Contents

About the Authors xvii
Preface xix

1 Introduction to Piezoelectric Energy Harvesting 1
1.1 Vibration-Based Energy Harvesting Using Piezoelectric Transduction 1
1.2 An Example of a Piezoelectric Energy Harvesting System 4
1.3 Mathematical Modeling of Piezoelectric Energy Harvesters 6
1.4 Summary of the Theory of Linear Piezoelectricity 9
1.5 Outline of the Book 12
References 14

2 Base Excitation Problem for Cantilevered Structures and Correction of the Lumped-Parameter Electromechanical Model 19
2.1 Base Excitation Problem for the Transverse Vibrations of a Cantilevered Thin Beam 20
2.1.1 Response to General Base Excitation 20
2.1.2 Steady-State Response to Harmonic Base Excitation 25
2.1.3 Lumped-Parameter Model of the Harmonic Base Excitation Problem 26
2.1.4 Comparison of the Distributed-Parameter and the Lumped-Parameter Model Predictions 29
2.2 Correction of the Lumped-Parameter Base Excitation Model for Transverse Vibrations 31
2.2.1 Correction Factor for the Lumped-Parameter Model 31
2.2.2 Effect of a Tip Mass on the Correction Factor 32
2.3 Experimental Case Studies for Validation of the Correction Factor 35
2.3.1 Cantilevered Beam without a Tip Mass under Base Excitation 35
2.3.2 Cantilevered Beam with a Tip Mass under Base Excitation 39
2.4 Base Excitation Problem for Longitudinal Vibrations and Correction of its Lumped-Parameter Model 39
2.4.1 Analytical Modal Analysis and Steady-State Response to Harmonic Base Excitation 40
2.4.2 Correction Factor for Longitudinal Vibrations 42
Contents

2.5 Correction Factor in the Electromechanically Coupled Lumped-Parameter Equations and a Theoretical Case Study 43
 2.5.1 An Electromechanically Coupled Lumped-Parameter Model for Piezoelectric Energy Harvesting 43
 2.5.2 Correction Factor in the Electromechanically Coupled Lumped-Parameter Model and a Theoretical Case Study 45

2.6 Summary 46

2.7 Chapter Notes 46

References 47

3 Analytical Distributed-Parameter Electromechanical Modeling of Cantilevered Piezoelectric Energy Harvesters 49
 3.1 Fundamentals of the Electromechanically Coupled Distributed-Parameter Model 49
 3.1.1 Modeling Assumptions and Bimorph Configurations 49
 3.1.2 Coupled Mechanical Equation and Modal Analysis of Bimorph Cantilevers 51
 3.1.3 Coupled Electrical Circuit Equation of a Thin Piezoceramic Layer under Dynamic Bending 57
 3.2 Series Connection of the Piezoceramic Layers 59
 3.2.1 Coupled Beam Equation in Modal Coordinates 60
 3.2.2 Coupled Electrical Circuit Equation 60
 3.2.3 Closed-Form Voltage Response and Vibration Response at Steady State 61
 3.3 Parallel Connection of the Piezoceramic Layers 63
 3.3.1 Coupled Beam Equation in Modal Coordinates 63
 3.3.2 Coupled Electrical Circuit Equation 64
 3.3.3 Closed-Form Voltage Response and Vibration Response at Steady State 64
 3.4 Equivalent Representation of the Series and the Parallel Connection Cases 65
 3.4.1 Modal Electromechanical Coupling Terms 66
 3.4.2 Equivalent Capacitance for Series and Parallel Connections 66
 3.4.3 Equivalent Representation of the Electromechanical Equations 67
 3.5 Single-Mode Electromechanical Equations for Modal Excitations 68
 3.6 Multi-mode and Single-Mode Electromechanical FRFs 69
 3.6.1 Multi-mode Electromechanical FRFs 70
 3.6.2 Single-Mode Electromechanical FRFs 71
 3.7 Theoretical Case Study 71
 3.7.1 Properties of the Bimorph Cantilever 72
 3.7.2 Frequency Response of the Voltage Output 73
 3.7.3 Frequency Response of the Current Output 76
 3.7.4 Frequency Response of the Power Output 78
 3.7.5 Frequency Response of the Relative Tip Displacement 81
 3.7.6 Parallel Connection of the Piezoceramic Layers 83
 3.7.7 Single-Mode FRFs 87
3.8 Summary 90
3.9 Chapter Notes 90
References 94

4 Experimental Validation of the Analytical Solution for Bimorph Configurations 97
4.1 PZT-5H Bimorph Cantilever without a Tip Mass 97
 4.1.1 Experimental Setup and Guidelines for Testing an Energy Harvester 97
 4.1.2 Validation of the Electromechanical FRFs for a Set of Resistors 103
 4.1.3 Electrical Performance Diagrams at the Fundamental Short-Circuit and Open-Circuit Resonance Frequencies 107
 4.1.4 Vibration Response Diagrams at the Fundamental Short-Circuit and Open-Circuit Resonance Frequencies 110
4.2 PZT-5H Bimorph Cantilever with a Tip Mass 111
 4.2.1 Experimental Setup 111
 4.2.2 Validation of the Electromechanical FRFs for a Set of Resistors 113
 4.2.3 Electrical Performance Diagrams at the Fundamental Short-Circuit and Open-Circuit Resonance Frequencies 114
 4.2.4 Vibration Response Diagrams at the Fundamental Short-Circuit and Open-Circuit Resonance Frequencies 119
 4.2.5 Model Predictions with the Point Mass Assumption 119
 4.2.6 Performance Comparison of the PZT-5H Bimorph with and without the Tip Mass 121
4.3 PZT-5A Bimorph Cantilever 122
 4.3.1 Experimental Setup 122
 4.3.2 Validation of the Electromechanical FRFs for a Set of Resistors 124
 4.3.3 Comparison of the Single-Mode and Multi-mode Electromechanical FRFs 125
4.4 Summary 128
4.5 Chapter Notes 128
References 130

5 Dimensionless Equations, Asymptotic Analyses, and Closed-Form Relations for Parameter Identification and Optimization 131
5.1 Dimensionless Representation of the Single-Mode Electromechanical FRFs 132
 5.1.1 Complex Forms 132
 5.1.2 Magnitude–Phase Forms 132
 5.1.3 Dimensionless Forms 133
5.2 Asymptotic Analyses and Resonance Frequencies 134
 5.2.1 Short-Circuit and Open-Circuit Asymptotes of the Voltage FRF 134
 5.2.2 Short-Circuit and Open-Circuit Asymptotes of the Tip Displacement FRF 135
 5.2.3 Short-Circuit and Open-Circuit Resonance Frequencies of the Voltage FRF 136
5.2.4 Short-Circuit and Open-Circuit Resonance Frequencies of the Tip Displacement FRF

5.2.5 Comparison of the Short-Circuit and Open-Circuit Resonance Frequencies

5.3 Identification of Mechanical Damping

5.3.1 Identification of the Modal Mechanical Damping Ratio from the Voltage FRF

5.3.2 Identification of the Modal Mechanical Damping Ratio from the Tip Displacement FRF

5.4 Identification of the Optimum Electrical Load for Resonance Excitation

5.4.1 Electrical Power FRF

5.4.2 Optimum Values of Load Resistance at the Short-Circuit and Open-Circuit Resonance Frequencies of the Voltage FRF

5.5 Intersection of the Voltage Asymptotes and a Simple Technique for the Experimental Identification of the Optimum Load Resistance

5.5.1 On the Intersection of the Voltage Asymptotes for Resonance Excitation

5.5.2 A Simple Technique for the Experimental Identification of the Optimum Load Resistance

5.6 Vibration Attenuation/Amplification from the Short-Circuit to Open-Circuit Conditions

5.7 Experimental Validation for a PZT-5H Bimorph Cantilever

5.7.1 Identification of Mechanical Damping

5.7.2 Fundamental Short-Circuit and Open-Circuit Resonance Frequencies

5.7.3 Magnitude and Phase of the Voltage FRF

5.7.4 Voltage Asymptotes for Resonance Excitation

5.7.5 Power vs. Load Resistance Diagrams and the Optimum Loads

5.7.6 Comment on the Optimum Load Resistance Obtained from the Simplified Circuit Representations of a Piezoceramic Layer

5.8 Summary

5.9 Chapter Notes

References

6 Approximate Analytical Distributed-Parameter Electromechanical Modeling of Cantilevered Piezoelectric Energy Harvesters

6.1 Unimorph Piezoelectric Energy Harvester Configuration

6.2 Electromechanical Euler–Bernoulli Model with Axial Deformations

6.2.1 Distributed-Parameter Electromechanical Energy Formulation

6.2.2 Spatial Discretization of the Energy Equations

6.2.3 Electromechanical Lagrange Equations

6.2.4 Solution of the Electromechanical Lagrange Equations

6.3 Electromechanical Rayleigh Model with Axial Deformations

6.3.1 Distributed-Parameter Electromechanical Energy Formulation

6.3.2 Spatial Discretization of the Energy Equations
7.7 Case Studies

7.7.1 Periodic Excitation of a Bimorph Energy Harvester on a Mechanism Link
7.7.2 Analysis of a Piezoceramic Patch for Surface Strain Fluctuations of a Bridge

