Contents

Introduction 1

1 Peculiarities of the Metallic Surface 7
1.1 Surface Energy and Surface Stress 7
1.2 Crystal Structure of a Surface 11
1.3 Surface Defects 14
1.4 Distribution of Electrons near the Surface 18
1.4.1 Model of Free Electrons in Solids 20
1.4.2 Semi-Infinite Chain 24
1.4.3 Infinite Surface Barrier 26
1.4.4 The Jellium Model 27
1.5 Summary 30

2 Some Experimental Techniques 33
2.1 Diffraction Methods 33
2.1.1 The Low-Energy Electron Diffraction Method 33
2.1.2 The Reflection High-Energy Electron Diffraction Method 40
2.1.3 The X-ray Measurement of Residual Stresses 40
2.1.3.1 Foundation of the Method 41
2.1.3.2 Experimental Installation and Precise Technique 44
2.1.4 Calculation of Microscopic Stresses 47
2.2 Distribution of Residual Stresses in Depth 47
2.3 The Electronic Work Function 48
2.3.1 Experimental Installation 50
2.3.2 Measurement Procedure 52
2.4 Indentation of Surface. Contact Electrical Resistance 53
2.5 Materials under Investigation 55
2.6 Summary 56
Contents

3 **Experimental Data on the Work Function of Strained Surfaces**
 3.1 Effect of Elastic Strain
 3.2 Effect of Plastic Strain
 3.2.1 Physical Mechanism
 3.3 Influence of Adsorption and Desorption
 3.4 Summary

4 **Modeling the Electronic Work Function**
 4.1 Model of the Elastic Strained Single Crystal
 4.2 Taking into Account the Relaxation and Discontinuity of the Ionic Charge
 4.3 Model for Neutral Orbital Electronegativity
 4.3.1 Concept of the Model
 4.3.2 Effect of Nanodefects Formed on the Surface
 4.4 Summary

5 **Contact Interaction of Metallic Surfaces**
 5.1 Mechanical Indentation of the Surface Layers
 5.2 Influence of Indentation and Surface Roughness on the Work Function
 5.3 Effect of Friction and Wear on Energetic Relief
 5.4 Summary

6 **Prediction of Fatigue Location**
 6.1 Forecast Possibilities of the Work Function. Experimental Results
 6.1.1 Aluminum and Titanium-Based Alloys
 6.1.2 Superalloys
 6.2 Dislocation Density in Fatigue-Tested Metals
 6.3 Summary

7 **Computer Simulation of Parameter Evolutions during Fatigue**
 7.1 Parameters of the Physical Model
 7.2 Equations
 7.2.1 Threshold Stress and Dislocation Density
 7.2.2 Dislocation Velocity
 7.2.3 Density of Surface Steps
 7.2.4 Change in the Electronic Work Function
 7.3 System of Differential Equations
 7.4 Results of the Simulation: Changes in the Parameters
 7.5 Summary
12 Supplement I 233
12.1 List of Symbols 233
12.1.1 Roman Symbols 233
12.1.2 Greek Symbols 235

13 Supplement II 237
13.1 Growth of a Fatigue Crack. Description by a System of Differential Equations 237
13.1.1 Parameters to be Studied 237
13.1.2 Results 238

References 243

Index 247