.5 Spray drying
9.9.6 Hygiene and production time between CIP cleaning
9.9.7 Structure of the powder
9.9.8 Drying parameters
9.9.9 Finished powder conveying system
9.9.10 Microbiological examination
9.10 Manufacture of liquid infant formulae (Ready-To-Feed and concentrates)
9.10.1 Dissolving of ingredients
9.10.2 First stage of standardisation
9.10.3 Oils and fat addition
9.10.4 First heat treatment and fat emulsification
9.10.5 Second stage of standardisation
9.10.6 Final conditioning
9.10.7 Retort sterilisation
9.10.8 UHT sterilisation and aseptic processing
9.10.9 Intermediate aseptic storage
9.10.10 Aseptic filling machines and packaging materials
9.10.11 Microbiological examination
9.11 Conclusion
References

10 Process Control in Evaporation and Drying
C.G. BLOORE AND D.J. O’CALLAGHAN
10.1 Background
10.2 Control technology
10.3 Measurement technology
10.4 Actuator technology
10.5 Communication technology
10.6 Control philosophies
10.7 Process dynamics
10.8 Evaporator control
10.8.1 Feed flow rate
10.8.2 Pre-heat temperature
10.8.3 Energy input
10.8.4 Condenser water flow rate
10.8.5 Level of total solids in the concentrate
10.8.6 Modelling approaches for evaporator control
10.8.7 Control of evaporator cleaning systems
10.9 Spray dryer control
10.9.1 Controlling the evaporative demand 341
10.9.2 Controlling the energy input 342
10.9.3 Controlling powder moisture content 342
10.9.4 Concentrate flow rate in disc atomising dryers 342
10.9.5 Concentrate flow rate in nozzle atomising dryers 343
10.9.6 Inlet air flow rate 343
10.9.7 Air-flow stability in spray dryers 343
10.9.8 Inlet air temperature 344
10.9.9 Chamber pressure 344
10.9.10 Outlet temperature in dryers without static fluid beds 344
10.9.11 Outlet temperature in spray dryers with integrated fluid beds 345
10.9.12 ‘Dummy’ outlet temperature 346
10.9.13 Moisture control 347
10.9.14 A model-predictive approach to the control of a spray dryer 347
10.9.15 The influence of the protein content of the powder 347
10.9.16 Cleaning system control in spray drying 348
10.10 Conclusion 349
References 349

11 Hazards in Drying
C.G. BLOORE AND D.J. O’CALLAGHAN
11.1 Background 351
11.2 Combustion 351
11.2.1 Smouldering combustion 352
11.2.2 Flaming combustion 352
11.2.3 Deflagrations 352
11.2.4 Detonations 353
11.2.5 Secondary explosions 353
11.3 Dust characteristics 353
11.3.1 Combustibility/explosibility 353
11.3.2 Upper and lower explosible limits 353
11.3.3 Minimum ignition temperature 354
11.3.4 Minimum ignition energy 354
11.3.5 Maximum explosion pressure and the rate of pressure rise 355
11.3.6 Particle size 356
11.3.7 Moisture content 356
11.4 Ignition sources 356
11.4.1 Flames 356
11.4.2 Hot surfaces 357
11.4.3 Mechanical friction 358
11.4.4 Impact sparks 358
11.4.5 Electrical sparks 359
11.4.6 Electrostatic discharge sparks 359
11.4.7 Hot work 359
11.4.8 Self-ignition 360
11.5 Hazards of dust explosions 362
11.6 Fire detection 362
 11.6.1 Fast-acting temperature sensors 362
 11.6.2 Infra-red optical detectors 362
 11.6.3 Carbon monoxide detectors 363
 11.6.4 Pressure sensors 363
 11.6.5 Operator observation 364
11.7 Explosion suppression 364
 11.7.1 Dry powder suppression 364
 11.7.2 Chlorinated fluorocarbon compounds 365
 11.7.3 Pressurised hot water 365
11.8 Explosion venting 365
 11.8.1 Venting principles 365
 11.8.2 Vent ducts 366
 11.8.3 Vent doors and panels 366
11.9 Containment 367
11.10 Isolation 367
11.11 Inerting 367
11.12 Fire fighting 367
11.13 Conclusion 368
References 368

Index 370