INTRODUCTION TO DIGITAL SYSTEMS

Digital systems are designed to store, process, and communicate information in digital form. They are found in a wide range of applications, including process control, communication systems, digital instruments, and consumer products. The digital computer, more commonly called the “computer,” is an example of a typical digital system.

A computer manipulates information in digital, or more precisely, binary form. A binary number has only two discrete values — zero or one. Each of these discrete values is represented by the OFF and ON status of an electronic switch called a “transistor.” All computers, therefore, only understand binary numbers. Any decimal number (base 10, with ten digits from 0 to 9) can be represented by a binary number (base 2, with digits 0 and 1).

The basic blocks of a computer are the central processing unit (CPU), the memory, and the input/output (I/O). The CPU of the computer is basically the same as the brains of a human being. Computer memory is conceptually similar to human memory. A question asked to a human being is analogous to entering a program into the computer using an input device such as the keyboard, and answering the question by the human is similar in concept to outputting the result required by the program to a computer output device such as the printer. The main difference is that human beings can think independently, whereas computers can only answer questions that they are programmed for. Computer hardware refers to components of a computer such as memory, CPU, transistors, nuts, bolts, and so on. Programs can perform a specific task such as addition if the computer has an electronic circuit capable of adding two numbers. Programmers cannot change these electronic circuits but can perform tasks on them using instructions.

Computer software, on the other hand, consists of a collection of programs. Programs contain instructions and data for performing a specific task. These programs, written using any programming language such as C++, must be translated into binary prior to execution by the computer. This is because the computer only understands binary numbers. Therefore, a translator for converting such a program into binary is necessary. Hence, a translator program called the compiler is used for translating programs written in a programming language such as C++ into binary. These programs in binary form are then stored in the computer memory for execution because computers only understand 1’s and 0’s. Furthermore, computers can only add. This means that all operations such as subtraction, multiplication, and division are performed by addition.

Due to advances in semiconductor technology, it is possible to fabricate the CPU in a single chip. The result is the microprocessor. Both Metal Oxide Semiconductor (MOS) and Bipolar technologies were used in the fabrication process. The CPU can
be placed on a single chip when MOS technology is used. However, several chips are required with the bipolar technology. HCMOS (High Speed Complementary MOS) or BICMOS (Combination of Bipolar and HCMOS) technology (to be discussed later in this chapter) is normally used these days to fabricate the microprocessor in a single chip. Along with the microprocessor chip, appropriate memory and I/O chips can be used to design a microcomputer. The pins on each one of these chips can be connected to the proper lines on the system bus, which consists of address, data, and control lines. In the past, some manufacturers have designed a complete microcomputer on a single chip with limited capabilities. Single-chip microcomputers were used in a wide range of industrial and home applications.

"Microcontrollers" evolved from single-chip microcomputers. The microcontrollers are typically used for dedicated applications such as automotive systems, home appliances, and home entertainment systems. Typical microcontrollers, therefore, include a microcomputer, timers, and A/D (analog to digital) and D/A (digital to analog) converters — all in a single chip. Examples of typical microcontrollers are Intel 8751 (8-bit) / 8096 (16-bit) and Motorola HC11 (8-bit) / HC16 (16-bit).

In this chapter, we first define some basic terms associated with the computers. We then describe briefly the evolution of the computers and the microprocessors. Finally, a typical practical application, and technological forecasts are included.

1.1 Explanation of Terms

Before we go on, it is necessary to understand some basic terms.

- A bit is the abbreviation for the term binary digit. A binary digit can have only two values, which are represented by the symbols 0 and 1, whereas a decimal digit can have 10 values, represented by the symbols 0 through 9. The bit values are easily implemented in electronic and magnetic media by two-state devices whose states portray either of the binary digits, 0 or 1. Examples of such two-state devices are a transistor that is conducting or not conducting, a capacitor that is charged or discharged, and a magnetic material that is magnetized North-to-South or South-to-North.

