Index

a
alloy
– aluminum-based 148–151, 159, 206
– Ele98 56, 128
– EP79 56, 64, 161, 162, 219, 220
– EP866 56, 64, 188
– Invar 153, 155, 156
– nickel-based 55, 112
– PWA 1480 177, 178, 184
– titanium-based 55, 63, 104, 111, 112, 128ff., 137, 151, 160, 164
– VT 3-1 56, 63, 92, 222
– VT 8 56, 130, 134
– VT 8M 56, 223ff.
– VT 9 56, 128
– Zh56K 56, 125
atomic units 20, 22, 75

b
Bragg angle 45, 46, 127
Bragg formula 41

c
chemical potential 7, 8
coefficient of survivability 133, 134, 224, 225, 231
compressor blades 128ff., 223ff.
– coating 225–226
– dimensions 129
– distribution contact potential difference 135, 136
– fatigue limit 133–136, 223–225
– macroscopic residual stresses 130–133, 144ff.
– redistribution during operation 155, 157
– microscopic parameters 132, 133
– stair method of fatigue test 223–226
– subgrain size 132
computer simulation
– conjugated pairs 89ff.
– electric conductivity 89–92
contact electrical resistance
– behavior during loading and unloading 88–90
– installation 50
contact interaction metallic surfaces 87ff.
contact potential difference 49, 92, 93, 135, 136
– cycle number until fracture 176, 210
d
deep rolling 151, 152
diffraction technique 33ff.
– electron scattering 33–35
– interference function 37
– LEED method 33–40
– measurement of macroscopic residual stresses 40–47
– – experimental installation 44ff.
– measurement of microscopic stresses 47
– patterns 34, 37, 162, 163
– reciprocal lattice 37–40
– RHEED method 40ff.
– X-ray studies 40ff., 125, 138, 228
disks 126–128
dislocation
– density 47, 109, 116, 119, 237–239
– in fatigued aluminum 111
– in fatigued Ti-based alloy 111
– intersections 195
– pile-ups 189–191, 216
– structure of fatigued superalloys 183
– velocity 237
distribution of chemical elements 137ff.
e
electric current pulse 220–223
electron
– density 27–29
– distribution near surface 18, 24–30
– scattering 33–35
– subsystem parameters 22
– surface step distribution 26, 29
energy release rate 168, 171

Strained Metallic Surfaces. Valim Levitin and Stephan Loskutov
Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-32944-9
Index

f
 fatigue 103ff., 181ff., 219ff.
 -- computer simulation 115–121, 237–239
 -- -- parameter evolutions 118ff.
 -- -- system of differential equations 115ff.
 -- dislocation interaction 181, 184
 -- empirical and semi-empirical models 165ff.
 -- failure evolution 205–207
 -- life 135, 140, 147ff., 215, 220, 222
 -- -- effect of surface treatment 147–153
 -- -- prediction 171ff., 173ff.
 -- periods 192–194
 -- physical mechanism 181ff.
 -- prediction of location 103ff.
 -- reversibility 109, 112, 187, 188
 -- strength prediction 173–178
 fatigues crack
 -- classification 168, 169
 -- dependence on physical parameters 195–198
 -- embryo size 188, 192, 207
 -- growth 195ff., 210, 212, 237–239
 -- -- acceleration 202, 203
 -- -- condition 192
 -- -- rate 169, 170, 195–205, 237–239
 -- -- vacancy mechanism 195–198
 -- in linear elastic fracture mechanics 166ff.
 -- in model crystal 171–172
 -- incubation length 206
 -- incubation period 192–194
 -- -- dependence on stress amplitude 192, 193
 -- influence of gas adsorption 215
 -- influence of structure factors 143
 -- length 192ff., 201–203, 206
 -- -- effect of cycling time 201
 -- needle-like tip 204, 210
 -- origination 148, 150, 181–187, 192
 -- prediction of location 104, 134–136
 -- propagation 169, 171, 192, 194
 -- stress gradient at tip 197, 204, 208, 209, 212, 237–239
 -- tip size 204, 210
 fatigue limit 124, 126, 133, 134, 137, 141, 223–226
 fatigue performance improvement 219ff.
 -- by combined treatment 219–226
 -- by intermediate heat treatment 219, 220
 -- by means of electric pulses 220–223
 free electron model 18, 20–23
 free energy 8–10, 188, 191, 192
 friction
 -- coefficient 96–100
 -- effect on the work function 95–100
 -- surface structure 95–99

g
 gas adsorption 215
 gas-turbine
 -- components 123–127, 128ff., 129
 -- surface residual stresses 124, 130, 131
 -- surface treatment 124, 127, 131, 133

l
 incubation period of fatigue crack 192
 indentation of surface layers 53, 87ff.
 intensity stress factor 167ff.
 interference function 35, 37
 intermediate heat treatment 219, 220
 internal energy 7, 188
 intrusions and extrusions 184–187

