Index

Absoluteness structure importance, 109
 c-absoluteness importance, 109
 p-absoluteness importance, 109
ANOVA decomposition, 371
ANOVA-decomposition based global
 sensitivity measure (AGSM), 371–3
 order, 373
Arrangement, 218, 219
Availability function, 31, 317
Availability improvement potential, 332
B-importance, 55, 286, 298, 336
 B-i.i.d. importance, 87, 142
 half-line B-i.i.d. importance, 88, 149
 uniform B-i.i.d. importance, 88, 147, 241
 B-i.i.d. importance in K-terminal
 reliability network, 341
 B-importance in ETS, 323
 B-reliability importance, 55, 142, 146,
 185, 257, 335, 362
 for system failure, 55, 61
 for system functioning, 55, 61, 134,
 144, 186, 188, 332, 388
 of modular set, 60
 monotone property, 57, 185, 258
 B-reliability importance in K-terminal
 reliability network, 341
 B-reliability importance in a network flow
 system, 336
B-structure importance, 89, 144
 B-TDL importance, 69, 82, 209
 B-TDL importance in BTMMS, 312
 μ, ν B-reliability importance in MCS, 301
 μ, ν B-structure importance in MCS, 301
 utility B-reliability importance in MMS, 306
 utility B-structure importance in MMS, 308
B-importance based genetic local search, see
 BIGLS
B-importance based local search, 272
B-importance based two-stage approach, see
 BITS
Basic variable importance measure, 348
Bayesian reliability importance, 62, 405
β-improvement, 201
BIGLS, 272–7
Binary, 16, 41
Binary type multistate monotone system
 (BTMMS), 310
BITS, 268–71, 275, 276
BP importance, 75, 189, 298, 405
 BP structure importance, 91, 160
 of minimal cut, 93
 of minimal path, 94
 BP TDL importance, 81, 84
 of minimal cut, 82
 of minimal path, 82

Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP importance (cont)</td>
<td>436</td>
</tr>
<tr>
<td>BP TIL importance</td>
<td>75</td>
</tr>
<tr>
<td>of minimal cut</td>
<td>80</td>
</tr>
<tr>
<td>of minimal path</td>
<td>81</td>
</tr>
<tr>
<td>of modular set</td>
<td>78</td>
</tr>
<tr>
<td>BP TIL importance in BTMMS</td>
<td>312</td>
</tr>
<tr>
<td>BP time-dependent availability importance</td>
<td>319</td>
</tr>
<tr>
<td>BP time-independent availability</td>
<td>319</td>
</tr>
<tr>
<td>Branch-and-bound (B&B) algorithm</td>
<td>354–9</td>
</tr>
<tr>
<td>Branch-and-bound (B&B) method</td>
<td>269</td>
</tr>
<tr>
<td>Bridge system</td>
<td>15, 25</td>
</tr>
<tr>
<td>Cannibalization, see optimal assembly problem</td>
<td>218, 219</td>
</tr>
<tr>
<td>CAP, 218, 219</td>
<td></td>
</tr>
<tr>
<td>optimal arrangement or permutation</td>
<td>219, 229</td>
</tr>
<tr>
<td>worst arrangement or permutation</td>
<td>219</td>
</tr>
<tr>
<td>Cause, 84, see also contribute</td>
<td>41</td>
</tr>
<tr>
<td>Coherent system</td>
<td>20</td>
</tr>
<tr>
<td>Component arrangement problem, see CAP</td>
<td>38, 218</td>
</tr>
<tr>
<td>Component arrangement problem, see CAP</td>
<td>38, 218</td>
</tr>
<tr>
<td>Component assignment problem</td>
<td>218</td>
</tr>
<tr>
<td>Con/(r, k)/(r, n) system</td>
<td>251–3, 263</td>
</tr>
<tr>
<td>Con/k/n system</td>
<td>39, 47</td>
</tr>
<tr>
<td>Cir/Con/k/n system</td>
<td>39</td>
</tr>
<tr>
<td>Cir/Con/k/n:F system</td>
<td>39</td>
</tr>
<tr>
<td>Cir/Con/k/n:G system</td>
<td>39</td>
</tr>
<tr>
<td>Con/k/n:F system</td>
<td>39</td>
</tr>
<tr>
<td>Con/k/n:G system</td>
<td>39</td>
</tr>
<tr>
<td>Lin/Con/k/n system</td>
<td>39</td>
</tr>
<tr>
<td>Lin/Con/k/n:F system</td>
<td>39</td>
</tr>
<tr>
<td>Lin/Con/k/n:G system</td>
<td>39</td>
