Contents to Volume 1

Preface XV
List of Contributors XVII

1 Mechanistic Aspects of Metal-Catalyzed C,C- and C,X-Bond Forming Reactions 1

Antonio M. Echavarren and Anna Homs

1.1 Mechanisms of Cross-Coupling Reactions 1

1.1.1 The Earlier Mechanistic Proposal: The Stille Reaction 2

1.1.2 The Oxidative Addition 3

1.1.2.1 Cis-Complexes in the Oxidative Addition 4

1.1.2.2 The Role of Alkene and Anionic Ligands 5

1.1.2.3 Cross-Couplings in the Presence of Bulky Phosphines 6

1.1.2.4 N-Heterocyclic Carbenes as Ligands 12

1.1.2.5 Palladacycles as Catalysts 13

1.1.2.6 Involvement of Pd(IV) in Catalytic Cycles 14

1.1.2.7 Oxidative Addition of Stannanes to Pd(0) 16

1.1.3 The Transmetallation in the Stille Reaction 16

1.1.3.1 Isolation of the Transmetallation Step 16

1.1.3.2 Dissociative Mechanistic Proposals 18

1.1.3.3 Cyclic and Open Associative Transmetallation 19

1.1.3.4 The Copper Effect 23

1.1.3.5 Transmetallation in the Suzuki–Miyaura Reaction 24

1.1.3.6 Transmetallation in the Negishi Reaction 27

1.1.3.7 Transmetallation in the Hiyama Reaction 28

1.1.3.8 Couplings Catalyzed by Copper and Gold 30

1.1.3.9 Couplings Catalyzed by Iron and Cobalt 32

1.1.4 Reductive Elimination 33

1.2 Palladium-Catalyzed α-Arylation of Carbonyl Compounds and Nitriles 35

1.3 Formation of C–X (X = N, O, S) Bonds in Metal-Catalyzed Reactions 36
State-of-the-Art in Metal-Catalyzed Cross-Coupling Reactions of Organoboron Compounds with Organic Electrophiles

