Index

a
access control systems 328
access threats 314
admission control approach
brutal admission control 413–415
customer’s satisfaction 401
demand-side management 402
fair priority-based admission control 417–419
GridLAB-D and GridMat simulation tools 400, 403
load admission control 403–404
load shedding mechanisms 400, 404–410
load-size-based admission control 413–416
normal operation 411–413
PHEV charging 402
priority-based admission control 416–418
priority-based load protection and control scheme 402
proposed approach 400
simulation scenarios 410–411
utility-side load management 402
wide area information (WAI)-based control scheme 402
wide area measurement (WAM) 402
Advanced Encryption Standard (AES) 184, 248, 309
advanced metering infrastructure (AMI) 264, 285
Alarm-Net 311
anomaly detection 346–347
anonymity 188–189
anonymized authentication 199
arranger robot 197
artificial neural network (ANN) 290
assistant robots 197
attack strategies 288–289
attribute-based access control (ABAC) model 164
attribute-based encryption (ABE) 196, 207–208
authentication 189–190, 207
automatic repeat request 227

b
biometric solutions 315–316
BLE. Bluetooth 309
block chain 187
Bluetooth 309
body area network (BAN) 266
body area network authentication (BANA) scheme 317
bolus-enabled temperature sensing 381
boothstrapping 212–213
Building Automation and Control Networks (BACnet) 335–336
building automation systems (BAS) 330
Byzantine attack 230

C
CapBAC model 164
certificate revocation lists (CRLs) 197
certification authority (CA) 274
ciphertext 184
ciphertext (encrypted) character 183
ciphertext-policy attribute-based encryption scheme 208–209

Edited by Houbing Song, Glenn A. Fink and Sabina Jeschke.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
city-based cloud 277
cloud-based robotic networks
 ad hoc network 218
 attribute-based encryption 196
 communication security 207–212
 as a community 200–201
 doctrine 201–207
 law governed interaction 218
 Persona 219
 policy-based establishment 201
 security management 212–217
 security requirements 200
 security threats and challenges 199
Terminodes 218
Cloud computing and IoT
Arduino YUN security
 extensions 149
 hardware 140–141
 legacy protocols 137
OpenStack 141
reference scenario and motivation 142
remote attestation 152
SAaaS vision 137
secure registration 151–152
security and privacy 139–140
security keys, cryptographic algorithms,
 and hidden IDs 148–149
sensing resource virtualization and
 management 139
Stack4Things architecture 138
board-side architecture 144–145
board-side security extension 149–150
cloud-side security extension 150
control and actuation 145–146
security services 150
sensing data collection 146
Trusted Computing 147–148
web connectivity 141
WebSocket technology 138
Cloud services 26
CodeBlue 310
collaborative last mile logistics 361
collar-mounted accelerometers 383
communication security
 attribute-based encryption 207–208
ciphertext-policy attribute-based
 encryption scheme 208–209
CP-ABE key revocation 209–210
integration of CP-ABE and robot
 community architecture 210–212
preliminaries 208
Shamir’s secret sharing 209
computationally hard/information theoretic
 technique 183
confidentiality 182–186
 data confidentiality 313, 391–392
lightweight cryptography (LWC) 250
security and privacy 2
constraints specification 205–206
Cow Manager 380
CP-ABE key revocation 209–210
CRYPE 317
cryptographic hash function 187
cryptographic solutions 316–318
cryptography 274–276
cyber-network-defense
 (CND) 180–181
cyber-physical hacking 389
cyber-physical systems (CPS)
 air traffic control 245
 applications 243
 cybercriminals 117
 definition 243
 embedded system 4
infrastructureal CPSs 5
key management
 accountability 122
 centralized vs. distributed scheme 128–129
 challenges and open research issues 132–133
 communications 118–119
 deterministic vs. probabilistic scheme 129–130
 dynamic vs. static management 124–125
 embedded processors 118
 freshness 122
 heterogeneity 122
 interoperability 123
 key distribution and key revocation 131
Index
429

