Index

a
abnormal state  8
adequacy (static reliability)
  expected demand not supplied (EDNS)  3
  expected energy not supplied (EENS)  3
loss of load duration (LOLD)  3
loss of load expectation (LOLE)  2
loss of load frequency (LOLF)  2–3
loss of load probability (LOLD)  2
safety state  9
alert state  9
artificial neural network (ANN)  37–38
automatic control theory  33–34
  classical control theory  34–35
  intelligent control theory
    artificial neural network  37–38
    expert system  37
large system theory  
  decentralized control theory  36–37
  hierarchical control theory  36
modern control theory
  multivariable linear system theory  35
  optimal control theory  36
  optimal estimation and system identification theory  35–36
automatic restoration control  15
line improvement schemes, system
  stability  133
  power flow  134
  state transfer probability  134
  value of $\mu$  135
multiple operating conditions  122–123, 124–125
discrete Markov process  121–122
disturbance attenuation  123, 125
Lyapunov functional  123, 125
optimization problem  126
Schur complement theorem  123, 125
stability criterion  126
stability degree index  127
state-related matrix  123
stochastic instability cases  130–133
stochastic stability analysis  128–130
multivariable frequency response plots  128
operation mode adjustment schemes, system stability  135, 136
relative power angle  137
state transfer probability  136
value of $\mu$  136
theoretical analysis  120–121
classical control theory  34–35
Classification and Regression Trees (CART)
algorithm and performance evaluation  273–274

C
cascading failure, power system  119–120
  generator power angle instability  135
  inter-area modes  127

© 2018 Science Press. Published 2018 by John Wiley & Sons Singapore Pte. Ltd.
attribute selection and data set generation 271–273
combination factors 287
dynamic responses, closed-loop system 286, 288
formation of 279–291
multiple-input-multiple-output system 268, 270–271
output trajectory 282–283, 285
postdisturbance operating condition 282
relative angular separations, closed-loop system 282–283, 285
test system 274–279
complementary cluster center of inertia (CCCOI) 118
conditional wind speed probability density
calculation of patterns of 147
Weibull fitting coefficient of 147
wind generator power curve 146
definition 137–138
and wind generator power output model
double-parameter Weibull distribution 138
probability distribution function 138
continuous Markov model
load variation 315–318
matrix variables and constant variables 309
robust stochastic stability criterion 304–307
Schur complement theorem 308
steady-state error 307
system identification 310–311
time-varying power system 303–304
uncertainty conditions 309
wind generator output power fluctuation 311–315
conventional control methods
error tracking robust control
control algorithm 245–248
simulation verification 248–251
H₂ control theory and H∞ control theory
polytope uncertainty 221–226
uncertainties, for damping oscillation 214–221
nonconvex stable region
closed-loop system 229
constraint conditions 231
four-machine test system 231–234
Gutman theorem 227
inter-area oscillation frequency 228
linear inequalities 230
linear time-invariant system 228
Lyapunov first method 227
oscillation mode system 227
sixteen-machine test system 234–236
undamped inner-area oscillation modes 230
perfect regulation control
frequency-domain results and analysis 241–242
mathematical background 238–241
time-domain results and analysis 242–243
damping ratio 31, 84, 95, 112, 118, 152
decentralized control theory 36–37
discrete Markov power system model
cascading failure 319
linear matrix inequality (LMI) 322
operating condition changes 325–327
operating condition set 325–326
probability density matrix 324
QR method 324
reduced-order state matrix and transfer probability matrix 325
robust stochastic stability criterion 322
robust stochastic stabilization 319–320
Schur complement lemma 322
stability criterion 319
state transfer probability 325
steady-state variance 320
switch structure 323–324
system operating conditions 324
uncertain parameters 319
dual Youla parameterization 253
frequency-domain results and analysis 295, 297
input-output characteristics 294
load changes 294
multiple-input-multiple-output system 288–292
output feedback design 292
phasor measurement unit (PMU) 295
Schur model reduction 294
test system 292
time domain results and analysis 297–303
dynamic model of load
definition 28
electromechanical transient process 29
mechanical transient process 28–29
Dynkin lemma 144, 145
eigenvalue analysis method
advantages 32
damping ratio 31
oscillation frequency 31
oscillation mode and state variables 32
partial eigenvalue method 32
participation factor 32
steady-state operating point 31
whole eigenvalue method 32
emergency control 13–14
emergency state 9
error tracking robust control
control algorithm 245–248
simulation verification 248–251
excitation system, mathematical model
AC 22
DC 22
negative feedback output voltage 24
simplified mathematical model 23
stabilizer 23
stationary 22
voltage regulator 23
expected demand not supplied (EDNS) 3
expected energy not supplied (EENS) 3
expert system (ES) 37
extended equal area criterion (EEAC) 118
fault system, model-trajectory-based method
fault model, equivalence of
fault component network 103, 104, 105
mutual factor matrix 104
node voltage equation 102
two-machine system 102, 103
sixteen-generator system, simulation analysis of
equilibrium point method, MSE of 118, 119
fault type 113
simulation results 113–117
time-varying oscillation characteristic analysis 105–106
two-generator equivalence system, simulation of 106
equilibrium point method, MSE of 112, 113
fault type 107
simulation results 107, 108–111
federated Kalman filter
application 266–268
confidence interval of Chi-square variables 257–258
controller design 261–262
frequency-domain results and analysis 262
robust control 254–255
federated Kalman filter (cont’d)
test system 258–261
time-domain results and analysis 262–266
time-varying Kalman filter and $\chi^2$ variables 255–257
first-order perturbation 74
of eigenvectors 75, 77
oscillation mode, changes of 79, 80, 81, 82
small parameter modification 76
flexible AC transmission (FACTS) 57
four-machine 11-node system boundary of ISSSR, calculation of 94, 95
calculation steps 91–92
guardian map-based method 93, 94
parameter variables 91
point-by-point method 94
stability region 92–93
time-domain simulation 94, 96, 97
excitation system parameters on ISSSR
magnification factors 96, 97, 98
time constants 98
major parameters of 89, 90
single-parameter system, test of 89, 91
frequency stability 6