Jack C.H. Lee and Dennis G. Hall

2.1 Introduction

2.1.1 Catalytic Cycle

2.1.2 Improvements toward More Efficient Cross-Coupling Conditions

2.1.2.1 Development of New Phosphine and NHC Ligands

2.1.2.2 Usage of Masked Boron Derivatives as Cross-Coupling Partners

2.1.2.3 Lewis Acids as Additives

2.1.2.4 Adjusting the Nucleophilicity of Organoboron Cross-Coupling Partners

2.1.2.5 Copper Salts as Additives

2.2 Advances in Cross-Coupling Reactions for the Formation of C(sp²)–C(sp²) Bonds

2.2.1 Background

2.2.2 Recent Developments in the Use of New Electrophilic Coupling Partners

2.2.2.1 Chlorides

2.2.2.2 Fluorides

2.2.2.3 Pseudohalides

2.2.3 Recent Developments in Organoboron Cross-Coupling Partners

2.2.3.1 Trifluoroborate Salts

2.2.3.2 N-Methyliminodiacetic Acid (MIDA) Boronates

2.2.3.3 Other Organoboron Cross-Coupling Partners

2.2.4 Synthesis of Enantiomerically Enriched Atropisomers

2.3 Advances in the Cross-Coupling Reactions for the Formation of C(sp³)–C(sp²) or C(sp³)–C(sp³) Bonds

2.3.1 Background

2.3.1.1 Stereochemistry

2.3.2 Cross-Couplings between Unsaturated sp² Carbon Centers and sp³ Carbon Centers

2.3.2.1 Cross-Couplings between sp³ Alkyl Halides and sp² Alkenyl or Aryl Boron Derivatives

2.3.2.2 Cross-Couplings between sp³ Alkyl Boron Derivatives with sp² Alkenyl or Aryl Halides

2.3.3 Cross-Couplings between sp³ Carbon Centers with sp³ Carbon Centers

2.3.3.1 Cross-Couplings between Achiral Substrates
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.3.2</td>
<td>Stereoselective Cross-Coupling Reactions of sp³ Alkyl Halides with sp³ Alkylboranes</td>
<td>118</td>
</tr>
<tr>
<td>2.4</td>
<td>Experimental Procedures</td>
<td>121</td>
</tr>
<tr>
<td>2.4.1</td>
<td>2,6-Dimethoxy-2',6'-dimethylbiphenyl (55)</td>
<td>121</td>
</tr>
<tr>
<td>2.4.2</td>
<td>4-Methoxybiphenyl (R = C(=O)NEt₂, R' = H, Ar = 4-methoxyphenyl)</td>
<td>121</td>
</tr>
<tr>
<td>2.4.3</td>
<td>1-Phenylcresyl (ROH = naphthol, Ar = Ph)</td>
<td>122</td>
</tr>
<tr>
<td>2.4.4</td>
<td>1-(3,5-Dimethoxyphenyl)-5-phenylpentan-3-one (R' = CH₂CH₂Ph, R = 3,5-dimethoxybenzene)</td>
<td>122</td>
</tr>
<tr>
<td>2.4.5</td>
<td>1-Phenyl-1-(4-acetamidophenyl)-ethane (Ar = 4-iodoacetophenone)</td>
<td>122</td>
</tr>
<tr>
<td>2.4.6</td>
<td>Naphthalene-1,8-diamido (dan) derivative (Ar = Ph)</td>
<td>123</td>
</tr>
<tr>
<td>2.4.7</td>
<td>2-Methyl-5-phenylpentyl benzyl(phenyl)carbamate (R' = CH₂CH₂CH₂Ph)</td>
<td>123</td>
</tr>
<tr>
<td>2.5</td>
<td>Summary and Outlook</td>
<td>124</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>124</td>
</tr>
</tbody>
</table>

3 Pd-Catalyzed Cross-Coupling with Organometals Containing Zn, Al, Zr, and so on – The Negishi Coupling and Its Recent Advances 133
Shiqing Xu, Hirofumi Kamada, Eun Hoo Kim, Akimichi Oda, and Ei-ichi Negishi

3.1 Background and Discovery 134
3.1.1 Why Metals? Why Transition Metals? 134
3.1.2 Why Transition Metal-Catalyzed Organometallic Reactions? 136
3.2 Discovery of the Pd- or Ni-Catalyzed Cross-Coupling Reactions of Organometals Containing Zn, Al, Zr, and B 137
3.3 The Current Scope of the Pd- or Ni-Catalyzed Cross-coupling and Its Application to the Synthesis of Natural Products and Other Complex Organic Compounds 154
3.3.1 Cross-Coupling between Two Unsaturated (Aryl, Alkenyl, and/or Alkynyl) Groups 156
3.3.1.1 Aryl–Aryl Coupling 156
3.3.1.2 Aryl–Alkenyl and Alkenyl–Aryl Couplings 158
3.3.1.3 Alkenyl–Alkenyl Coupling 159
3.3.1.4 Pd-Catalyzed Alkynylation 191
3.3.2 Cross-Coupling Involving One Allyl, Benzyl, or Propargyl Group 197
3.3.2.1 1,4-Dienes via Pd-Catalyzed Alkenyl–Allyl and Allyl–Alkenyl Coupling and 1,4-Enynes by Pd-Catalyzed Alkynyl–Allyl Coupling 197
3.3.2.2 Benzyl–Aryl, Aryl–Benzyl Coupling 203
3.3.2.3 Allylbenzene Derivatives via Pd-Catalyzed Alkenyl–Benzyl Coupling and Aryl–Allyl and Allyl–Aryl Coupling 204
3.3.2.4 Benzylated Alkenes via Pd-Catalyzed Alkynyl–Benzyl Coupling and Aryl–Propargyl as well as Propargyl–Aryl Coupling 204
3.3.2.5 1,4-Diynes via Alkynyl–Propargyl Coupling 207
3.3.2.6 Synthesis of Natural Products Containing 1,4-Diene and Allylated Arenes by Pd-Catalyzed Allylation, Benzylolation, and Propargylation 208

3.3.3 Cross-Coupling between Two Allyl, Benzyl, and/or Propargyl Groups 210

3.3.3.1 1,5-Dienes and 1,5-Enynes via Pd-Catalyzed Cross-Couplings with Allyl, Benzyl, Propargyl Electrophiles 210