- The bit size of a computer refers to the number of bits that can be processed simultaneously by the basic arithmetic circuits of the computer. A number of bits taken as a group in this manner is called a word. For example, a 32-bit computer can process a 32-bit word. An 8-bit word is referred to as a byte, and a 4-bit word is known as a nibble.

- An arithmetic logic unit (ALU) is a digital circuit which performs arithmetic and logic operations on two n-bit digital words. The value of n can be 4, 8, 16, 32, or 64. Typical operations performed by the ALU are addition, subtraction, ANDing, ORing, and comparison of two n-bit digital words. The size of the ALU defines the size of the computer. For example, a 32-bit computer contains a 32-bit ALU.

- A microprocessor is the CPU of a microcomputer contained in a single chip and must be interfaced with peripheral support chips in order to function. In general, the CPU contains several registers (memory elements), the ALU, and the control unit. Note that the control unit translates instructions and performs the desired task. The number of peripheral devices depends upon the particular application involved and even varies within one application. As the microprocessor industry matures, more of these functions are being integrated onto chips in order to reduce the system package count. In general, a microcomputer typically consists of a microprocessor (CPU) chip,
input and output chips, and memory chips in which programs (instructions and data) are stored. Note that a microcontroller, on the other hand, is implemented in a single chip containing typically a CPU, memory, I/O, timer, A/D and D/A converter circuits. Throughout this book the terms "computer" and "CPU" will be used interchangeably with "Microcomputer" and "Microprocessor" respectively.

- **Address** is a pattern of 0's and 1's that represents a specific location of memory or a particular I/O device. Typical 8-bit microprocessors have 16 address lines, and, these 16 lines can produce 2^{16} unique 16-bit patterns from 0000000000000000 to 1111111111111111, representing 65,536 different address combinations.

- **Read-only memory (ROM)** is a storage medium for the groups of bits called words, and its contents cannot normally be altered once programmed. A typical ROM is fabricated on a chip and can store, for example, 2048 eight-bit words, which can be individually accessed by presenting one of 2048 addresses to it. This ROM is referred to as a 2K by 8-bit ROM. 10110111 is an example of an 8-bit word that might be stored in one location in this memory. A ROM is also a nonvolatile storage device, which means that its contents are retained in the event of power failure to the ROM chip. Because of this characteristic, ROMs are used to store programs (instructions and data) that must always be available to the microprocessor.

- **Random access memory (RAM)** is also a storage medium for groups of bits or words whose contents can not only be read but also altered at specific addresses. Furthermore, a RAM normally provides volatile storage, which means that its contents are lost in the event of a power failure. RAMs are fabricated on chips and have typical densities of 4096 bits to one megabit per chip. These bits can be organized in many ways, for example, as 4096-by-1-bit words, or as 2048-by-8-bit words. RAMs are normally used for the storage of temporary data and intermediate results as well as programs that can be reloaded from a back-up nonvolatile source. RAMs are capable of providing large storage capacity in the range of Megabits.

- **Register** can be considered as volatile storage for a number of bits. These bits may be entered into the register simultaneously (in parallel), or sequentially (serially) from right to left or from left to right, 1 bit at a time. An 8-bit register storing the bits 11110000 is represented as follows:

\[11110000 \]

- The term **bus** refers to a number of conductors (wires) organized to provide a means of communication among different elements in a microcomputer system. The conductors in the bus can be grouped in terms of their functions. A microprocessor normally has an address bus, a data bus, and a control bus. The address bits to memory or to an external device are sent out on the address bus. Instructions from memory, and data to/from memory or external devices normally travel on the data bus. Control signals for the other buses and among system elements are transmitted on the control bus. Buses are sometimes bidirectional; that is, information can be transmitted in either direction on the bus, but normally only in one direction at a time.

- The **instruction set** of a microprocessor is the list of commands that the microprocessor is designed to execute. