Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abiotic resource depletion (ARD)</td>
<td>125</td>
</tr>
<tr>
<td>Adaptation</td>
<td>13, 46</td>
</tr>
<tr>
<td>Admixtures</td>
<td>95, 138, 150–155</td>
</tr>
<tr>
<td></td>
<td>151–2</td>
</tr>
<tr>
<td></td>
<td>Extending design life with, 153</td>
</tr>
<tr>
<td></td>
<td>Freeze thaw example, 152–3</td>
</tr>
<tr>
<td></td>
<td>Specification of, examples, 154–5</td>
</tr>
<tr>
<td></td>
<td>Use and dosage rates, 152</td>
</tr>
<tr>
<td>Aesthetics</td>
<td>39–40, 142</td>
</tr>
<tr>
<td>Aggregates</td>
<td>8, 20–21, 30–32, 48, 125, 143–9, 157–8, 173–4</td>
</tr>
<tr>
<td></td>
<td>Assessing impact of, 125</td>
</tr>
<tr>
<td></td>
<td>Depletion of, 20–21, 125</td>
</tr>
<tr>
<td></td>
<td>Embodied carbon dioxide of, 148</td>
</tr>
<tr>
<td></td>
<td>End of life of, 173–4</td>
</tr>
<tr>
<td></td>
<td>Levy, 48</td>
</tr>
<tr>
<td></td>
<td>Manufactured, 145–7</td>
</tr>
<tr>
<td></td>
<td>Natural, 144</td>
</tr>
<tr>
<td></td>
<td>Novel, 157–8</td>
</tr>
<tr>
<td></td>
<td>Quarrying of, 31–2</td>
</tr>
<tr>
<td></td>
<td>Recycled, 144</td>
</tr>
<tr>
<td></td>
<td>Recycled glass, 157–8</td>
</tr>
<tr>
<td></td>
<td>Secondary, 143–7</td>
</tr>
<tr>
<td></td>
<td>Size of, 148–9</td>
</tr>
<tr>
<td></td>
<td>Specification of, 149</td>
</tr>
<tr>
<td></td>
<td>Sustainability credentials of, 8</td>
</tr>
<tr>
<td></td>
<td>Transportation impact of, 30, 148</td>
</tr>
<tr>
<td></td>
<td>Virgin, 148</td>
</tr>
<tr>
<td>Alkali-silica reaction</td>
<td>38</td>
</tr>
<tr>
<td>Alternative fuels</td>
<td>23, 132</td>
</tr>
<tr>
<td>Archaeology</td>
<td>40</td>
</tr>
<tr>
<td>Basements</td>
<td>74–6</td>
</tr>
<tr>
<td></td>
<td>Drivers for, 74</td>
</tr>
<tr>
<td></td>
<td>Low rise residential, 75</td>
</tr>
<tr>
<td>Biodiversity</td>
<td>6–8, 30–31</td>
</tr>
<tr>
<td>Biomass</td>
<td>187–90</td>
</tr>
<tr>
<td>Bridges</td>
<td>103–5</td>
</tr>
<tr>
<td>Embodied energy</td>
<td>105</td>
</tr>
<tr>
<td>Modular precast concrete</td>
<td>103–5</td>
</tr>
<tr>
<td>Span ranges of</td>
<td>104</td>
</tr>
<tr>
<td>Building information modelling (BIM)</td>
<td>70–71</td>
</tr>
<tr>
<td>Carbon</td>
<td>43–7, 56–7, 64, 92, 185–6, 189, 206–12</td>
</tr>
<tr>
<td></td>
<td>Accounting, 206–12</td>
</tr>
<tr>
<td></td>
<td>Constrained world, 43</td>
</tr>
<tr>
<td></td>
<td>Equivalent, 92</td>
</tr>
<tr>
<td></td>
<td>Trading, 44</td>
</tr>
<tr>
<td></td>
<td>Whole life, 64, 189</td>
</tr>
<tr>
<td></td>
<td>Zero, 47, 56–7, 185–6</td>
</tr>
<tr>
<td>Carbonation</td>
<td>27, 173–4</td>
</tr>
<tr>
<td></td>
<td>Anthropogenic, 12</td>
</tr>
<tr>
<td></td>
<td>Capture of, 27</td>
</tr>
<tr>
<td></td>
<td>Life cycle study of, 64, 92–3</td>
</tr>
<tr>
<td></td>
<td>Operational, 62–4, 92–9</td>
</tr>
<tr>
<td>Cementitious additions</td>
<td>7, 22, 132–4</td>
</tr>
<tr>
<td>Cements</td>
<td>7, 23–30, 49–50, 98–102, 131–7, 141–2, 155–6</td>
</tr>
<tr>
<td></td>
<td>Alkali-activated, 155</td>
</tr>
<tr>
<td></td>
<td>Bound materials, 98–102</td>
</tr>
<tr>
<td></td>
<td>C-Fix, 156</td>
</tr>
<tr>
<td></td>
<td>Combination types, 133</td>
</tr>
<tr>
<td></td>
<td>CSA-belite, 156</td>
</tr>
<tr>
<td></td>
<td>Designation of, 134</td>
</tr>
<tr>
<td></td>
<td>Embodied carbon of, 135–7</td>
</tr>
</tbody>
</table>
cements (cont’d)
 energy consumption, 49–50
 geopolymer, 155
 magnesium oxide, 155
 manufacturing of, 23–30
 novel, 155–6
 Portland, 132
 specification of, 141–2
 stabilization, 98–100
 chemical damage, 36–7
 cladding, 67, 81–4
 climate change, 11–17
 act, 46
 levy, 49–50
 column efficiency, 81
 community involvement, 41
 Concept (software), 79
concrete
 block permeable paving, 106–9
 designed, 164–5
 environmental impacts of, 18–20, 120–122
 exposed, 14, 33, 65–70, 142–3
 fibre reinforced, 161
 gravity bases, 109–112
 product category rules, 125–8
