Index

A

Acidithiobacillus ferrooxidans, 42
Acid mine drainage (AMD), 42
Acid neutralization, 284–285
Acid-rock drainage (ARD), 41–43
Acquisition prices, 165
Activated sludge process, 229
Adsorption, 226–227, 289–290
 theoretical considerations, 289–290
Advanced oxidation process (AOP), 222
Agglomeration. See Product
AHO. See Assisted hydrothermal oxidation
Air concentrators, 327–329
Air cyclones, 330–331
Air pollution, 252–253
 equivalence index, 198
Air stripping, 213–214
Allocation methodology, 189
Alluvial mining, 16
Alternative building materials,
 environmental life-cycle analysis
 introduction, 180
 references, 205–206
Aluminum
 material, 244
 packages, recycling, 264
Ambient conditions, temperature/pressure
 (increase), 389–390
American Plastics Council (APC), study, 365
Annex V of the International Convention
 for the Prevention of Pollution from
 Ships (MARPOL), 252
Apron feeders, 342–343
Aquatic mining, 16–20
Aqueous processing
 potential/limitations, 281
 unit operations, 281–296
Aqueous systems, unit activity, 51
Arbitrary scaling, 198
Arrhenius-form rate constant, 410
Aseptic packaging, 265
ASR. See Automotive shredder residue
Assisted hydrothermal oxidation (AHO), 398
Association of Plastics Manufacturers in
 Europe (APME), 262
Athena EIE software, 202
Athena Sustainable Materials Institute, 182
Attrition force, 312
Audit exercise, planning, 135–139
Audit programs
 department, informing, 139
 development, 137–138
Audit team, formation, 134–135
Audit workplan/checklists, preparation, 138
Automotive shredder residue (ASR), 374–375

B

Backfilling/grading, 25
Balers, 351–352
Baling, 351–352
Ballistic separation, 341
Baseline information, collection, 139–141
Basic oxygen furnaces (BOF), 45–46
Bed depth service time (BDST) method, 227
Belt conveyors, 345–346
Bench-scale laboratory, 99
Best available technology (BAT), 209
Best practicable control technology
 (BPT), 209
Biodegradable plastics, 247
Biodegradable polymers, disposal, 266–267
Biological aerated filters (BAFs), 231–232
Biological methods, 291
Biological oxygen demand (BOD), 252
Biological waste treatment, 228–232
 treatment processes, 228–229
Blast furnaces, feedstock recycling use, 260
Blister copper, 47
Bottle bill
 passage, 368
 states, 369
Briquetting, 349
Bucket elevators, 347–348
 capacity, 347
C
Cake filters, 216
Carbon, adsorption, 290
Carbon dioxide, 48–50
Casting sands, 46
Catalysis, 414
Categorial pretreatment standards, 209
Cationic species, removal, 295
Cellophane composites, 246
Cementation, phenomenon, 286
Centralized RPSs, 165–167
Chematur Engineering AB, 404
Chemical metallurgy wastes, 43–57
Chemical oxidation/reduction, 222–224
Chemical oxygen demand (COD), 145, 252
Chemical plant operations, waste reduction, 89
 introduction, 90–93
 references, 121–124
Chemical plants, life cycles
 economic features, 61–63
 environmental features, 63–67
Chemical processing plants, life-cycle evaluation, 59
 references, 87–88
Chemical processing plants, life cycles, 59–61
 phases, 60
Chemical recycling, 377
Chemical treatment technologies, 219–227
Clarification, 214
Clarifying filters, 216
Classification, 318–323
Clay minerals, adsorption, 290
Clean Air Act of 1977, 47
 Amendments of 1990, 367
Cleaner production
 concept, 64–65
 economics, 78–81
 global applicability, 65
 initiatives, integration, 64
 waste elimination/reduction, 64
Clean Water Act (1987), 207
Closure, activities, 26–29
Collection/cleaning/separation. See Plastics: Recycling
Collection/processing networks, interdependence/viability/growth, 157–159
Commingled plastics, 375
Commingled waste, liberation, 323
Compaction, 351–352
Compactors, 351
Composites, material, 245–247
Compressions, comminution force, 312
Consortium for Research on Renewable Industrial Materials (CORRIM), 185
Copper electrorefining plant, electrolyte usage, 55
Corrosion, 415–417
 studies, 100
Cross-flow filtration, 216
Cubing, 349–350