7.8 Summary

7.9 Chapter Notes

References

8 Modeling and Exploiting Mechanical Nonlinearities in Piezoelectric Energy Harvesting

8.1 Perturbation Solution of the Piezoelectric Energy Harvesting Problem: the Method of Multiple Scales

8.1.1 Linear Single-Mode Equations of a Piezoelectric Energy Harvester
8.1.2 Exact Solution
8.1.3 Resonance Approximation of the Exact Solution
8.1.4 Perturbation Solution

8.2 Monostable Duffing Oscillator with Piezoelectric Coupling

8.2.1 Analytical Expressions Based on the Perturbation Solution
8.2.2 State-Space Representation of the Governing Equations for Numerical Solution
8.2.3 Theoretical Case Study

8.3 Bistable Duffing Oscillator with Piezoelectric Coupling: the Piezomagnetoelastic Energy Harvester

8.3.1 Lumped-Parameter Electromechanical Equations
8.3.2 Time-Domain Simulations of the Electromechanical Response
8.3.3 Performance Comparison of the Piezomagnetoelastic and the Piezoelastic Configurations in the Phase Space
8.3.4 Comparison of the Chaotic Response and the Large-Amplitude Periodic Response

8.4 Experimental Performance Results of the Bistable Piezomagnetoelastic Energy Harvester

8.4.1 Experimental Setup
8.4.2 Performance Results of the Piezomagnetoelastic Configuration
8.4.3 Comparison of the Piezomagnetoelastic and the Piezoelastic Configurations for Voltage Generation
8.4.4 On the Chaotic and the Large-Amplitude Periodic Regions of the Response
8.4.5 Broadband Performance Comparison
8.4.6 Vertical Excitation of the Piezomagnetoelastic Energy Harvester

8.5 A Bistable Plate for Piezoelectric Energy Harvesting

8.5.1 Nonlinear Phenomena in the Bistable Plate
8.5.2 Broadband Power Generation Performance

8.6 Summary

8.7 Chapter Notes

References
Contents

9 Piezoelectric Energy Harvesting from Aeroelastic Vibrations 273
 9.1 A Lumped-Parameter Piezoelectric Energy Harvester Model for Harmonic Response 273
 9.2 Experimental Validations of the Lumped-Parameter Model at the Flutter Boundary 278
 9.3 Utilization of System Nonlinearities in Piezoelectric Energy Harvesting 280
 9.4 A Distributed-Parameter Piezoelectric Model for Harmonic Response: Assumed-Mode Formulation 282
 9.5 Time-Domain and Frequency-Domain Piezoelectric Formulations with Finite-Element Modeling
 9.5.1 Time-Domain Formulation Based on the VLM 286
 9.5.2 Frequency-Domain Formulation Based on the DLM 288
 9.6 Theoretical Case Study for Airflow Excitation of a Cantilevered Plate
 9.6.1 Simulations Based on the VLM Formulation 291
 9.6.2 Simulations Based on the DLM Formulation 293
 9.7 Summary 297
 9.8 Chapter Notes 298
 References 298