g
Gauss process 156
global power system stabilizers (GPSSs)
normalized controllability 63, 64
relative angular separations 66–69
synthesis configuration 63
guardian map theory, SSSR calculation method
ISSSR (see improved small-signal stability region (ISSSR))
multiparameter system 86–88
simulation verification
four-machine 11-node system 89–98
16-machine 68-node system 99–101

h
H$_2$ and H$_\infty$ control theory
damping oscillation, uncertainties, for closed system 214
frequency domain results and analysis 218–219
linear time invariable model 214
LMI-based H$_2$/H$_\infty$ controller 215–218
test system 218
time domain results and analysis 220–221
polytope uncertainty
mathematical background 221–223
testing results and analysis 224–226
test system 223–224
hierarchical control theory 36
high-voltage direct circuit (HVDC) 48, 51, 54, 57
Hopf bifurcation (HB) 83
Hurwitz matrix 85, 86, 87, 88
hydraulic turbine
dynamic characteristics of 24
simplified model of 24
speed governor of 25

i
improved small-signal stability region (ISSSR) 82–83, 153
complex plane boundary 84
decomposition of 88
definition 84
four-machine 11-node system 94, 95
calculation steps 91–92
excitation system parameters, influence of 96–98
guardian map-based method 93, 94
parameter variables 91
point-by-point method 94
stability region 92–93
time-domain simulation 94, 96, 97
Index

16-machine 68-node system 99
   guardian map-based method 99
   point-by-point method 99
   time-domain simulation 100, 101
negative half-plane to 88–89
reduced-order linear differential equations 83
Institute of Electrical and Electronic Engineers (IEEE) 4
   intelligent control theory
      artificial neural network 37–38
      expert system 37
   interval model and second-order perturbation theory-based modal analysis
      inter-area modes 78
      oscillation mode, changes of 79, 80, 81, 82
   power system, complex modal perturbation in 74–78
   testing results and analysis 78–82

time-delay Markov jump 198–201
   upper bound 201–203

large system theory
   decentralized control theory 36–37
   hierarchical control theory 36
   linearized system model 83
load, mathematical model
   dynamic model
      electromechanical transient process 29
      mechanical transient process 28–29
   static model 27–28
load power fluctuation 194–195
local power system stabilizers (LPSSs) 62, 63
loss of load duration (LOLD) 3
loss of load expectation (LOLE) 2
loss of load frequency (LOLF) 2–3
loss of load probability (LOLD) 2
Lyapunov direct method. see transient energy function method
Lyapunov stability theory 83