</tr>
<tr>
<td>Con/k∗/n:G system</td>
<td>253</td>
</tr>
<tr>
<td>Con/k/r/n system</td>
<td>247</td>
</tr>
<tr>
<td>k-out-of-r-out-of-n system</td>
<td>247</td>
</tr>
<tr>
<td>k-within-r-out-of-n failure system</td>
<td>247</td>
</tr>
<tr>
<td>k-within-consecutive-r-out-of-n system</td>
<td>247</td>
</tr>
<tr>
<td>Con/k/r/n:F system</td>
<td>247</td>
</tr>
<tr>
<td>Con/k/r/n:G system</td>
<td>247</td>
</tr>
<tr>
<td>generalizations of Lin/Con/k/r/n system</td>
<td>253–4</td>
</tr>
<tr>
<td>Consecutive-k-out-of-r-from-n system</td>
<td>243</td>
</tr>
<tr>
<td>Consecutive-2 failure system</td>
<td>243</td>
</tr>
<tr>
<td>Consistent B-i.i.d. importance ordering</td>
<td>225</td>
</tr>
<tr>
<td>inconsistent B-i.i.d. importance ordering</td>
<td>225</td>
</tr>
<tr>
<td>Continuum system</td>
<td>314–17</td>
</tr>
<tr>
<td>Contract-delete importance in K-terminal reliability network</td>
<td>342</td>
</tr>
<tr>
<td>Cut, 22</td>
<td></td>
</tr>
<tr>
<td>cut in MCS</td>
<td>301</td>
</tr>
<tr>
<td>minimal cut</td>
<td>301</td>
</tr>
<tr>
<td>cut vector</td>
<td>22</td>
</tr>
<tr>
<td>minimal cut</td>
<td>22</td>
</tr>
<tr>
<td>minimal cut vector</td>
<td>22</td>
</tr>
<tr>
<td>Cut importance</td>
<td>104, 175, 229</td>
</tr>
<tr>
<td>μ, v cut importance in MCS</td>
<td>303</td>
</tr>
<tr>
<td>Decomposition of state vectors</td>
<td>64</td>
</tr>
<tr>
<td>Differential importance measure (DIM)</td>
<td>133, 135, 136, 395</td>
</tr>
<tr>
<td>Dual φ0</td>
<td>19, 114</td>
</tr>
<tr>
<td>Dual system</td>
<td>40, 59, 61, 62, 64, 146, 174, 220, 223, 226, 227</td>
</tr>
<tr>
<td>Electriciity Transmission Systems (ETS)</td>
<td>322</td>
</tr>
<tr>
<td>Elementary effect</td>
<td>376</td>
</tr>
</tbody>
</table>
Index

Elimination procedure, 221
Embedded system, see module
Enumeration method, 179, 220, 239, 257, 269
Exhaustive search, see enumeration method
Expected system lifetime, 31, 183
Expected unutilized capacity, 333
Expected yield, 183
system yield function, 205
Exponential distribution, 30, 199, 323
Failure criticality importance, 321
Failure rate function, see hazard rate
Fault diagnosis, 329, 345
Fault tree, 52, 57, 63, 131, 138, 293, 298, 385, 403
basic event, 52, 63, 131, 386, 395
gate event, 131
top event, 52, 131, 386, 403
First-term importance, 111, 161, 230
Fourier amplitude sensitivity test, 375, 401
FV importance, 55, 63, 115, 286, 298, 336, 397
c-FV importance, 63, 405
c-FV reliability importance, 63
c-FV structure importance, 91
c-FV TDL importance, 72, 84
of minimal cut, 73
of modular set, 72
c-FV unavailability importance, 318
p-FV importance, 63
p-FV reliability importance, 63
p-FV structure importance, 91
p-FV TDL importance, 74, 84
of minimal path, 75
of modular set, 74
FV importance in a network flow system, 336
FV importance in ETS, 323
Game theory, 329
Gamma distribution, 30, 199, 200, 204
GAMS/CoinBomin solver, 269
GGA, 275, 276
Hazard rate, 30
I-uncertainty measure, 390, 402, 403
Importance measure, 49
c-type importance measure, 51
lifetime importance measure, 50
TDL importance measure, 50
TIL importance measure, 51
p-type importance measure, 51
reliability importance measure, 50
structure importance measure, 50
Improvement potential importance, see
B-reliability importance for system functioning
Integer programming, 345, 353
Invariant optimal arrangement π∗, 223, 226, 234–7, 243–5, 247, 249, 252
Invariant worst arrangement π0, 223, 226
Joint failure importance (JFI), 128, 298