3.3.3.2 1,5-Dienes and 1,5-Enynes via Pd-Catalyzed Homoallyl–Alkenyl Coupling and Homopropargyl–Alkenyl Coupling 212

3.3.3.3 Bibenzyls, Homoallylarenes, 1,5-Dienes, Homopropargylarenes, and 1,5-Enynes via Pd-Catalyzed Negishi Coupling 214

3.3.4 Cross-Coupling Involving Alkylmetals and/or Alkyl Electrophiles Other Than Those Containing Allyl, Benzyl, and/or Propargyl Groups 216

3.3.4.1 Pd-Catalyzed Alkyl–Alkyl Coupling 219

3.3.4.2 Ni-Catalyzed Alkyl–Alkyl Coupling 221

3.3.4.3 Catalytic Asymmetric Cross-Coupling Reactions with Secondary Alkyl Halides 223

3.3.5 Pd-Catalyzed Acylation, Cyanation, and α-Substitution of Enolates and Related Derivatives 227

3.3.5.1 Pd-Catalyzed Acylation 227

3.3.5.2 Pd-Catalyzed Cyanation 232

3.3.5.3 Pd-Catalyzed α-Substitution of Enolates and Related Derivatives 233

3.4 Zr-Catalyzed Asymmetric Carboalumination of Alkenes (ZACA) ZACA–Pd- or Cu-Catalyzed Cross-Coupling Sequential Processes as a General Route to Enantiomerically Enriched Chiral Organic Compounds 243

3.4.1 Zirconium-Catalyzed Asymmetric Carboalumination of Alkenes (ZACA Reaction) 243

3.4.1.1 Historical and Mechanistic Background of Carbometallation of Alkenes and Alkynes with Alkylzirconocene Derivatives 244

3.4.1.2 Catalytic Asymmetric Carbometallation of Alkenes Proceeding via Dzhemilev Ethylmagnesiations 246

3.4.2 Current Summary of Development and Application of the ZACA Reaction and Conclusion 249

3.4.2.1 ZACA–Pd-Catalyzed Cross-Coupling Sequential Processes for the Synthesis of Deoxypropionates and Related Compounds 249

3.4.2.2 ZACA–Lipase-Catalyzed Acetylation–Pd- or Cu-Catalyzed Cross-Coupling Synergy to Chiral Organic Compounds 253

3.5 Representative Experimental Procedures 260

3.5.1 (2Z,4S)-5-(tert-Butyldimethylsilyloxy)-2-phenyl-4-methyl-2-pentene 260

3.5.2 (2Z,4E,6E)-Ethyl Trideca-2,4,6-trienoate 260

3.5.3 (2Z)-2-Allyl-3,7-dimethylocta-2,6-dien-1-ol 260

3.5.4 Ethyl 2-(4-Phenylbuta-1,3-diyln)benzoate 261
4.5.3.2 Nickel-Catalyzed Cross-Coupling Reactions 332
4.5.3.3 Platinum-Catalyzed Cross-Coupling Reactions 342
4.5.3.4 Iron-Catalyzed Cross-Coupling Reactions 343
4.5.3.5 Cobalt-Catalyzed Cross-Coupling Reactions 343
4.5.3.6 Rhodium-Catalyzed Cross-Coupling Reactions 344
4.6 Conclusions 345
4.7 Experimental Procedures 345
4.7.1 3-Ethoxycarbonylphenylzinc Iodide (7) 345
4.7.2 6-Carboethoxy-3,5-dimethylpyrimidinyl-5-zinc Chloride (27) 346
4.7.3 1-Hexenylmethylzinc (37) 346
4.7.4 Di(5-carboethoxy-5-hexenyl)zinc (39) 346
4.7.5 Di-(5-bromo-2,4-di(carboethoxy)phenyl)zinc (60) 347
4.7.6 Cyclohexylisopropylzinc (80) 347
4.7.7 10-Nitro-9-phenyldecyl Acetate (126) 347
4.7.8 2-Cyano-2′,4′,6′-trisopropylbiphenyl (140) 348
4.7.9 (2R,3S)-2-(3,4-Dimethoxyphenyl)-5,7-dimethoxychroman-3-ol (155) 348
4.7.10 2-(2-(Thiophen-2-yl)ethyl)pyridine (173) 349
4.7.11 6,6-Diethoxy-2-phenyl-1-hexene (231) 349
4.7.12 Ethyl 4′-Methoxy biphenyl-3-carboxylate (244) 349
4.7.13 Ethyl 4-(Furan-2-yl)benzoate (261) 350
4.7.14 Trimethyl((R)-3-p-tolylhept-1-ynyl)silane (268) 350
4.7.15 4-[2-(4-Methoxyphenyl)pyrimidin-4-yl]benzonitrile (286) 350
4.7.16 3-Cycloheptyl-2-methylprop-2-ene (292) 351
4.7.17 Ethyl 4-(Phenylethynyl)benzoate (301) 351
4.7.18 tert-Butyl((cis-3-(4-(tert-butyldimethyisilyl)oxy)but-1-yn-1-yl)cyclohexyl)oxy)dimethylsilane (333) 351
4.7.19 cis-tert-Butyl 2-(4-Cyanophenyl)-4-phenylpiperidine-1-carboxylate (352) 352
4.7.20 1-(((E)-Dodec-4-enyloxy)methyl)benzene (364) 352
4.7.21 Ethyl 6-Phenylhex-5-ynoate (379) 352
4.7.22 8-Oxo-8-phenyloctyl Pivalate (403) 353
4.7.23 7-Phenylheptanoic Acid Diethylamide (441) 353
4.7.24 Ethyl 4-Isopropylbenzoate (456) 353