D
DARPA. See U.S. Defense Advanced Research Projects Agency
Decentralized decision-making framework, 165
Decentralized RPSs, 163–165
Degradable plastics, 247–248
 recovery/recycling, 378
Density separation, 327–331
Development, activities, 8–12
Diffusivity, 386
Dipole-dipole interactions, 389
Disc screens, 322–323
Dissolved air flotation (DAF), 216
Distillation, 219
Downstream boundary tier entities, 162
Downstream tier sites, 165
Dredging, 16
 operational cycle, 17–19
Drift/adit/shaft/slope, usage, 14
Duales System Deutschland (DSD), 258
DuPont, Ten-Step Method of Engineering Evaluations of Pollution Prevention, 105, 107–108
Dust, particulates, 46–47

E
Eco-efficiency, 80–81
Economic incentive instruments, 80
Economic indicators, 82
EC Packaging Directive, 263
Eddy-current separation, 338–340
 applications, 338
 operation, principles, 338–340
Eddy-current separators, performance, 339–340
Effluent, quality, 436–438
Electrical/electronic products, 376–377
Electrochemical process, 225–226
Electrokinetic remediation, 288–289
Electrolysis, 288
Electroosmosis, 288–289
Electrophoresis, 288–289
Electrorefining (ER)/electrowinning (EW), spent electrolytes, 54–56
Electrostatic separation, 331, 340–341
Elementary reaction network modeling, 409–414
End-of-pipe treatment, 128
Energy conversation, advantages, 128 recycling, industrial ecology (extension), 85 savings/recovery, 366–368 use, 250–251
Environmental costs assessment/quantification, frameworks, 105 evaluation, AIChE-CWRT TCA method usage, 105–107
Environmental data, 140
Environmental engineering, 280
Environmental externalities, 79–80
Environmental impact reduction, cost linkage, 76–78
Environmentally conscious practices, 3–4
Environmental planning/permitting, 10–12
Environmental protection, 280–281 issues/challenges, 280–281
Environmental protection, aqueous processing introduction, 279–280 references, 296–305
Environmental stewardship, 35
Equilibrium constant, 53
Equipment selection/specification, 9
Evaporation, 218–219
Exploration, activities, 4–8
Externalities, 79
Extraction, activities, 12–20
Extractive inputs, contrast, 190–191

Flail mill, usage, 316
Flotation, 216–217
Flowsheet analysis, hierarchical design procedures, 115
Fluid clean-up, providing, 440
Froth flotation, 342

G
Gas effluents, 437
Gaseous emissions, measurement, 147
Gaseous wastes, 47–50
Gasification, feedstock recycling use, 261
General Atomics, 405, 408
Geophysical surveys, 6–8
Gibbs adsorption equation, 295–296
Glass material, 243 recycling, 263–264
Global kinetics, 409–414
Global material flows, uncertainties, 159–161
Granular activated carbon (GAC), 227
Gravity separation, 327–331
Green chemistry, 96
Ground granular blast furnace slag (GGBFS), 46

H
Hammer mills, usage, 313–315
Handling system, 342, 345–349
Hand sorting calculation, data (usage), 324 electronic sorting, contrast, 323–326 line, design criteria, 323–325 Hanwha Chemical Corp., 404 Hazard and Operability (HAZOP) analysis/studies, 114
HDPE. See High density polyethylene Heat exchangers, fouling rates, 100 Heating value/concentration, 417–418 Heat integration, 117 Heavy media separators, 331 High-acid testing results, 433 High density polyethylene (HDPE), 358 bottle recycling, 365 Higher heating value (HHV), 418 High heating value liquid, usage, 421

F
Feeders, 342–343
Feeding systems, 342–345

Index
High-value recycled plastics, production, 382
High-water-content feeds, minimization, 394
House designs, comparison, 201–204
Household packaging, contamination, 361
Housekeeping processes, audit, 136
Hydraulicching, 3, 16
 precautions, 19–20
Hydraulic retention times (HRTs), 229
Hydrogenation, feedstock recycling use, 261–262
Hydrometallurgical processing wastes, 50–57
Hydrometallurgical wastes, 39–41