public key vs. symmetric key 125–128
real-time availability 122–123
resilience to attacks 123
SCADA systems 131–132
scalability 121
security goals 120–121
standard vs. proprietary scheme 130
survivability 123–124
threats and attacks 119–120
personal CPS technologies 5–6
security and privacy 245–246
security services 117
specific computational and physical processes 244
system workflow 244–245
wireless technologies 117
cyber-physical vulnerabilities
damage to the lives 273–274
damage to the properties 273
definition 270
interactions and threats 271
possible attacks 271–272
privacy infiltration 274
service interruption 272–273

d
Data Encryption Standard (DES) 248
data integrity attacks 283
data-loss liability 192
data ownership and usage policies 191
data retention and destruction policies 192
data security controls 191–192
DeLaval farm-monitoring camera system 378–379
denial-of-service (DOS) attack 246, 314
DESL 251–252
DESXL 251–252
detection 4, 289
deterrence 3–4
disclosure threat 314
discrete logarithm problem 183
distributed cybersecurity monitoring (DSM) 180–181
distributed security monitoring system anonymity 188–189
authentication 189–190
confidentiality 182–186
data-loss liability 192
data ownership and usage policies 191
data retention and destruction policies 192
data security controls 191–192
information security 179–181
integrity 186–188
minimality 188
privacy policies and consent 192
trading security for cost 182
transparency 190–191
documentation
abstract community description 202
attribute types and user-attribute assignment policies 203
authentication 207
authorization and obligation policies 203–205
constraints specification 205–206
definition 201
information model 202–203
preferences specification 206
service access control 207
trusted key specification 206
Dossia 319

e
EASiER 219
eavesdropping attack 231–232
secure data storage 234–237
secure data transmission 234–236
eCare Companion 319–320
ECC-based public key scheme 316
E-Government Act of 2002 355
electric power 5
electric vehicles (EVs) 265
elliptic curve cryptography (ECC) 254–255
Elliptic Curve Primitive 248
encryption 182
endorser robot 197
End-User License Agreement (EULA) 12
energy-based cyber-physical system 283
enhanced mail and parcel services
feedback loop 362
new services 362
operational cost reduction of missed
delivery 362
security and convenience for recipients
smart mailbox 363–364
visibility 361
EnOcean Radio Protocol 338
EnOcean Serial Protocol 338
estrus monitoring 379–380
f
facility management systems 329–330
“farm-to-fork” animal tracking 377
feature data 287
Federal Aviation
Administration 109–111
Federal Communications Commission 105–106
Federal Trade Commission (FTC)
consumer focus 104
deceptive trade practices 102–104
unfair trade practices 102
fire alarm systems 328
firewalls 345
Food and Drug Administration 108–109
“French IoT” initiative 357
g
game theoretic deployment 277
garbled circuit computation 185
Google Health 319
GridLAB-D simulation tool 282
GrowSafe system 381
guide robots 195
h
hashtag 187
Health 320
Google Health 319
rumen health 380–382
HealthVault 319
Heatime 380
heating, ventilation, and air conditioning
(HVAC) systems 328
HIGHT 252
housekeeping robots 195
i
identity threat 314
IEEE 802.15.6 310
IEEE 802.15.4 standard 309
individual mailbox/parcelbox model 364
industrial robots 195
information security 2, 179–181, 191
integrity 186–188
intelligent sensor network
(ISN) 269–270
intelligent transport system applications
intelligent sensor network 269–270
roadside unit 268–269
vehicular sensor network 269
Intel™ processor architecture 184
Internet Engineering Task Force (IETF) 112
Internet of postal things (IoPT)
competing on price to competing on
overall value 357
critical brand attribute 355–356
customer demand for information 356
development stages 367–368
energy costs 364
enhanced mail and parcel services
361–364
implementation challenges 368–370
from industries to ecosystems 357
neighborhood services 365–367
operational experience in data collection
and analytics 356
smarter post office 365
“smart” products and services 357
successful platform strategy 371
transportation and logistics 358–361
vast infrastructure 354–355
from workforce replacement to
human-centered automation
357–358
Internet of Things (IoT) 25, 77, 179
access control adaptation
context-aware security policies 165
enforcement issues 167–168
personal sensor network 165
semantic context-aware policies 166–167
access control models
attribute-based access control (ABAC) model 164
CapBAC model 164
location and context information 161
node mobility 162
novel policy languages 161
policy-based approaches 161
policy decision point (PDP) 162
policy enforcement/deployment 162
role-based access control (RBAC) model 163
runtime innovative models 161
in agriculture 384–385
cyber-physical system vulnerabilities 385–386
data confidentiality 391–392
data integrity 393
data leakage via leased equipment and software 388–389
misuse of provenance data 387–388
misuse of research data 387
misuse of video data 386–387
political action and terrorism 389–390
system availability 393
system safety 393–395
and Cloud computing (see Cloud computing and IoT)
heterogeneity and resource constraints 158–159
IoT-enhanced PA 383
legal considerations (see legal issues, for CPS and IoT)
Proteus model 168–174
size and dynamicity 160
intersection attacks 188
intrusion detection system (IDS) 276

