Index

Note: Page numbers in *italics* refer to Figures; those in **bold** to Tables.

abdominal migraine, 119, 124
abnormal pain conditions
NGF, 72–4
NTRK1 *see* neurotrophic tyrosine kinase receptor type 1 (NTRK1) gene
SCN9A, pain sensing *see* pain sensing, SCN9A
acute heat pain, mammals
genes and *Drosophila* orthologs, 16, 17
thermal sensation, 16, 18
TRP, 16
alternative pre-mRNA splicing, MOR
cloning, 80
exon 1 promoter, 82–3
exon 11 promoter, 83
morphine, clinical analgesic agents and heroin, 79
OPRM1 gene *see* OPRM1 gene
alternative 3′ splicing
definition, 84
exon inclusion/skipping event, 86
OPRM1 gene structure and C-terminal splice variants, 84, 85
predicted amino acid sequences, 84
and 5′ splicing, 88
alternative 5′ splicing
definition, 86
OPRM1 gene structure and truncated splice variants, 86, 87
and 3′ splicing, 88
translation, 88
APS haplotype *see* average pain sensitivity (APS) haplotype
arginine vasopressin receptor 1A (*AVPR1A*) gene
QTL mapping, 56
sex-specific genetic factors, 55
average pain sensitivity (APS) haplotype, 151

AVPR1A gene *see* arginine vasopressin receptor 1A (*AVPR1A*) gene
Bayesian methods, 102
blood–brain barrier (BBB), 166, 167
Bonferroni method, 100
candidate gene approach, 148, 149
cannabinoid 1 (CB1) receptors, 121
catechol-O-methyl transferase (COMT) adrenergic pathway, 148
genetic variation, 151
haplotype variant, 149
pharmacological inhibition, 151
CB1 receptors *see* cannabinoid 1 (CB1) receptors
CCI *see* chronic constriction injury (CCI)
central nervous system (CNS), 116, 124–5
Charcot–Marie–Tooth (CMT-2) neuropathy, 11, 12
CHM *see* composite haplotype method (CHM)
chronic constriction injury (CCI), 25, 28, 169
chronic neuropathic pain (CNP)
adaptive/protective function, 171
CCI, 169
childhood adverse experiences, 168–9
climate, 175
diet, medications, smoking and alcohol intake, 174–5
distribution, individual phantom and stump pain
indices, 164, 164
generations, 167–8
genetically unrelated individuals, 163
heritability estimates, 163
in utero, 166–7
interindividual variability and differences, 165
LCP, 162–3
lifestyle, 175–6
nongenetic factors, 176–7

© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
chronic neuropathic pain (CNP) (cont’d)
personality traits, 172
phantom limb pain, characterization, 169
postnatal modifications, 168
process, post-genomic era, 165, 166
research, 171
responses, Cambodian leg amputees, 170, 170
SCD, 170
social factors, 172–4
uremia and diabetes mellitus, 176
chronic pain phenome see human chronic pain phenome
chronic widespread pain (CWP), 148, 149
CIPA see congenital insensitivity to pain with anhidrosis (CIPA)
clinical phenotypes
design options, 44–5
heritability, pain conditions, 45
hospital populations, 43
CMT-2 neuropathy see Charcot–Marie–Tooth (CMT-2) neuropathy
CNP see chronic neuropathic pain (CNP)
CNS see central nervous system (CNS)
composite haplotype method (CHM), 103, 104
COMT see catechol-O-methyl transferase (COMT)
conditioned taste aversion/avoidance (CTA), 118, 122, 123
congenital insensitivity to pain with anhidrosis (CIPA), 2–3
conservation, pain genes
acute heat nociception, *Drosophila*, 18–19
acute heat pain, mammals, 16–18
chemical nociception
Drosophila, 21
mammals, 21
inflammatory pain, mammals, 22–4, 23–4
mechanical nociception, *Drosophila*, 19–21
mechanical pain, mammals, 19
neuropathic see neuropathic pain
nociception apparatus, mammals and *Drosophila*, 16
persistent pain, *Drosophila*, 22–5
single-celled genus *Paramecium*, 15
CTA see conditioned taste aversion/avoidance (CTA)
CWP see chronic widespread pain (CWP)
cyclic vomiting syndrome, 124
diabetes mellitus type 2 (DT2), 176
dorsal root ganglia (DRG)
isolated neurons, 139
PAR2, 137
TLRs, 137–8
and trigeminal neurons, 132
DRG see dorsal root ganglia (DRG)
DT2 see diabetes mellitus type 2 (DT2)
emetnic and antiemetics, opioids, 121–2, 122
experimental phenotypes
GAS, 46
heritability, 46
measurement, pain sensitivity, 45–6