I
IAPWS. See International Association for the Properties of Water and Steam
Impact, size-reduction force, 312
Impact assessment, 182
Impact categories, development, 196–197
Impactors, usage, 313–315
Improvement analysis, 201–204
Incremental sampling, 311
Industrial ecology, 83–85, 109
 Australian example, 84–85
 example, 85f
Industrial pollution, perception (change), 127
Industrial sectors, materials integration, 109
Industrial waste auditing, 125
 overview, 125–126
 references, 153
Industry data, 140
Inert solids, handling, 434–435
Infrastructure/surface facilities
design/construction, 9–10
Injection-molded products, 375
Input-oriented categories, output-oriented
categories (contrast), 197–198
International Association for the Properties of Water and Steam (IAPWS), 409
International commitments, change, 127
International Organization for Standards (IOS), 182
Intrinsic viscosity (IV), decrease, 370
Inventory analysis, 75
Inventory processes, audit, 136
Ion exchange, 226–227, 291–293
theoretical considerations, 292–293
Ion flotation, 294
Island Copper Mine, case study, 29–31

J
Jet-induced recirculation flow, 421

K
Kinetic studies, trends, 413–414
Klobbie-based intrusion processes, 375–376
Knife shredders, 317–318
Kraton, 376

L
Lamination, 265
Land acquisition, 8–9
Land-use analysis, 22
Lenz’s rule, 338
Life cycle, concept, 60
Life-cycle analyses (LCA), 108
 software, 193
 strengths/weaknesses, 204–205
 studies, findings, 184–187
Life-cycle assessment (LCA), 109–110, 196–201
 application, 73
 basics, 180–187
 methodology, 72–78
 development/application, 78
 practical applications, 182–184
 steps, 74–76
Life-cycle impact assessment (LCIA), 182
Life-cycle inputs/outputs, 190–196
Life-cycle inventory (LCI), 180–182, 272
cross-sectional information, 204–205
data collection, 187–188
dynamic inventory, 204–205
framework design, 187–190
industry description, 188
measures, development process, 200
methods, 191
strengths/weaknesses, 204–205
unit processes, 188–189
Light fraction, composition, 327
Liquid effluents, 437–438
Liquid packaging board (LPB), 267
Litter, 251–252
Load sampling, truck (usage), 310–311
Logistic consumption data, 140
Loss prevention, 269

M
Magnetic drum, 334–335
Magnetic field, achievement, 332
Magnetic head pulley, 333–334
Magnetic rotor, power, 339
Magnetic separation, 331–338
Magnets
classification, 332–333
configurations/arrangements, 333–337
in-line configuration, 336
Maintenance, waste minimization, 71–72
Management data, 140
Marine mining, 16–20
Mass exchange network (MEN) synthesis, 118–120
Material balance, 143–148
evaluation/refinement, 147
information sources, 144–145
preparation, steps, 146–147
Material data, 140
Material flows, 189
analysis, 111, 114
Material form, 420
Material recovery facilities (MRFs), 369–370
Materials, industrial ecology (extension), 85
Mechanical recycling, feedstock recycling (comparison), 262–263
Mediated electrochemical oxidation (MEO), 226
Melt-blown process, 371
Membrane bioreactors, 230–231
Membrane processes, 293–294
theoretical considerations, 294
Metal-contaminated acid-rock drainage, treatment, 284
Metal hydroxides, precipitation, 284–285
Metal ions, concentration, 52–53
Metal ion spills, treatment, 284
Metals manufacturing, waste reduction, 33
references, 57–58
Metal sulfides, precipitation, 285
Mineral resources, classifications, 2t
Mine facility removal, 27
Mine planning, 12
Mineral extraction, engineering, 1
references, 31–32
Mine sites
maintenance, 28
wastes, 35–43
Mine waste disposal sites, reclamation, 26
Mining activities, range, 1–2
Mining practices, 2–3
Mitsubishi Heavy Industries Ltd., 404
Mixed board/flexible packaging (MBFP) material, 267
Mixed plastic (MP), 375–377
waste, 267
MODAR, 440
initiation, 398–399
MODEC, joining, 399
MRFs. See Material recovery facilities
Multimaterial packages, recycling, 264–265
Municipal solid waste (MSW) combusting, 366
disposal, 357
waste packaging, 255–256