 sector UK, 29–30, 41–50
 self compacting, 161–2
 slab options, 191–205
 step barrier, 102
 strength gain, 137–9
 ultra high strength fibre Reinforced (UHSFR), 162–3
construction and demolition waste (C&DW), 174
contaminated land, 94
continuously reinforced concrete pavement (CRCP), 100–102
corrosion, 38
cost
 benefit analysis of cement production, 2–3
 potential savings, 57–8
design
 conceptual, 55–113
 for deconstruction, 63–5
 integrated, 65–70
 life, 36, 61–2, 153
 whole building, 60–61
see also concrete slab options;
 embodied carbon dioxide (ECO₂) of slab example
durability, 5, 35–8
economy, 41–3
embodied carbon dioxide (ECO₂)
 of aggregates, 148–9
 of building example, 62–4
 of cements and combinations, 136
 of concrete, 18, 164–5
 of construction materials, 26
 equivalent, 135–7, 212
 of formwork, 212
 of housing, 92–3
 of reinforcement, 159–60
 of slab example, 206–12
embodied energy
 of bridge construction, 105
 of tiles, 85
emissions, 6–8, 23–8, 44–50, 210–211
end of life, 170–175
environmental assessment schemes
 BREEAM, 91–2
 CEEQUAL, 113
 Greenstar, 91–2
environmental impacts, 59–60, 71–2, 118–28
environmental management systems (EMS), 170–171
environmental product declarations (EPD), 125–8
fire, 4, 35, 84–5, 161, 188
flat slabs, 192–5
flexibility, 61–2
flood, 5, 15–16, 76, 105–6, 188–9
fly ash, 7, 22, 132–8, 141–3
formwork, 6, 139, 172, 211
fossil fuel, 18–19
foundations, 71–6, 111–12
frame and flooring, 77–81
freeze thaw, 152–3
functionality, 33–5
Index

global warming, 12–13, 25
greenhouse effect, 11–13
greenhouse gases, 24
ground granulated blast-furnace slag (GGBS), 7, 22–3, 124, 132–42
ground remediation, 94–8
health and safety, 6–8, 35, 172, 196–205
hempcrete, 187
household economy, 43
hybrid concrete construction, 200–203
hydraulically bound mixtures (HBM), 98–100
hypocausts, 88–90
impacts
 assessing environmental, 118–28
 characterisation of environmental, 121–2
 classification of environmental, 121
 range of environmental, 120–122
 transportation, 148–9
industrial ecology, 21–3
innovations, 86–90
landfill tax, 48–9
life cycle assessment (LCA), 123–7
life cycle impact assessment (LCIA), 123–4
life cycle of materials, 122–3
life cycle studies, 92–3
life time energy, 62–3
limestone fines, 134
material
 efficiency, 79–81
 resources, 19–21
 specification, 118–65
mitigation, 13, 46
noise, 28–9, 33–4
operation, 172–3
optimising strength, 164–5
orientation, 65, 179–80
passive solar design (PSD), 65, 179–81
pavements, 98–101
performance, 4–8, 19, 49, 60, 187–90
 acoustic, 5, 33–5
pipes, 103
post-tensioned (PT) slabs, 190–200
precast concrete, 5–6, 82–5, 103–5, 170, 203–5
recarbonation, see carbonation
recycling, 6–8
regulatory responses, 43–50
reinforcement, 7–8, 146, 158–60
resource depletion, 6–8, 18–23
responsible sourcing, 8, 129–31, 149–50
ribbed slabs, 195–7
road construction, 100–102
robustness, 5, 38–9
roofs, 84–6
safety, see health and safety
seawater exposure, 38
security, 5, 38–9
self compacting concrete, 161–2
silica fume, 134
site restoration, 31–2
site waste management plans (SWMP), 171
solidification, 94–8
stabilisation, 94–8
stability lateral, 76–7
strength development, 137–40
substructures, 71–6
sulphate attack, 37
sustainability
 credentials of concrete, 4–8
 and sustainable development, 1–3
 sustainable urban drainage systems (SUDDS), 16, 105–8
temperature rise, 14–15
Termodeck, 68–9
thermal bridging, 81–2
thermal mass, 4, 14–15, 70, 80–81, 92–3, 176–86
thermal piles, 88
total mass requirement (TMR), 125
transport, 24–5, 29–30, 148, 209–10
triple bottom line, 1–2
tyres, 23, 132
ultra high strength fibre reinforced concrete (UHSFRC), 162–3
waffle slabs, 195–7
waste, 5–8, 19–23, 56, 132, 170–174
waste & resourced action programme (WRAP), 48, 174
water, 5–6, 149–50
whole building design, 60–71
wind, 16–17, 77, 87–8, 109–12