k
KATAN 253
key distribution center (KDC) 274
key management
accountability 122
centralized vs. distributed scheme 128–129
challenges and open research issues 132–133
communications 118–119
deterministic vs. probabilistic scheme 129–130
dynamic vs. static management 124–125
embedded processors 118
freshness 122
heterogeneity 122
interoperability 123
key distribution and key revocation 131
public key vs. symmetric key 125–128
real-time availability 122–123
resilience to attacks 123
SCADA systems 131–132
scalability 121
security goals 120–121
standard vs. proprietary scheme 130
survivability 123–124
threats and attacks 119–120
key predistribution-based tag encoding scheme 233
KLEIN 252
KNX/EIB 333–335
KTAN-hardware-oriented cipher 258
KTANTAN 253

I
LAURA 311–312
law governed interaction (LGI) 218
LED 253
legacy systems 19–20
legal issues, for CPS and IoT
anti-Paparazzi law 99
Computer Fraud and Abuse Act 99
contractual and tort liability, personal injuries 99
digital music file sharing 97
federal and state laws 96
Fifth Amendment 96
government and nongovernment intrusion 98
Griswold v. Connecticut 98
HIPAA Act 99
legal issues, for CPS and IoT (contd.)

laissé faire approach 97
regulatory legal issues
executive branch agencies 101
Federal Aviation Administration 109–111
Federal Communications Commission 105–106
Federal Trade Commission 101–104
Food and Drug Administration 108–109
National Highway and Traffic Safety Administration 106–108
standards of care 101
Riley v. California 98
Roe v. Wade 98
statutory and regulatory protection 99
U.S. v. Quartavious Davis 98
LifeGuard 310–311
lighting control systems 328
lightweight cryptography
(LWC) 243–244
authentication 250
clever outside attacker 249
confidentiality 250
data communication 250
data encryption standard 247
design constrains 247
design goals 247
embedded systems 249
funded organizations 249
hardware implementations of asymmetric ciphers 254–255
hardware implementations of symmetric ciphers 251–253
information security services 249
invasive attacks 249
knowledgeable inside attacker 249
lightweight symmetric ciphers 250
limited-resources systems 249
low computation cryptographic algorithms 247
opportunities and challenges 257–258
passive attacks 249
secure hash algorithms 256–257
security services 247
smart object networks 249
software implementations of asymmetric ciphers 255
software implementations of symmetric ciphers 253–254
symmetric and asymmetric cryptography 248
lightweight encryption scheme 236
linear network coding 226
linear secret sharing 185
link loss rate inference 228–229
load-altering attack 288
localized encryption and authentication protocol (LEAP) 275
LonTalk protocol 339
LWC. see lightweight cryptography (LWC)
m
machine learning-based detection 282, 290–291
man-in-the-middle attacks 189
masquerade attack threat 314
mathematical metrics
derivation of mutual information 72–74
information theoretic foundations 62–63
k-anonymity, concept of 65–68
proof of corollary 74
Smart City scenario 58
smart home scenario 58
surprise and specific information 63–64
medical cyber-physical systems
access threats 314
authentication 313
authorization 313
biometric solutions 315–316
challenges with LPWNs in WBANs 308
cryptographic solutions 316–318
data confidentiality 313
data freshness 313
data integrity 313
data security and privacy threats and attacks 314
disclosure threat 314
Dossia 319