Joint reliability importance (JRI), 128, 131, 298
JRI in MMS, 309
Joint structure importance (JSI) in MMS, 308
k-out-of-m-parallel system, 174, 178
k-out-of-m-series system, 174, 178
k-to-l-out-of-n:G system, 298
k-within two-dimensional consecutive-r-out-of-n failure system, 253
k-out-of-r-out-of-n system, see Con/k/r/n system
k-within-consecutive-r-out-of-n system, see Con/k/r/n system
k-within-r-out-of-n failure system, see Con/k/r/n system
Kontoleon heuristic, 258–9
L1 TIL importance, 191, 205
L1 TIL importance in BTMMS, 312
of a repairable component, 320
of minimal cut, 196
of modular set, 195
L2 TIL importance, 198
Index

L_3 TIL importance, 199
L_4 TIL importance, 201, 332
L_5 TIL importance, 202
L_6 TIL importance, 202, 208
Linear m-consecutive-k-out-of-n:F system, 253
Linear programming, 345–8
 basic feasible solution, 346
 basic matrix or basis, 346
 basic solution, 346
 basic variable, 346
 basic variable importance measure, 348
degenerate basic feasible solution, 346
 minimum ratio test, 348
 nonbasic matrix, 346
 nonbasic variable, 346
 nonbasic variable importance measure, 348
 nondegenerate basic feasible solution, 346
 reduced cost coefficient, 347
 sensitivity analysis, 351–2
Link importance in K-terminal reliability network, 341
LK-type heuristic, 259–64
 LKA heuristic, 259
 LKB heuristic, 261
 LKC heuristic, 261
 LKD heuristic, 261
Maclaurin expansion, see Taylor expansion
Marginal reliability importance, see
 B-reliability importance
Markov process, 362, 369, 370, 387
Mathematical optimization, see
 mathematical programming
 optimization problem, 345
Mathematical programming, 329, 345
Max-flow min-cut theorem, 311, 333
Mean time between failures (MTBF), 31, 319
Mean time to repair (MTTR), 31, 319
Min-cut importance, 110
Min-path importance, 110
Mission time, 27, 50, 63, 75, 81, 184, 322
Mixed integer programming (MIP), 353
 mixed integer linear programming, 225
 mixed integer nonlinear programming (MINLP), 219, 359
Modular decomposition, 21, 171
 organizing structure, 21
Module, 20
 modular set, 20
Moment-independent global sensitivity measures, 381
 B-MGSM, 381, 403
 fuzzy variable, 384
 CHT-MGSM, 382, 403
Monotone system, 298, 299
Monte Carlo method, 39, 78, 133, 294, 314, 321, 334, 370, 374, 385
 Multidirectional sensitivity measure (MDSM), 362
 Multilinear function, 35–6, 136
Multistate coherent system (MCS), 300
Multistate monotone system (MMS), 304, 332, 336
 Network flow system, 329, 331
 Nominal risk, 396
 Nonbasic variable importance measure, 348
 Noncoherent system, 298
 Nonlinear mathematical model, 374
 Nuclear power plant, xix, 5, 11, 39, 40, 124, 244, 317, 391, 395, 398, 402–4, 406
 Operational criticality importance, 322
 Optimal arrangement, 219
 Optimal assembly problem, 218, 230
 Optimal component allocation problem, see CAP
 Optimal design problem, see CAP
 Parallel system, 17, 19, 22, 58, 66, 77, 172, 176, 180, 191, 194, 198, 230, 292, 308, 309, 320
 Parallel-series system, 21, 128, 131, 172–3, 176, 224–5, 227
 Partition, 301
 size of partition, 302
Path, 22
 minimal path, 22
 minimal path vector, 22
 path vector, 22
Path importance, 104, 175, 229
Perfect component, 61, 138, 186, 188, 201, 203, 213, 214, 245, 332
Performance utility function, 304, 306–9, 313
Permutation, 217, 219
 equivalent permutation, 221
 inadmissible permutation, 221
Permutation equivalent, 96
Permutation importance, 95, 115, 160, 174, 180, 220, 221, 248, 250, 251