Acknowledgments 354
List of Abbreviations 354
References 355

5 Carbon–Carbon-Bond-Forming Reactions Mediated by Organomagnesium Reagents 365
Fabrice Chemla, Franck Ferreira, Alejandro Perez-Luna, Laurent Micouin, and Olivier Jackowski
5.1 Introduction 365
5.2 Methods of Preparation of Magnesium Organometallics 366
5.2.1 Direct Insertion of Magnesium 366
<table>
<thead>
<tr>
<th>Contents to Volume 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Contributors</td>
</tr>
<tr>
<td>XIll</td>
</tr>
<tr>
<td>7 Organosilicon Compounds in Cross-Coupling Reactions 475</td>
</tr>
<tr>
<td>Scott E. Denmark and Ramzi F. Sweis</td>
</tr>
<tr>
<td>8 Cross-Coupling of Organyl Halides with Alkenes – The Heck Reaction 533</td>
</tr>
<tr>
<td>Stefan Bräse and Armin de Meijere</td>
</tr>
<tr>
<td>9 Cross-Coupling Reactions to sp Carbon Atoms 665</td>
</tr>
<tr>
<td>Tobias A. Schaub and Milan Kivala</td>
</tr>
<tr>
<td>10 Carbometallation Reactions 763</td>
</tr>
<tr>
<td>Ilan Marek and Yury Minko</td>
</tr>
<tr>
<td>11 Palladium-Catalyzed 1,4-Additions to Conjugated Dienes 875</td>
</tr>
<tr>
<td>Jan-Erling Bäckvall</td>
</tr>
<tr>
<td>12 Cross-Coupling Reactions via π-Allylmetal Intermediates 925</td>
</tr>
<tr>
<td>Anton Bayer and Uli Kazmaier</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contents to Volume 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Contributors</td>
</tr>
<tr>
<td>XIll</td>
</tr>
<tr>
<td>13 Palladium-Catalyzed Aromatic Carbon–Nitrogen Bond Formation 995</td>
</tr>
<tr>
<td>Jan Paradies</td>
</tr>
<tr>
<td>14 The Directed Ortho Metallation (DoM)–Cross-Coupling Nexus. Synthetic Methodology for the Formation of Aryl–Aryl and Aryl–Heteroatom–Aryl Bonds 1067</td>
</tr>
<tr>
<td>Victor Snieckus and Eric J.-G. Anctil</td>
</tr>
<tr>
<td>15 Transition-Metal-Catalyzed Hydroamination Reactions 1135</td>
</tr>
<tr>
<td>Laurel L. Schafer, Jacky C.-H. Yim, and Neal Yonson</td>
</tr>
<tr>
<td>16 Oxidative Functionalization of Alkenes 1259</td>
</tr>
<tr>
<td>Kilian Muñiz and Claudio Martínez</td>
</tr>
<tr>
<td>Chapter</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>