eCare Companion 319–320
extisting WBAN-based health monitoring systems 310–312
feedback control in WBANs 308–309
fundamental security requirements 312
Google Health 319
Health 320
HealthVault 319
identity threat 314
interference in WBANs 308
network topology 307–308
patient’s prescription leakage 314
privacy 313
radio technologies 309–310
Redwood MedNet 319
solutions on implantable medical devices 318–319
WBANs 306–307
wireless sensor networks 306
MEDiSN 311
message authentication code (MAC) 276
minimality 188
MobiCare 311
Mobile Delivery Devices (MDD) 356
Modbus 339
MooMonitor 380
mopper robots 197
multichannel authentication 189
multifactor authentication 189
mutual authentication and access control scheme based on elliptic curve cryptography (MAACE) 317
n
nanotechnology 94
National Institute of Science and Technology CPSs 244
National Institute of Standards and Technology (NIST) 2
national livestock identification system (NLIS) 377
national security concerns
CIA Triad 79
companies and consumers 79
data breaches 79
data’s confidentiality 79
denial-of-service attacks 79
file’s integrity 79
future attacks 82
German SteelMill 81–82
international law-of-war principles
jus ad bellum and jus in bello 83
Tallinn Manual 83
Stuxnet 80–81
use of military force
armed attack 87–89
Article 2(4) of United Nations Charter 84
Article 51 of United Nations Charter 84
Nicaragua v. United States 84
physical system 86
United Nations Draft Articles on Responsibility of States for Internationally Wrongful Acts 86
warfare law 84
NATO Cooperative Cyber Defence Centre of Excellence 78
neighborhood services, IoPT
carriers as neighborhood logistics managers 366–367
dollar value of IoPT applications 367
smart cities need local partners 365–366
network coding
background and preliminaries 225–226
Byzantine attack 230
classification of security attacks
Byzantine and pollution attacks 233–234
defense against Byzantine and pollution attacks 233–234
defense against traffic analysis 234
eavesdropping attack 231–232,
234–237
max-flow min-cut theorem 223
network tomography 228–229
pollution attack 230
protocol simplification 228
random linear network coding 223
robustness enhancement 227–228
secret key exchange 237–238
security 229
state-aware network coding protocols 229–230
network coding (contd.)
 stateless network coding protocols 229
 throughput/capacity enhancement 226–227
 traffic analysis 230–231
 in wired networks 223–224
 in wireless networks 223–224
 network model 285–286
network security and privacy
 client-server model 26
 Cloud-interconnected CPSs
 data handling requirements 46
 data storage 42–44
 model-driven privacy 46
 security mechanisms 44–45
Cloud services 26
CPS reference model
 All-IP vision 30
 Big Data 30
 cloud level 28
 Cloud platforms 29
 control/enterprise level 27
 device level 27
 future evolution 28
 RFID technology 29
 smartphones 29
 threats and challenges 30–31
 wireless sensor networks (WSNs) 29
Internet of Things 25
internet-wide secure communication
 Cloud services 36
 end-to-end security protocols 37–39
 RAM and ROM 38
 resource heterogeneity 39–41
 transport layer security (TLS) 37
local communication, security of
 Internet Protocol (IP) 35
 6LoWPAN fragments 35
 medium access control 34–35
 network layer 35
 physical layer 34
secure device bootstrapping
 device life cycle 33–34
 initial key exchange 33
network tomography 228–229
nice but curious nodes 231