N
National Pollution Discharge Elimination System (NPDES) permit, 207–208
National Pretreatment Program, discharge control, 208
National Renewable Energy Laboratory, 182, 183
National Research Council (NRC), incineration review, 399
Network/collection recruitment, growth, 160–161
Network design models. See Reverse logistics
Neutralization, 219
Non-bottle bill states, 369
Nongovernmental organizations (NGOs), 157
Nonpolar organic compounds, 391–392

O
Oil/grease removal, 217–218
Operations, waste minimization, 71–72
Optimization techniques, 113
Opto-electronic sorting, 325–326
Ore, metal value, 40
Organic substances, behavior, 426
Organizational data, 140
Output categorization, 192–195
Output mass balance, 191–192
Oversize/overflow, 318
Oxidant, supply, 420–421
Oxides, adsorption, 290
Ozone depleting substances (ODS), 126

P
Packages
recycled materials, safety, 265–266
recycling, 258–259
Packaging
advertising function, 241
distribution function, 240
environmental impacts
Packaging (Continued)

introduction, 238–239
functions, 239–242
household function, 240
image-component function, 241
intermediate function, 240
materials, 242–248
consumption, 248–250
environmental assessment, 253–255
processes, audit, 136
systems, 268–272
LCA, 272–273
value-forming function, 241
waste-reduction function, 241–242
Packing tower, height, 213
Paper/board, material, 242–243
Paper-plastic composites, 246
PE. See Polyethylene
PEF. See Processed-engineered fuels
Pellet fuels, production, 367
Pelletizing, 349–350
Percolation leaching, 40
Persistent organic pollutants (POPs), 126
PET. See Polyethylene terephtalate
Photodegradable plastics, 248
Physical property determination, 408–409
Physical treatment technologies, 213–219
Pickling liquors, 56–57
Pilot-plant-scale development/testing, 99–100
Pinch analysis/technology, 113
Pinning, 333
Placer mining, 16
Plant walkthrough survey, 141–142
Plastic film, 377
Plastic packages, recycling, 259–260
Plastic-plastic composites, 246–247
Plastics
biodegradation, 248
collection/cleaning/separation, 368–369
material, 245
postconsumer recycling, 368–378
recycling, 264
strapping, 371–372
PMMA. See Polymethylmethacrylate
Pneumatic jig, operation, 329
Pneumatic systems, 348–349
Pollution, packaging (role), 251–253
Pollution prevention (P2)
definition, 92–93
economics, 105–108
flowsheet analysis, 111–120
initiatives, 89, 94
macroscale, 108–110
mesoscale, 110–120
microscale, 120–121
opportunities
flowsheets/processes, examination (frameworks), 114–115
identification, 93–102
programs
development, 93–105
integrated methodology, 102–105
qualitative methods, 114–117
quantitative methods, 117–120
tools/technologies/best practices, survey, 108–121
Polyethylene (PE), 253
Polyethylene terephtalate (PET // PETE), 253, 266, 326, 358
bottles, acceptance, 369
number 1, resin recycling, 365
recycling, 370–372
Polymethylmethacrylate (PMMA), pyrolysis, 378
Polylefins, 372–373
Polypropylene (PP), 253
Polystyrene (PS), 253
usage, 373–375
Polyurethane (PUR), 253
obtaining, 377
Polyvinyl chloride (PVC)
recycling, 374
use, 253
Popcorn slag, 46
Postconsumer packaging
economical aspects, 382
LCA, 380–381
prospects, future, 382
recovery, 255–268
Postconsumer recycled plastics,
processing
background, 358–362
introduction, 357–358
references, 382–383
Postconsumer recycled plastics, products,
378–379
Postmining liability, 28–29
Powdered activated carbon (PAC), 227
PP. See Polypropylene
Precipitation, 219–222, 282–285
overview, 50–54
theoretical considerations, 282–284
Pregnant leach solution, 40
Preliminary material balance, preparation, 147
Premine planning/permitting, 21–22
Price-flow contract, 163–164
Price-flow dependence, 170–171
Primary packaging, 242
Priority unit operation, selection, 145
Process data, 140
Processed-engineered fuels (PEF), production, 367
Process energy integration/heat integration, 117
Process flow diagrams, construction, 143
Processing scope/objectives/boundaries, 189–190
Process inputs/outputs, 143–148
Process operations stage, P2 usage, 100–101
Product agglomeration, 349–350
data, 140
functions, 72
stability, 100
storage, 352–353
Production processes, audit, 135
Product life cycle, 65–67
cleaner production, applications, 64
Product/process engineering stage, P2 usage, 100
Prohibited discharge standards, 209, 212t
Protection function, 239
Prussian blue precipitate, 37
PS. See Polystyrene
Publicly operated treatment work (PÔTW), 209, 437
PUR. See Polyurethane
Purchased inputs, contrast, 190–191
Purchased materials, recycled materials (contrast), 191
Pyrolysis, 377–378
feedstock recycling use, 261
Pyrometallurgical processing wastes, 44–50