Markov theory 253
mathematical model of power system
   dynamic model of load
      electromechanical transient process 29
      mechanical transient process 28–29
   excitation system
      AC 22
      DC 22
      negative feedback output voltage 24
      simplified mathematical model 23
      stabilizer 23
      stationary 22
      voltage regulator 23
prime mover and speed governor
   hydraulic turbine 24–25
   steam turbine 25–27
### Index

mathematical model of power system (cont’d)
- static model of load 27–28
- synchronous generator electromechanical transient analysis 20
- fifth-order practical model 20–21
- Park model 17–19
- sixth-order practical model 21

mean square errors (MSE) 113, 118, 119

modern control theory
- multivariable linear system theory 35
- optimal control theory 36
- optimal estimation and system identification theory 35–36
- multivariable linear system theory 35

n
- New England Test System (NETS) 42, 43, 62, 78
- New York Power System (NYPS) 42, 43, 62, 78

nonconvex stable region
- closed-loop system 229
- constraint conditions 231
- four-machine test system 231–234
- Gutman theorem 227
- inter-area oscillation frequency 228
- linear inequalities 230
- linear time-invariant system 228
- Lyapunov first method 227
- oscillation mode system 227
- sixteen-machine test system 234–236
- undamped inner-area oscillation modes 230

non-jump time-delay system
- conservativeness analysis 168
- DFIG model 169–171
- generator damping coefficient variation 180–182
- generator excitation magnification factor variation 179–180
- high excitation magnification operation state 166–168

interconnected power system modeling and analysis 171–175, 176–177

Ito differential and Lyapunov stability theory 155

overload operation state 161–163

stochastic disturbance 155

stochastic excitation intensity variation 177–179

stochastic power system 156–160

upper bound 160–161, 175–176

weak damping operation state 163–165

normal state 8

o
- optimal control theory 36
- optimal estimation and system identification theory 35–36
- oscillatory instability 253
- oscillatory stability 253
- out-of-step and overload control 14–15

output feedback
- closed-loop eigenvalues and eigenvectors 46
- closed-loop state matrix 45, 46
- first-order perturbation eigenvalue 47
- first-order perturbation vector 46
- natural interval extension theory 45
- orthogonal condition yields 46
- perturbation theory 45
- signal redundancy problem 47
- system operation mode 47
- variation matrix 45

p
- Park model 17–19
- polar coordinate conversion method 87

polytope uncertainty
- mathematical background 221–223
- testing results and analysis 224–226
- test system 223–224

power angle stability 5–6
power system operation states
abnormal state 8
safety state 9
alert state 9
emergency state 9
normal state 8
restoration state 9–10
power system security defense
“8–14” blackout 1
defense lines 1
functions
emergency control 13–14
out-of-step and overload control 14–15
prevention control 12–13
splitting 15
go geographical distribution 1
power grid stable operation and control 1
reliability 2–7
stability 4–7
three defense lines
classification of disturbance 7–8
power system operation state 8–10
power system stability control 10–12
transient and dynamic behaviors 1
prevention control 12–13
prony algorithm 163, 204–205, 207

security (dynamic reliability)
load constraint 3–4
operation constraint 4
selective modal analysis (SMA) 127, 128
selective mode analysis (SMA) 89, 99
singularity induced bifurcation (SIB) 83, 84
small-signal stability region (SSSR) 82–83
boundary of 83
definition 83
ISSSR (see improved small-signal stability region (ISSSR))
multiparameter system 86–88
simulation verification
four-machine 11-node system (see four-machine 11-node system)
16-machine 68-node system (see 16-machine 68-node system)
single parameter system 85–86
theoretical foundation 85
splitting 15
SSSR calculation method. see small-signal stability region (SSSR)
stability analysis
stochastic excitation system (see stochastic excitation system)
stochastic parameter system (see stochastic parameter system)
stochastic structure system (see stochastic structure system)
state feedback 44–45, 48–52
static model of load 27–28
static stability/small disturbance stability 4
steam turbine
dynamic characteristics of 25
first-order simplified model 25
second-order simplified model 26
speed governor of 26–27
third-order simplified model 26
stochastic excitation system 74
conditional wind speed probability density matrix, calculation of conditional wind speed, patterns of 147

