1 Precast Concepts, History and Design Philosophy 1
 1.1 A Historical Note on the Development of Precast Frames 1
 1.2 The Scope for Prefabricated Buildings 11
 1.2.1 Modularisation and standardisation 11
 1.3 Current Attitudes towards Precast Concrete Structures 17
 1.4 Recent Trends in Design, and a New Definition for Precast Concrete 21
 1.5 Precast Superstructure Simply Explained 23
 1.5.1 Differences in precast and cast-in situ concrete structures 23
 1.5.2 Structural stability 26
 1.5.3 Floor plate action 29
 1.5.4 Connections and joints 30
 1.5.5 Foundations 32
 1.6 Precast Design Concepts 32
 1.6.1 Devising a precast solution 32
 1.6.2 Construction methods 36

2 Procurement and Documentation 43
 2.1 Initial Considerations for the Design Team 43
 2.2 Design Procurement 45
 2.2.1 Definitions 45
 2.2.2 Responsibilities 45
 2.2.3 Routes to procurement 46
 2.2.4 Design office practice 46
 2.2.5 Project design stages 48
 2.2.6 Structural design calculations 49
 2.2.7 Layout drawings 50
 2.2.8 Component schedules and the engineer’s instructions to factory and site 54
 2.3 Construction Matters 58
 2.3.1 Design implications 58
 2.4 Codes of Practice, Design Manuals, Textbooks and Technical Literature 60
 2.4.1 Codes and Building Regulations 60
 2.4.2 Non-mandatory design documents 64
 2.4.3 Other literature on precast structures 67
 2.5 Definitions 68
 2.5.1 General structural definitions 68
 2.5.2 Components 68
 2.5.3 Connections and jointing materials 69
3 Architectural and Framing Considerations 71
 3.1 Frame and Component Selection 71
 3.2 Component Selection 75
 3.2.1 General principles 75
 3.2.2 Roof and floor slabs 76
 3.2.3 Staircases 96
 3.2.4 Roof and floor beams 101
 3.2.5 Beam-to-column connections 106
 3.2.6 Columns 107
 3.2.7 Bracing walls 111
 3.3 Special Features 113
 3.3.1 Hybrid and mixed construction 113
 3.3.2 Precast–in situ concrete structures 118
 3.3.3 Structural steelwork and precast concrete in skeletal frames 123
 3.3.4 Precast concrete with structural and glue-laminated timber 127
 3.3.5 Precast concrete–masonry structures 131
 3.3.6 The future of mixed construction 131
 3.4 Balconies 136

4 Design of Skeletal Structures 145
 4.1 Basis for the Design 145
 4.2 Materials 148
 4.2.1 Concrete 149
 4.2.2 Concrete admixtures 150
 4.2.3 Reinforcement 151
 4.2.4 Prestressing steel 152
 4.2.5 Structural steel and bolts 152
 4.2.6 Non-cementitious materials 153
 4.3 Structural Design 153
 4.3.1 Terminology 153
 4.3.2(a) Design methods 154
 4.3.2(b) Reduced partial safety factors for precast design 157
 4.3.3 Design of beams 162
 4.3.4 Non-composite reinforced concrete beams 163
 4.3.5 Beam boot design 167
 4.3.6 Upstand design 172
 4.3.7 Non-composite prestressed beams 183
 4.3.8 Beam end shear design 198
 4.3.9 Recessed beam ends 199
 4.3.10 Design methods for end shear 205
 4.3.11 Hanging shear cages for wide beams 211
 4.3.12 Prefabricated shear boxes 217
 4.4 Columns Subjected to Gravity Loads 226
 4.4.1 General design 226
 4.4.2 Columns in braced structures 230
 4.4.3 Columns in unbraced structures 230
 4.4.4 Columns in partially braced structures 230
 4.5 Staircases 237
 4.5.1 Reinforced concrete staircases 237
 4.5.2 Prestressed concrete staircases 238
 4.5.3 Staircase and landing end reinforcement 239
5 Design of Precast Floors Used in Precast Frames 245
 5.1 Flooring Options 245
 5.2 Hollow-core Slabs 249
 5.2.1 General 249
 5.2.2 Design 253
 5.2.3 Design of cross section 257
 5.2.4 Web thickness 257
 5.2.5 Edge profiles 258
 5.2.6 Reinforcement 260
 5.2.7 Lateral load distribution 260
 5.2.8 Flexural capacity 267
 5.2.9 Precamber and deflections 272
 5.2.10 Shear capacity 275
 5.2.11 Anchorage and bond development lengths 288
 5.2.12 Slippage of tendons 291
 5.2.13 Calculation of crack width 295
 5.2.14 Cantilever design using hollow-core slabs 298
 5.2.15 Bearing capacity 300
 5.2.16 Wet cast hollow-core flooring 301
 5.2.17 Summary examples of product design data 305
 5.3 Double-Tee Slabs 309
 5.3.1 General 309
 5.3.2 Design 312
 5.3.3 Flexural and shear capacity, precamber and deflections 314
 5.3.4 Special design situations 315
 5.4 Composite Plank Floor 315
 5.4.1 General 315
 5.4.2 Design 316
 5.4.3 Voided composite slab 320
 5.5 Precast Beam-and-Plank Flooring 324
 5.5.1 General 324
 5.5.2 Design of prestressed beams in the beam-and-plank flooring system 325
 5.6 Design Calculations 325
 5.6.1 Hollow-core unit 325