Fabry’s disease, 2, 63
“familial rectal pain”, 62
fibromyalgia (FM)
and CWP, 149
deep sequencing, 150
epidemiology, 148
musculoskeletal conditions, 148
“short” (deletion) allele, 149–50
FM see fibromyalgia (FM)
“gain-of-function” mutations, 10
gastrin-releasing peptide receptor (GRPR), 142–3
gastrointestinal (GI) tract
nausea, 115–16
pain signaling, 18
vomiting, 117
gate control theory, 52
gene sequencing, 150
genetic association studies (GAS) see pain phenotypes, GAS
genetic factors interactions, pain and analgesia
sex and gender differences, 52
sex X gene see sex X gene interactions, pain and analgesia
and stress, 52–3
genetic models, itch
manipulation, molecules, 135
NGF signaling, pruritocceptors survival, 135–6, 136
pruritogenic soup, 138, 140–141
receptors, 136–8, 138
signaling molecules, 138–40
genome-wide association study (GWAS), 3, 12
genotype-phenotype matching, 41
GI tract see gastrointestinal (GI) tract
GRPR see gastrin-releasing peptide receptor (GRPR)
GWAS see genome-wide association study (GWAS)

HA see high autotomy (HA)
haplotype trend regression (HTR), 102, 103
heritability
brain traits, 4, 4
CIPA, 2–3
GWAS, 3
nausea and vomiting phenotypes, 123–4
non-Mendelian, 3
phenotypes, 40–41
high autotomy (HA), 173
high pain sensitivity (HPS) haplotype, 151
HSAN see hereditary sensory and autonomic neuropathy (HSAN)
HTR see haplotype trend regression (HTR)
human association studies
COMT, 148, 149
genetic variants, 148, 149
TMD, 150
human chronic pain phenome
CNP see chronic neuropathic pain (CNP)
identification, polymorphisms and variants, 177–8
pain medicine, 162
hypertensive hypoalgesia, 173
“hypothesis-free” approaches, 43
irritable bowel syndrome, 40, 41, 43, 45
itch
coding, 133–4
fibers, 132
genetic models see genetic models, itch
and genetic variations, humans, 143
GRPR, 142–3
inhibition, counter-stimuli, 141, 142
measurement, mice, 134–5, 135
noxious chemicals, 133, 133
pruritogen receptors, trap channels, 132
scratch, 132
selectivity model, 141
LA see low autotomy (LA)
LBP see low back pain (LBP)
LCP see likelihood of chronic pain (LCP)
LD see linkage disequalibrium (LD)
likelihood of chronic pain (LCP)
chronic pain, 172
definition, 162–3
linkage disequalibrium (LD)
dependency, 100
and null-hypothesis, 101
power, simulations, 106
12-SNP, 109
structures, 108
long-term depression (LTD), 28, 30
long-term potentiation (LTP), 28, 30
low autotomy (LA), 173
low back pain (LBP), 148
low pain sensitivity (LPS) haplotype, 149, 151, 155
LTD see long-term depression (LTD)
LTP see long-term potentiation (LTP)
MAFs see minor allele frequencies (MAFs)
maximum-likelihood methods, 102–4
MC1R see melanocortin-1 receptor gene (MC1R)
mechanical nociception, Drosophila
and mammalian genes orthologs, 19–21, 20
mechanoreceptor, 21
melanocortin-1 receptor gene (MC1R), 55, 56
minor allele frequencies (MAFs), 107, 108
multilocus associations, pain phenotypes
acute and chronic pain, 99
analysis, MOR haplotypes, 103–4, 104
haploid population, 112, 112
induced-single-variant effect, 112
joint effects testing, genetic variants, 102–3
signals, genetic variants, 101–2
SNPs, 100, 113
testing, individual genetic variants, 100–101, 101
two-stage see two-stage multilocus association analysis
musculoskeletal pain
cardiovascular disorders, 151–2
definition, 147–8
gene sequencing, 150
genetic association results, human, 151, 151
 genetic variants, 151, 152–4
human association studies, 148–50, 149
identification, putative drug, 155
probability, 156
response, desmopression, 155, 156
nausea and pain
candidate genes, 117, 120
emetic and antiemetics, opioids, 121–2, 122
heritability see heritability
human genetic sequence variants, vomiting, 124–5
modern medicine, 117
neural pathways, 116, 116
syndromes, 118–19
and vomiting
functional role, 117–18
preclinical studies, 122–3
Nav1.7 protein
definition, 65–6
development, antagonists, 69
N and C-terminal domain, 67–8
role, SCN9A, 68–9
storage, Golgi apparatus, 68
nerve growth factor (NGF)
drug developments, 74
gene, 73
pain, 74
pathogenic mutations, 73–4
phenotypes, gene mutations, 72–3
protein, 74
signaling, pruritoceptors survival, 135–6, 136
nerve growth factor beta (NGFB)
 antagonist, 74
binding, 72
HSAN5 family, 73
Netherton syndrome, 137
neuroma model
chromosomal region, 173
effects, acute pain, 177
micro-neuromas, 176
nerve-end, 175
neuropathic pain
Drosophila, 30
LTP and LTD, mammals, 28–30, 29
mammalian genes, Drosophila, 25–8, 26–7
mammals, 25
structural reorganizations, nerve fibers, 25–7, 26–7