R
restoration state 9–10
robust control 253
Runge Kutta method 30

S
saddle node bifurcation (SNB) 83, 84
Schur balance order reduction method 188
Schur complement theorem 123, 125
Schur theorem 143
second-order perturbation 74
of eigenvectors 75, 77
expansion theorem 76
oscillation mode, changes of 79, 80, 81, 82
security (dynamic reliability)
load constraint 3–4
operation constraint 4
selective modal analysis (SMA) 127, 128
selective mode analysis (SMA) 89, 99
singularity induced bifurcation (SIB) 83, 84
small-signal stability region (SSSR) 82–83
boundary of 83
definition 83
ISSSR (see improved small-signal stability region (ISSSR))
multiparameter system 86–88
simulation verification
four-machine 11-node system (see four-machine 11-node system)
16-machine 68-node system (see 16-machine 68-node system)
single parameter system 85–86
theoretical foundation 85
splitting 15
SSSR calculation method. see small-signal stability region (SSSR)
stability analysis
stochastic excitation system (see stochastic excitation system)
stochastic parameter system (see stochastic parameter system)
stochastic structure system (see stochastic structure system)
state feedback 44–45, 48–52
static model of load 27–28
static stability/small disturbance stability 4
steam turbine
dynamic characteristics of 25
first-order simplified model 25
second-order simplified model 26
speed governor of 26–27
third-order simplified model 26
stochastic excitation system 74
conditional wind speed probability density matrix, calculation of conditional wind speed, patterns of 147

R
restoration state 9–10
robust control 253
Runge Kutta method 30

S
saddle node bifurcation (SNB) 83, 84
Schur balance order reduction method 188
Schur complement theorem 123, 125
Schur theorem 143
second-order perturbation 74
of eigenvectors 75, 77
expansion theorem 76
oscillation mode, changes of 79, 80, 81, 82

stochastic excitation system (cont’d)
  four-machine system  147–149
  sixteen-machine system  150–152
  Weibull fitting coefficient of wind generator power curve  146
multiple operating conditions system, conditional wind speed proba-
density and wind generator power output model  137–138
  continuous Markov process  139–142
  stochastic characteristic of wind power  142–146
  stochastic initial value  73
stochastic parameter system  73
  interval model and second-order perturbation theory-based modal analysis
  inter-area modes  78
  power system, complex modal perturbation in  74–78
  testing results and analysis  78–82
power system SSSR calculation method, guardian map theory
  ISSSR  83–84, 88–89
  multiparameter system  86–88
  single parameter system  85–86
  theoretical foundation  85
stochastic structure system  73–74
  angle stability analysis of power system, cascading failure  119–120
  multiple operating conditions  121–127
  simulation analysis  127–137
  theoretical analysis  120–121
  model-trajectory-based method, fault system equivalence of  102–105
  mean square errors  118, 119
  sixteen-generator system, simulation analysis of  113–118
time-varying oscillation characteristic analysis  105–106
  two-generator equivalence system, simulation of  106–113
synchronous generator, mathematical model
  classical second-order model
  rotor motion equation  22
  stator voltage equation  21
electromechanical transient analysis  20
  fifth-order practical model
  damping winding voltage equation  20
  excitation winding voltage equation  20
  rotor motion equation  20
  stator voltage equation  20
Park model
  electromagnetic power equation  19
  electromagnetic torque equation  19
  flux equation  19
  ideal generator  18
  rotor motion equation  19
  voltage equation  18
sixth-order practical model
  damping winding voltage equation  21
  excitation winding voltage equation  21
  rotor motion equation  21
  stator voltage equation  21
three-phase  18
time-delay model, jump characteristic power system
  closed-loop power system  327
  IEEE 16-machine system  331–332
  inter-area oscillation  330
  Lyapunov-Krasovskii functional  329
  matrix inequalities  330
  nonlinear items  330
  Schur complement method  330
Index

simulation tests 332–339
state transfer probability 329
transfer probability density 329
time delay, on power system stability
jump time-delay system
discrete Markov theory 182–196
fault chain theory 196–198
GEVP method 156
Lyapunov–Krasovskii functional 155–156
Markov process 155
Newton-Leibniz formula 156
simulation analysis 203–208
transfer probability matrix 156
upper bound 201–203
non-jump time-delay system
conservativeness analysis 168
DFIG model 169–171
generator damping coefficient variation 180–182
generator excitation magnification factor variation 179–180
high excitation magnification operation state 166–168
interconnected power system modeling and analysis 171–175, 176–177
Ito differential and Lyapunov stability theory 155
overload operation state 161–163
stochastic disturbance 155
stochastic excitation intensity variation 177–179
stochastic power system 156–160
upper bound 160–161, 175–176
weak damping operation state 163–165
time-domain simulation method
differential equations 29, 30
Runge Kutta method 30
trapezoid method 30
transient energy function method 33
transient stability/large disturbance stability 5
trapezoid method 30
V
voltage stability 6
W
Western Electricity Coordinating Council (WECC) 43, 127
wide-area adaptive control
Classification and Regression Trees (CART)
algorithm and performance evaluation 273–274
attribute selection and data set generation 271–273
combination factors 287
dynamic responses, closed-loop system 286, 288
formation of 279–291
multiple-input-multiple-output system 268, 270–271
output trajectory 282–283, 285
postdisturbance operating condition 282
relative angular separations, closed-loop system 282–283, 285
test system 274–279
continuous Markov model
load variation 315–318
matrix variables and constant variables 309
robust stochastic stability criterion 304–307
Schur complement theorem 308
steady-state error 307
system identification 310–311
time-varying power system 303–304
uncertainty conditions 309
wind generator output power fluctuation 311–315
discrete Markov power system model
cascading failure 319
linear matrix inequality (LMI) 322
operating condition changes 325–327
Index