O
 one-time pad cryptosystem 183
Online Social Network (OSN) 219
OpenStack 141
operating system hardening 343–344

P
 Pacific Northwest National Laboratory (PNNL) 403
 patching 344
 P-coding 236
 PEACE framework 199
 Persona 219
 personal CPS technologies 5–6
 personally identifiable information (PII) 2
 physiological values scheme (PVS) 315
 pollution attack 230
 precision agriculture (PA) 375. see also precision livestock farming (PLF)
 precision livestock farming (PLF)
 estrus monitoring 379–380
 feedback control loops 375–376
 food quality and provenance 377–378
 impact on the environment 382
 IoT solutions 383–384
 IoT technology 376
 labor and workforce effects 377
 rumen health 380–382
 single biochemical process 375–376
 transparency and remote management 378–379
PRESENT 252
PRINCE 253
Privacy Act of 1974, 355
privacy and technology, history of
 cellular phones 94
 Federal regulatory control 95
 Internet connections 95
 oral and written communications 95
 “pen register,” 95
 telegraph 95
 Twitter and Facebook 96
privacy policies and consent 192
programmable logic controller (PLC) 8
Proteus model
 access control policies 169
 access zone element 171
Index 435

active contexts 169
authentication element 171
communication element 171
identity element 171
IoT 172–174
policy conflicts and inconsistencies 170
policy specifications 168
protection context modeling 169
requestor context 169, 171
protocol simplification 228
public key cryptography 125–126
public-key cryptosystems 184
public key-infrastructure (PKI) 275

q
Quality of Context (QoC) 175–176

r
Radio-Frequency Identification (RFID) tags 356
random linear network coding 226
Redwood MedNet 319
reidentification 188
resource heterogeneity
denial-of-service protection 40–41
retransmission mechanisms 39–40
responsibility matrix 345
Resurrecting Duckling Protocol 218
roadside unit 268–269
robot-supported product management system 197–198
role-based access control (RBAC) model 163
routing threats 314
RSA 125, 189, 255
rumen health 380–382