6 Composite Construction 335
 6.1 Introduction 335
 6.2 Texture of Precast Concrete Surfaces 339
 6.2.1 Classification of surface textures 339
 6.2.2 Surface treatment and roughness 340
 6.2.3 Effects of surface preparation 341
 6.3 Calculation of Stresses at the Interface 344
 6.4 Losses and Differential Shrinkage Effects 346
 6.4.1 Losses in prestressed composite sections 346
 6.4.2 Design method for differential shrinkage 347
 6.4.3 Cracking in the precast and in situ concrete 351
 6.5 Composite Floors 352
 6.5.1 General considerations 352
 6.5.2 Flexural analysis for prestressed concrete elements 354
 6.5.3 Propping 356
 6.5.4 Design calculations 358
 6.5.5 Ultimate limit state of shear 360
Contents

6.6 Economic Comparison of Composite and Non-composite Hollow-core Floors 364
6.7 Composite Beams 365
 6.7.1 Flexural design 365
 6.7.2 Propping 370
 6.7.3 Horizontal interface shear 370
 6.7.4 Shear check 370
 6.7.5 Deflections 371

7 Design of Connections and Joints 375
 7.1 Development of Connections 375
 7.2 Design Brief 377
 7.3 Joints and Connections 383
 7.4 Criteria for Joints and Connections 384
 7.4.1 Design criteria 384
 7.5 Types of Joint 386
 7.5.1 Compression joints 386
 7.5.2 Tensile joints 395
 7.5.3 Shear joints 396
 7.5.4 Flexural and torsional joints 404
 7.6 Bearings and Bearing Stresses 405
 7.6.1 Average bearing stresses 405
 7.6.2 Localised bearing stresses 412
 7.7 Connections 413
 7.7.1 Pinned connections 413
 7.7.2 Moment-resisting connections 413
 7.8 Design of Specific Connections in Skeletal Frames 425
 7.8.1 Floor slab to beam connections 425
 7.8.2 Connections at supports 426
 7.8.3 Connections at longitudinal joints 430
 7.8.4 Floor connections at load-bearing walls – load-bearing components 431
 7.9 Beam-to-Column and Beam-to-Wall Connections 435
 7.9.1 Definitions for different assemblies 435
 7.9.2 Connections to continuous columns using hidden steel inserts 436
 7.9.3 Beam-to-column inserts 436
 7.10 Column Insert Design 438
 7.10.1 General considerations 438
 7.10.2 Single-sided wide-section insert connections 442
 7.10.3 Addition of welded reinforcement to wide-section inserts 453
 7.10.4 Double-sided wide-section inserts 457
 7.10.5 Three- and four-way wide-section connections 462
 7.10.6 Narrow-plate column inserts 467
 7.10.7 Cast-in sockets 468
 7.10.8 Bolts in sleeves 468
 7.11 Connections to Columns on Concrete Ledges 470
 7.11.1 Corbels 470
 7.11.2 Haunched columns 485
 7.11.3 Connections to the tops of columns 491
 7.12 Beam-to-Beam Connections 493
 7.13 Column Splices 503
 7.13.1 Types of splice 503
 7.13.2 Column-to-column splices 504
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5.3</td>
<td>Horizontal ties to columns</td>
<td>654</td>
</tr>
<tr>
<td>9.5.4</td>
<td>Ties at balconies</td>
<td>659</td>
</tr>
<tr>
<td>9.5.5</td>
<td>Vertical ties</td>
<td>659</td>
</tr>
<tr>
<td>9.6</td>
<td>Catenary Systems in Precast Construction</td>
<td>662</td>
</tr>
<tr>
<td>10</td>
<td>Site Practice and Temporary Stability</td>
<td>667</td>
</tr>
<tr>
<td>10.1</td>
<td>The Effects of Construction Techniques on Design</td>
<td>667</td>
</tr>
<tr>
<td>10.2</td>
<td>Designing for Pitching and Lifting</td>
<td>672</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Early lifting strengths</td>
<td>672</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Lifting points</td>
<td>672</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Handling</td>
<td>685</td>
</tr>
<tr>
<td>10.2.4</td>
<td>Cracks</td>
<td>685</td>
</tr>
<tr>
<td>10.3</td>
<td>Temporary Frame Stability</td>
<td>690</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Propping</td>
<td>690</td>
</tr>
<tr>
<td>10.3.2</td>
<td>The effect of erection sequence</td>
<td>691</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Special consideration for braced frames</td>
<td>692</td>
</tr>
<tr>
<td>10.3.4</td>
<td>Special considerations for unbraced frames</td>
<td>694</td>
</tr>
<tr>
<td>10.3.5</td>
<td>Temporary loads</td>
<td>696</td>
</tr>
<tr>
<td>10.4</td>
<td>On-Site Connections</td>
<td>697</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Effect of fixing types</td>
<td>697</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Strength and maturity of connections</td>
<td>699</td>
</tr>
<tr>
<td>10.5</td>
<td>Erection Procedure</td>
<td>699</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Site preparation</td>
<td>699</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Erection of precast superstructure</td>
<td>700</td>
</tr>
<tr>
<td>10.6</td>
<td>In situ Concrete</td>
<td>709</td>
</tr>
<tr>
<td>10.6.1</td>
<td>General specification</td>
<td>709</td>
</tr>
<tr>
<td>10.6.2</td>
<td>Concrete screeds and joint infill in floors</td>
<td>711</td>
</tr>
<tr>
<td>10.6.3</td>
<td>Grouting</td>
<td>712</td>
</tr>
<tr>
<td>10.7</td>
<td>Handover</td>
<td>714</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>715</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>729</td>
</tr>
</tbody>
</table>