INDEX
neuropharmacology, nausea and emesis
antiemetic drug targets and uses, 119, 119
cancer chemotherapy, 120
candidate genes, 120, 120
cannabinoid 1 (CB1) receptors, 121

neurotrophic tyrosine kinase receptor type 1 (NTRK1) gene
exon, 71
MNAC13, 72
NGF and TRKA, pain and HSAN phenotype, 71–2
NGFB, 69
pathogenic NTRK1 mutations, 71
phenotype causes, gene mutations, 69–71
SCN9A and NGF, 61
TRKA protein, 71

NGF see nerve growth factor (NGF)
NGFB see nerve growth factor beta (NGFB)
NMD see nonsense-mediated mRNA degradation (NMD)
nongenetic modifiers mapping see Human chronic pain
phenome
nonsense-mediated mRNA degradation (NMD), 86, 90–91
noxious chemicals, 133, 133

NTRK1 gene see neurotrophic tyrosine kinase receptor
type 1 (NTRK1) gene

Olmsted syndrome, 141

µ-opioid receptor (MOR) see alternative pre-mRNA
splicing, MOR

OPRM1 gene
binding, MOR, 91
chromosomal location and gene structure, 82
exon inclusion/skipping event, 86
exon skipping and insertion, 89, 89–90
kappa drugs, 94
morphine-induced itch, 92–3
MOR subtype, heroin, fentanyl and M6G, 93
mu agonist-induced G protein coupling, 91–2
mu opioid analgesia in vivo, 92
phylogenetic analysis, MOR-1 protein, 80, 81
region-specific expression, mRNAs and proteins, 90–91
3’ splicing see alternative 3’ splicing
5’ splicing see alternative 5’ splicing

pain experience see pain genes

pain genes
definition, 8
direct effects, allelic variation, 9–10
disease vs. pain susceptibility, 12
exonic polymorphisms, 9

pain phenotypes, GAS
characteristics, pain system, 38
clinical5al see clinical phenotypes
experimental see experimental phenotypes
extended, 47
features, 47–8
genotype-phenotype matching, 41
heritability, 40–41
neuropathic pain conditions, 39
reliability and temporal stability, 41–3
response, tissue damage, 38
scaling, 39–40
selection, 38
sensitivity, 38

pain response
haplotype analysis, human CACNG2, 7, 7
human version, Cacng2 gene, 5, 6
pharmacogenetics and individualized medicine, 7
polymorphisms, 5
stigma, 4–5

pain sensing, SCN9A
fruit flies, 66
Nav1.7 protein see Nav1.7 protein pathogenic mutations, 67
phenotypes see phenotypes, SCN9A mutations
sites, alternative splicing, 66

pain syndromes, nausea, 116, 118–19
paroxysmal extreme pain disorder (PEPD) mutations, 68
and primary erythermalgia, 63, 67
PARs see protease-activated receptors (PARs)
PEPD see paroxysmal extreme pain disorder (PEPD)
persistent pain, Drosophila
fly larvae, 22
hh- and TNF-mediated sensitization, 25
mammalian genes and orthologs, 22, 23–4