s
SaaS vision 137
SATIRE 311
secret key exchange 237–238
secure coding 343
secure hash algorithms (SHA) 256–257
Securing User Access to Medical Sensing Information (SecMed) 316
security and privacy
authentication 3
barriers and identifiers 8
blending information 12–14
computerized skid detectors 5
cryptographic confidentiality 2
cyber-physical terrorism 8–9
defense-in-breadth, principle of 16–17
defense-in-depth, principle of 16
definition 2
digital signatures and secure hashes 3
distributed systems 21
end-to-end security 17–18
identity and authentication management 20
least privilege 14–15
legacy systems 19–20
motivating sharing 12
need-to-know, principle of 15
network-connected appliances 12
nonrepudiation 3
pattern obfuscation 17
physical protection 3–4, 8
politicians and industry leaders 2
port attack 10
privacy regulations 18–19
programmable logic controller (PLC) 8
security attack points, in CPSs 6
security surveys 8
segmentation 15–16
smart car hacking 9–10
tamper detection/security 18
user-configurable data collection/logging 17
wearable devices 11–12
security breaches 77
security management, cloud-based robotic networks
bootstrapping 212–213
joining the community 214–215
leaving a community 215–216
service access control 216–217
segmentation 15–16
self-defense 78
sensor spoof prevention 187
sensor substitution and modification of data in transit 187
sequential hypothesis testing-based
detection 282, 291–292
service access control 207, 216–217
SERVICE BROADCAST message 196
service level agreements (SLAs) 200
SERVICE REQUEST message 196
Shamir’s secret sharing 209
shared parcel box model 363–364
signature scheme 233
Silent Herdsman 380
smart appliances 6
smart buildings
 access control systems 328–329
 anomaly detection 346–347
 attacks 340–342
 BACnet 335–336
 BAS communication protocols 332
 building automation systems 330
 definition 327–328
 EnOcean 338–339
 facility management systems 329–330
 fire alarm systems 328–329
 firewalls 345
 fuzzing approaches 347
 HVAC systems 328–329
 interoperability and interconnectivity 339–340
 known cases of attacks 331–332
 KNX/EIB 333–335
 lighting control systems 328–329
 LonTalk protocol 339
 Modbus 339
 monitoring and intrusion detection systems 345
 operating system hardening 343–344
 patching 344
 physical access control 343
 raising security awareness and develop security know-how 342–343
 responsibility matrix 345
 secure coding 343
 separation of networks 345
 smart cities 330–331
 traffic normalization 346
 video surveillance systems 328–329
 visualization 346
 ZigBee 336–338
smart cities
 bluetooth detector 59
 Bluetooth ID 61
 bluetooth receiver 60
 concept and components 263–265
cryptography 274–276
cyber-physical vulnerabilities 271–274
game theoretic deployment 277
intelligent sensor network 269–270
intrusion detection system 276
localization 60
managed security 277–278
physical security measures 278
privacy-preserving system 60
real-time monitoring and safety alert 270
roadside unit 268–269
smart homes 265–267
substation monitoring 267–268
system perspective
 anonymization, of Bluetooth ID 71
 attack with anonymization, of ZIP 70–71
 attack without anonymization 68–70
 traffic efficiency 59
 vehicular sensor network 269
 watchdog system 277
smarter post office 365
smart grid 264, 267–268
admission control approach (see admission control approach)
data integrity 281
demand response process 399
distribution 403
evaluation results 294–297
evaluation setup 292–294
excess load 403
extension 297–298
GridLAB-D simulation tool 282
literature review 283–284
load management 400
machine learning-based detection 282, 290–291
network model 285–286
overview 287–289
physical domain and cyber domain 399
power generator 399
power grid simulation model 403
sequential hypothesis testing-based detection 282, 291–292
statistical anomaly-based detection 282, 289–290
substation 403
threat model 286–287
Smart Grid Program 244
smart homes 265–267
smart mailbox 363–364
Stack4Things 138
 board-side architecture 144–145
 board-side security extension 149–150
 cloud-side security extension 150
 control and actuation 145–146
 security services 150
 sensing data collection 146
state-aware network coding protocols 229–230
stateless network coding protocols 229
statistical anomaly-based detection 282, 289–290
Stuxnet 80–81
substation cluster head gateway 268
supervisory control and data acquisition (SCADA) 286
transparency 190–191
transportation and logistics 358–359
 collaborative last mile logistics 361
 driverless vehicles 360
 fuel management 359–360
 load optimization 360
 predictive maintenance 359
 real-time dynamic routing 360–361
 usage-based insurance 360
Transport Layer Security (TLS) 184
transposition substitution folding shifting encryption algorithm (TSFS) 248
trusted key specification 206
trusted third party (TTP) 274
TWINE 253
two-stage attacking scheme 284
U
UbiMon 310
ultra-wideband (UWB) standard 310
V
vehicle-to-infrastructure (V2I) communication 265
vehicle-to-vehicle (V2V) communication 265
vehicular sensor network (VSN) 269
video surveillance systems 328–329
virtual hardware security module (HSM) 185
voiceprints 12
W
watchdog system 277
weakly secure system 236
Web Application Messaging Protocol (WAMP) 138
WebSocket technology 138
wireless body area networks (WBANs) 305
wireless sensor networks (WSNs) 29
 intelligent sensor network 269–270
 real-time monitoring and safety alert 270
 roadside unit 268–269
 smart homes 265–267
 substation monitoring 267–268
 vehicular sensor network 269
wiretapping nodes 231
X
XTEA 253
Z
ZigBee 309, 336–338