Q
Quality protection, 269
Queensland fertilizer project, 85

R
Rapid small-scale column tests (RSSCTs), 227
Raw material data, 140
Reactive method, 128
Reactors
effluent, 396
mixing/feed distribution, impact, 99–100
performance, 67
type, 421–424
waste, feedstock impurities, 68
waste minimization, 67–69
Readily implementable options, identification, 142
Reclamation activities, 20–26
operations, 22–26
Reconnaissance, 4
Recycled, term, 364
Recycled metals, separation, 34
Recycled PET market, 371–372
Recycled resins, 372–373
Recycling approach, 364–366
challenges, 367–368
collection/cleaning/separation, 368–369
importance, 308
term, 364
Redlich-Kwong-Soave, 425
Reductive precipitation, 286–288
theoretical considerations, 286–288
Refuse derived fuel (RDF), 267
Regulatory drivers, 86
Renewable inputs, contrast, 190–191
Reporting procedures, development, 138
Research and development (R&D) stage, P2 usage, 95–100
Resource conservation, necessity, 308–309
Reusable plastic shipping containers (RPSCs), 363–364
Reuse approach, 363–364
importance, 308–309
Revegetation, 25–26
Reverez process, 376
Reverse logistics, network design models, 159–160
Reverse production systems (RPSs), 155
background, 157–161
decentralized framework, 160
decision making, 160
experimental comparisons, 167–171
introduction, 155–157
material flows, 157f
references, 173–177
strategic design models, 161–167
Rigid Plastics Packaging Container Law (California), 379
Rolling mills, 56
Rotary screens, 321–322
Rotary shear shredders, 316–317
RPSCs. See Reusable plastic shipping containers
S
Salts
handling, 434–435
nucleation/growth, 415
phase equilibrium, 414–415
Sampling, 5–6
Sampling, waste characterization, 310–311
Screw feeders, 344–345
SCWO. See Supercritical water oxidation
Secondary packaging, 242
Secondary reactions, minimization, 68
Sedimentation, 214
rates, 100
Self-diffusion coefficient, 408
Separated plastics, processing, 370–375
Separation equipment, waste minimization, 69–70
Sequencing batch biofilm bioreactor (SBBR), 230
Sequencing batch reactors (SBRs), 229–230
Shear force, 312
Shear shredders, 316
Shredders, usage, 315–318
Size reduction, 311–318
equipment, selection factors, 311–313
Slags, 45–46
Sludge-retention times (SRTs), 229
Social indicators, 82
Society for Environmental Toxicology and Chemistry (SETAC), 182
Soil reconstruction, 25
Solid/liquid phase separation, 397
Solid residues, 438
Solids-containing feeds, 420
Solids removal, clarification/sedimentation, 214–215
Solid waste disposal/recycling introduction, 308–310
references, 354–355
Solid waste-processing plants, classification (usage), 319
Solid-waste recycling, scientific basis, 309–310
Solid wastes, 45–47, 253
size reduction, equipment type, 313–318
Solid waste separation, unit operation/equipment overview introduction, 308–310
references, 354–355
Solvent extraction, 291–293
theoretical consideration, 292–293
Source reduction, 363
Source-sink mapping, 118
SR-POLAR, 425
Starter dike, 38
Steel
material, 243–244
production, change, 44–45
recycling, 264
Steel plate conveyors, 345
Steel Wall representation, 203
Sticky salts, 419
Stoners, 329–330
Straight run gas oil (SRGO), 75
Sulfur dioxide, 47–48
Supercritical fluid thermodynamic critical point, 386
water, comparison, 388–389
Supercritical water properties, 386–392
solvent, usage, 391–392
temperatures/conditions, characteristics, 393
Supercritical water oxidation (SCWO), 224–225
application, 395–396
commercialization, 399–401, 404–405
corrosion handling, 430–434
research, conclusions, 416–417
study, 432–433
designs, 394–395
economics, 439–443
history/status, 398–408
introduction, 385–386
permitting, 438–439
pipe reactor, configuration, 423
pressure reduction, 397
process, 392–398
operating conditions, 393–394
processing, aspects, 417–438
products, 436–437
reactor conditions, 390, 424–425
types, 421–424
references, 443–453
research efforts, 399, 408–417
system corrosion, 419
erosion, 419
noncondensable gas, high content, 429–430
solubility/phase behavior, 425–430
technology, maturation, 401
treatment, optimum, 418
Supply chain coordination, 160–161
Surface mining, 13–14
Surface Mining Control and Reclamation Act (SMCRA) of 1977, 21
Suspended magnet, 335–337
Sustainability, 81–83
design, 381–382
indicators, 82
temporal characteristics, 83
Sustainable development, 308
System impacts, capture, 204