personal pain medicine (PPM), 162, 165
phenotypes, SCN9A mutations
channelopathy-associated insensitivity, pain, 64–5
painful conditions and pain threshold, 65
PEPD, 62–3
primary erythermalgia, 63–4
postoperative nausea and vomiting (PONV), 121, 124
post-traumatic stress disorder (PTSD), 169, 172
PPM see personal pain medicine (PPM)
premature termination codon (PTC), 86, 90
primary erythermalgia, 63–4
protease-activated receptors (PARs), 137
pruritogen receptors, trap channels, 132
PTC see premature termination codon (PTC)
PTSD see post-traumatic stress disorder (PTSD)

QTL see quantitative trait locus (QTL)
quantitative trait locus (QTL)
female-specific, 56
strain–sex interactions, 54–5
receptors, itch
genetic studies, mice, 136, 136
neurons, immune system and skin, 137, 138
PARs, 137
TLRs, 137–8
resampling techniques, 100

SCD see sickle-cell disease (SCD)
selectivity theory, 141
sex X gene interactions, pain and analgesia
chromosome-linked genes, 53
genetic factors, 53
hormone function, 53
human determinations, 55
inbred mouse strains, 54
qualitative vs. quantitative differences, 54
strain–sex interactions, 54–5
translational determinations, 56–7
SIA see stress-induced analgesia (SIA)
sickle-cell disease (SCD), 170
SIH see stress-induced hyperalgesia (SIH)
single-nucleotide polymorphisms (SNPs)
 ABLIM3, 55
 A118G, 55
 allele, 10
 allele frequency, 113
 COMT, 55
 definition, 5
 exonic sequence, 9
genotyping human cacng2 gene, 7, 7
 individual, 100, 110
 joint haplotypic effects, 102
 joint 12-SNP analysis, µ-opioid receptor data, 104, 104
 MAFs, 6-SNPs and 12-SNPs, 107, 108
part-one 6-SNP and 12-SNP power simulation results, 108, 109
 single-SNP power simulation results, 109, 110
 6-SNP haplotypes frequencies, 107, 107
 12-SNP haplotypes frequencies, 107, 108
 12-SNP LD matrix, 108, 109
 uncorrelated, 105
 unlinked, LD, 100, 101
SNPs see single-nucleotide polymorphisms (SNPs)
 “somatosensory pain memories”, 169
 stress-induced analgesia (SIA), 52–3, 57
 stress-induced hyperalgesia (SIH), 53
 synesthesia, 18
temporomandibular joint disorders (TMD)
 epidemiology, 148
 population, 155
TLRs see toll-like receptors (TLRs)
TMD see temporomandibular joint disorders (TMD)
TNF see tumor necrosis factor (TNF)
toll-like receptors (TLRs), 137–8, 140
transient receptor potential (TRP) channels
 mammals, 21
 thermal nociception, Drosophila, 18
 thermal pain sensitivities, 18
 TRPV family members, 16, 17
transient receptor potential vanilloid receptor 1 (TrpV1)
 activation, 138
 DRG neurons, 138–9
 lineage, 142
 Pirt, 139
 TrpA1, 139
TRP channels see transient receptor potential (TRP) channels
TrpV1 see transient receptor potential vanilloid receptor 1 (TrpV1)
TRP vanilloid (TRPV), 16, 18–19, 22
tumor necrosis factor (TNF)
 mediated sensitization, 25
 TNFα, 22
two-stage multilocus association analysis
 6- and 12-SNP haplotype frequencies, 107, 107, 108, 108
 cumulative distribution, statistic, 105–6
 detection, cumulative effects, 104
 MAFs, 6 and 12 SNPs, 107, 108
 part-one power simulation results, 108, 109
 part-three power simulation results, 111, 111
 power of analysis, 106
 power, stimulations, 106
 single composite haplotype simulation results, 109, 111
 single-haplotype power simulation results, 109, 110
 single-haplotype power simulation results, 109, 110
 single-SNP power simulation results, 109, 110
 SNP, 104–5
 12-SNP LD matrix, 108, 109
VAS see visual analog scale (VAS)
vesicular glutamate transporter 2 (VGIUT2), 142
visual analog scale (VAS)
 and NRS, 39
 pain scaling, 40
 ratings, suprathreshold pain, 42