 permutation importance in MMS, 305
Perturbation analysis, 133, 361, 369
Pivotal decomposition, 17, 18, 28, 59, 142, 227, 289
Prevention worth measure, 63
Probabilistic risk analysis (PRA), 329, 395, 398, 404
Probabilistic safety assessment (PSA), 329, 395, 398, 404
Proportional hazard, 30, 77, 78, 82, 194, 197, 198, 203–5, 211
Randomization method, 220, 270
Rare-event importance, 111, 161, 230
Redundancy, 37
 active redundancy, 37
 parallel active redundancy, 38, 173, 187, 202, 203, 214
 series active redundancy, 38, 172, 173
 standby redundancy, 37
 cold standby, 37, 180, 187, 199, 203, 213, 214
 hot standby, 37
 warm standby, 37
Redundancy allocation problem, 169–80
Redundancy importance
 parallel redundancy importance, 170, 203
 series redundancy importance, 170
Redundant Con/k/n system, 250–1, 263
Redundant component, 37
Relevant component, 19, 300
 fully relevant, 300
 irrelevant component, 19, 298, 300
Reliability achievement worth (RAW), 138, 398
 RAW in a network flow system, 337
 RAW in ETS, 323
 RAW in multistate systems, 336
Reliability block diagram, 15–16
Reliability complements, 129
Reliability function, 27, 30
Reliability network, 339
 k-terminal reliability network, 339, 340
 All-terminal reliability network, 339
 two-terminal reliability network, 339
Reliability optimization problem, 38
Reliability reduction worth (RRW), 138
 RRW in a network flow system, 337
 RRW in ETS, 323
 RRW in multistate systems, 336
Reliability substitutes, 129
Renewal
 renewal cycle, 320
 renewal density, 319
 renewal process, 319
 renewal theorem, 319
Repair, 31
 imperfect repair, 32, 202
 minimal repair, 31, 189, 197, 199, 203, 213–5
 perfect repair, 31, 187, 199, 203, 213, 215
Repairable system, 317
Restore criticality importance, 322
Risk achievement importance, see improvement potential importance
Semiautomatic system, see monotone system
Sensitivity analysis, 350, 361
 global sensitivity, 371
 in linear programming, 351–2
 local sensitivity, 361
Series Con/k/n system, 244–7
Series–parallel system, 21, 171–3, 176, 224–5, 227, 252
Signed domination, 24, 76
Simplex algorithm, 348–50
 Dantzig’s rule, 349
Simulation-based importance, 321
Size of a set, 22
Software reliability, 386–90
Steady-state availability, 31
Structural symmetry, 19, 82, 96, 123, 292
Structure function, 16
Supercomponent, see module
Survivability potential, 332
System signature, 33–5
System upgrading problem, 183
 improving expected system lifetime, 188
 improving expected system yield, 205
 improving systems reliability, 184
Systems reliability distribution, 30
Taguchi tolerance design, 385, 386
Taylor expansion, 35–7, 135, 136, 214
Total order importance (TOI), 136, 298, 395
Transitivity property, 96, 285
Tree, 243
 complete k-regular tree, 243
 complete binary tree, 243
leaf, 243
level of a tree, 243
rooted tree, 243
Two-dimensional Con/k/n system, 249, 250
Con/(k_1, k_2)/(m, n) system, 250
Cyl/Con/(k_1, k_2)/(m, n) system, 250
Rec/Con/(k_1, k_2)/(m, n) system, 250
Two-stage k-out-of-n system, 223
Uncertainty importance measures, 371, 385
 variance-based importance, 385
Utility B-reliability importance in MMS, 306
Utility B-structure importance in MMS, 308
Utility-decomposition reliability importance in MMS, 306
Weibull distribution, 30, 194, 199, 202, 211, 293
Yield TIL importance, 207
 of modular set, 208
ZK-type heuristic, 264–8
ZKA heuristic, 264
ZKB heuristic, 264
ZKC heuristic, 264
ZKD heuristic, 264