10 Effects of Material Constants and Mechanical Damping on Power Generation 301
 10.1 Effective Parameters of Various Soft Ceramics and Single Crystals
 10.1.1 Properties of Various Soft Ceramics and Single Crystals 301
 10.1.2 Plane-Stress Piezoelectric, Elastic, and Permittivity Constants for a Thin Beam 303
 10.2 Theoretical Case Study for Performance Comparison of Soft Ceramics and Single Crystals
 10.2.1 Properties of the Bimorph Cantilevers 304
 10.2.2 Performance Comparison of the Original Configurations 306
 10.2.3 Effect of the Piezoelectric Strain Constant 307
 10.2.4 Effect of the Elastic Compliance 307
 10.2.5 Effect of the Permittivity Constant 308
 10.2.6 Effect of the Overhang Length 308
 10.2.7 Effect of the Mechanical Damping 310
 10.3 Effective Parameters of Typical Soft and Hard Ceramics and Single Crystals
 10.3.1 Properties of the Soft Ceramic PZT-5H and the Hard Ceramic PZT-8 310
 10.3.2 Properties of the Soft Single-Crystal PMN-PZT and the Hard Single-Crystal PMN-PZT-Mn 311
 10.4 Theoretical Case Study for Performance Comparison of Soft and Hard Ceramics and Single Crystals
 10.4.1 Properties of the Bimorph Cantilevers 311
 10.4.2 Comparison of Soft and Hard Ceramics: PZT-5H vs. PZT-8 313
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4.3</td>
<td>Comparison of Soft and Hard Single Crystals: PMN-PZT vs. PMN-PZT-Mn</td>
<td>314</td>
</tr>
<tr>
<td>10.4.4</td>
<td>Overall Comparison of Ceramics (PZT-5H, PZT-8) and Single Crystals (PMN-PZT, PMN-PZT-Mn)</td>
<td>315</td>
</tr>
<tr>
<td>10.5</td>
<td>Experimental Demonstration for PZT-5A and PZT-5H Cantilevers</td>
<td>317</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Experimental Setup</td>
<td>317</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Identification of Mechanical Damping and Model Predictions</td>
<td>318</td>
</tr>
<tr>
<td>10.5.3</td>
<td>Performance Comparison of the PZT-5A and PZT-5H Cantilevers</td>
<td>319</td>
</tr>
<tr>
<td>10.6</td>
<td>Summary</td>
<td>321</td>
</tr>
<tr>
<td>10.7</td>
<td>Chapter Notes</td>
<td>322</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>323</td>
</tr>
<tr>
<td>11</td>
<td>A Brief Review of the Literature of Piezoelectric Energy Harvesting Circuits</td>
<td>325</td>
</tr>
<tr>
<td>11.1</td>
<td>AC–DC Rectification and Analysis of the Rectified Output</td>
<td>325</td>
</tr>
<tr>
<td>11.2</td>
<td>Two-Stage Energy Harvesting Circuits: DC–DC Conversion for Impedance Matching</td>
<td>331</td>
</tr>
<tr>
<td>11.3</td>
<td>Synchronized Switching on Inductor for Piezoelectric Energy Harvesting</td>
<td>336</td>
</tr>
<tr>
<td>11.4</td>
<td>Summary</td>
<td>340</td>
</tr>
<tr>
<td>11.5</td>
<td>Chapter Notes</td>
<td>340</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>341</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Piezoelectric Constitutive Equations</td>
<td>343</td>
</tr>
<tr>
<td>A.1</td>
<td>Three-Dimensional Form of the Linear Piezoelectric Constitutive Equations</td>
<td>343</td>
</tr>
<tr>
<td>A.2</td>
<td>Reduced Equations for a Thin Beam</td>
<td>344</td>
</tr>
<tr>
<td>A.3</td>
<td>Reduced Equations for a Moderately Thick Beam</td>
<td>345</td>
</tr>
<tr>
<td>A.4</td>
<td>Reduced Equations for a Thin Plate</td>
<td>346</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>347</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Modeling of the Excitation Force in Support Motion Problems of Beams and Bars</td>
<td>349</td>
</tr>
<tr>
<td>B.1</td>
<td>Transverse Vibrations</td>
<td>349</td>
</tr>
<tr>
<td>B.2</td>
<td>Longitudinal Vibrations</td>
<td>350</td>
</tr>
<tr>
<td>Reference</td>
<td></td>
<td>351</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Modal Analysis of a Uniform Cantilever with a Tip Mass</td>
<td>353</td>
</tr>
<tr>
<td>C.1</td>
<td>Transverse Vibrations</td>
<td>353</td>
</tr>
<tr>
<td>C.1.1</td>
<td>Boundary-Value Problem</td>
<td>353</td>
</tr>
<tr>
<td>C.1.2</td>
<td>Solution Using the Method of Separation of Variables</td>
<td>354</td>
</tr>
<tr>
<td>C.1.3</td>
<td>Differential Eigenvalue Problem</td>
<td>355</td>
</tr>
<tr>
<td>C.1.4</td>
<td>Response to Initial Conditions</td>
<td>357</td>
</tr>
<tr>
<td>C.1.5</td>
<td>Orthogonality of the Eigenfunctions</td>
<td>357</td>
</tr>
<tr>
<td>C.1.6</td>
<td>Normalization of the Eigenfunctions</td>
<td>358</td>
</tr>
<tr>
<td>C.1.7</td>
<td>Response to External Forcing</td>
<td>359</td>
</tr>
</tbody>
</table>