wide-area adaptive control (cont’d)
operating condition set 325–326
probability density matrix 324
QR method 324
reduced-order state matrix and
transfer probability matrix 325
robust stochastic stability
criterion 322
robust stochastic stabilization
319–320
Schur complement lemma 322
stability criterion 319
state transfer probability 325
steady-state variance 320
switch structure 323–324
system operating conditions 324
uncertain parameters 319
dual Youla parameterization
frequency-domain results and
analysis 295, 297
input-output characteristics 294
load changes 294
multiple-input-multiple-output
system 288–292
output feedback design 292
phasor measurement unit
(PMU) 295
Schur model reduction 294
test system 292
time domain results and analysis
297–303
federated Kalman filter
application 266–268
confidence interval of Chi-square
classical 257–258
controller design 261–262
frequency-domain results and
analysis 262
robust control 254–255
test system 258–261
time-domain results and analysis
262–266
time-varying Kalman filter and \( \chi^2 \)
variables 255–257
oscillatory instability 253
oscillatory stability 253
robust control 253
stability control, effect of 253
time-delay model, jump characteristic
power system
closed-loop power system 327
IEEE 16-machine system 331–332
inter-area oscillation 330
Lyapunov-Krasovskii
functional 329
matrix inequalities 330
nonlinear items 330
Schur complement method 330
simulation tests 332–339
state transfer probability 329
transfer probability density 329
wide-area controller optimal selection
collocated controller design, GPSS
based on
normalized controllability 63, 64
synthesis configuration 63
frequency domain results and analysis
64–65
inter-area modes 62
mathematical background
eigenvalues of system 60, 61
Frobenius norm problem 61
large-space structure system 57
left-half plane 60
linear time-invariant system 60
multimodel decomposition 61
time-domain results and analysis
relative angular separations, GPSSs
66–69
time delays 69–70
wide-area information monitoring
optimal selection of
wide-area controllers (see wide-area
controller optimal selection)
wide-area signals (see wide-area
signal optimal selection)
test system
four-generator two-area system
41–42
sixteen-generator system 42–43
WECC 43
wide-area measurement system
(WAMS) 41
wide-area robust control
error tracking robust control
control algorithm 245–248
simulation verification 248–251
$H_2$ control theory and $H_{\infty}$ control theory
polytope uncertainty 221–226
uncertainties, for damping oscillation 214–221
nonconvex stable region
closed-loop system 229
constraint conditions 231
four-machine test system 231–234
Gutman theorem 227
inter-area oscillation
frequency 228
linear inequalities 230
linear time-invariant system 228
Lyapunov first method 227
oscillation mode system 227
sixteen-machine test system 234–236
undamped inner-area oscillation modes 230
perfect regulation control
frequency-domain results and analysis 241–242
mathematical background 238–241
time-domain results and analysis 242–243
wide-area signal optimal selection
contribution factor
closed-loop state equation 44
output feedback (see output feedback)
state feedback 44–45
four-machine system
state feedback control signal 48–52
test system 42, 48
sixteen-machine system 52
contribution factors 53
dynamic responses of 54, 55–56, 57, 58–59
geometric indexes 53, 54
open-loop and closed-loop systems, dominate modes of 53, 54
wind speed, multiple operating conditions system
conditional wind speed
probability density (see conditional wind speed probability density)
continuous Markov process
DFIG model 140
pitch angle control system
model 141
rotor current control equations 140
rotor current equations 140
rotor flux equations 140
rotor voltage equations 141
shaft model 141
sixth-order model 139
state transfer probability density 142
stator voltage equations 140
power system, stability analysis of 142
Dynkin lemma 144, 145
Lyapunov functional 143
optimization problem 145
Schur theorem 143

$y$
Youla parameterization control theory 214, 244
Youla parameterization matrix 245, 246