j
 jellium model 27, 73ff., 74
 J-integral 176

k
 Kelvin technique 49–51

m
 mechanical indentation 87ff.
 -- elastic unloading 89
 -- elastic-plastic loading 87, 89
 -- Hertz problem 87
 metals
 -- Al 59, 63, 71, 111, 117, 118
 -- Cu 59, 71, 184, 185
 -- Ni 27, 59, 71
 -- Ti 27
 microstructure 95, 161
 -- stability 161–165
 model of free electrons 20–23
 modeling
 -- fatigue 115ff., 237ff.
 -- -- changes in parameters 237
 -- -- equations 115–118, 237–238
 -- -- work function 73ff., 76–82

n
 nanometric defects 16, 17, 81–82
 nanostructuring of metal surface 143, 162

p
 Paris equation 168–171
 persistent slip bands 186–187
 physical mechanism
 -- fatigue 181ff.
 -- -- crack growth 195, 237–239
 -- -- crack origination 181, 184–192
 -- -- work function decrease 63, 65–66
reduced amplitudes of atomic vibrations 23
relaxation 154ff.
residual stresses
 classification 41
 distribution in depth 47, 144–148, 158
 macroscopic 41–44, 131, 222, 230, 231
 microscopic 41, 133, 222, 230, 231
 redistribution under cycling 154ff., 156, 158, 160
 X-ray measurement 40ff.
 -- installation 44–47
S - N curves 150, 151, 154, 213–215
 -- for titanium-based alloys 214
Schrödinger equation 20
shot peening 131, 132, 134, 212
specimens for fatigue tests 56
steel
 316L 150, 161, 163
 AISI 1080 159, 204
 AISI 304 148, 152, 154, 159
 AISI 4340 148, 152, 154, 159
 low-alloy 174
 structural 161
strain-emission phenomenon 66
strained metallic surfaces 59ff., 143, 184ff.
 -- compressor blades 128ff., 130–133
 -- fatigue strength 150–153
 -- gas-turbine components 123ff.
 -- grooves of disks 126–128
 -- structure stability 161ff.
 -- turbine blades 124
stress intensity factor 167ff.
structure parameters
 -- affecting fatigue crack 143
 -- macroscopic 41, 222, 230
 -- microscopic 47, 222, 230
 -- physical models 115ff., 237ff.
 -- structure relaxation 161ff., 220
subgrain size 132
superalloy
 -- EP479 64, 219–220
 -- EP866 64, 119, 120, 188
 -- MAR-M509 177
 -- PWA 1480 177, 178, 184
 -- ZhS6K 125
superstructure notation 13
surface
 -- crystal structure 11ff.
 -- defects 14ff.
 -- distribution of electrons 18
 -- jellium model 27, 73–76
 -- distribution of residual stresses 144–148, 156
 -- energy 8–11, 208
 -- indentation 53, 87
 -- intrusions and extrusions 184–187
 -- nanometric defects 16, 17, 81, 82
 -- nanostructuring 162
 -- peculiarities 7ff.
 -- profile 144
 -- relaxation 11
 -- stress 9–11
 -- superstructure 13
surface steps 15–17, 65ff.
 -- density 65
 -- effect on work function 65ff.
 -- formation 15
 -- in Au and Pt 65
 -- in fatigued metals 118, 119
 -- surface treatment 147–153
 -- by bearing balls in ultrasonic field 90, 125, 131, 134, 137, 145–148, 222
 -- by deep rolling 151, 152, 164, 214, 215
 -- by ion-plasma nitriding 146, 157
 -- by shot peening 131, 132, 134, 137, 145, 151–154, 212, 214, 215
 -- by vibratory polishing 134, 137, 154
thermomechanical crack growth 176, 177
threshold stress 109
titanium nitride covering 225–226
turbine blades 124–126
ultra-violet irradiation 51
 -- influence on work function 67, 68
vacancy 14
 -- concentration 237–239
 -- displacement to crack tip 198
 -- generation 195
 -- number of jumps per cycle 210–213
 -- velocity 197, 200
wear 95
work function 79
 -- above future fatigue crack 104–106
 -- definition 48–50
 -- dependence on
 -- adsorption 67–70
 -- cycling 105, 108, 187, 221
 -- elastic strain 59–60
 -- friction and wear 95–100
wave function 20, 24, 25
Index

– – heating 67, 69
– – nanometric defects 82
– – plastic strain 61–64
– – roughness 90, 93, 101
– experimental installation 50, 51
– fatigue predict possibility 104, 134–136
– fatigued metals 104, 188, 220
– measurement 52
– modeling 73ff.
– – development of model 76, 78
– – elastic strained single crystal 73–76
– – influence of nanometric defects 81–82
– – neutral orbital electronegativity 78–81
– reversibility 108, 109, 188
– strained surfaces 61–64
– – for metals 61–64
– – for superalloys 64, 188
– – for titanium-based alloys 64
– – physical mechanism 65–66
– variation during fatigue tests 105, 108, 188, 220

X
X-ray measurement of residual stresses 40–44
– installation 44–47
X-ray reflection 46, 130, 132, 141, 165, 228
– shift 41
– width 165, 174