T
Tailings, definition, 37
Tailings impoundments
considerations, 37–38
planning/operating, 36–39
Target processes, preassessment, 139–142
Tertiary packaging, 242
Thermolysis, feedstock recycling use, 261
Tie compounds, selection, 145
Time value, 205
Total Cost Assessment (TCA) method, 105
Total emissions, site-generated emissions
(contrast), 195–196
Total suspended solids (TSS), 252
Trommels, 321–322
Tub grinders, 318

U
Uncapacitated case, material flow
allocation, 170
Underground mines, sealing, 27–28
Underground mining, 14–16
environmental considerations, 16
operational cycle, 15
Undersize/underflow, 318
UN Group of experts on the Scientific
Aspects of Marine Pollution (GESAMP), 252
Unit operations, listing, 143
Unit operations, P2 usage, 110–111
Upstream boundary tier entities, 161
U.S. Defense Advanced Research
Projects Agency (DARPA), SCWO
interest, 399
U.S. Environmental Protection Agency (EPA), three Rs, 363
Used packages, energy source, 267
Utility systems, waste minimization, 70–71

V
Vapor-liquid equilibrium, limit, 386
Vertical airflow, 328
Vertical supply chain, double
marginalization, 169–170
Vessel reactor, feature (importance), 422–423
Vessel-type reactors, 396
Vibrating conveyors, 346
Vibrating feeders, 343–344
Vibrating screens, 320–321
Viscosity, 386
Volatile organic compounds (VOCs), 213
Volatile suspended solids (VSS), 252

W
Waste
auditing, 130–152
assessment, 142–148
construction materials, derivation, 268
dead-end-of-pipe treatment, 126
defed, suitability, 417–418
generation, audits, 109
material recovery, 109
reduction, definition, 92–93
sources, 96t
treatment processes, audit, 136
Waste audits
management/staff involvement, 131–134
options, screening/selecting, 149–150
phases, 131–152
preliminary technical/economical
evaluation, 150–151
preparatory work, 131–138
synthesis/preliminary analysis, 148–152
Waste management
audits, 109
costs, 78–79
hierarchy, 90
preference order, 90
options, selection, 257–258
Waste material production, 155
background, 157–161
experimental comparisons, 167–171
introduction, 155–157
references, 173–177
strategic design models, 161–167
Waste minimization
advantages, 128
audits, 130
cycle, 129–130
implementation barriers, 128
phases, 129–130
programs, 127–128
strategies, 67
Waste reduction
 action plan, development, 152
 approaches, 362–366
 options, preliminary prioritizing, 151–152
 packaging, 256–257
Waste-to-energy (WTE) facilities, 366
Wastewater, accounting, 147
Wastewater engineering
 introduction, 207–208
 references, 233–235
Wastewater treatment
 strategies/requirements, 208–213
Water pollution, 252
Water usage, recording, 146
Weighted sum method, 149–150
Wet air oxidation, 224–225
Wood, material, 248
Wooden packaging, recovery, 268
Wood grinders, 318
World Business Council for Sustainable Development (WBCSD), 80
Worst-offending safety standard, 199–200
Worst-offending substance, 198
WTE. See Waste-to-energy

Z
Zero-valent iron (ZVI) barriers, 288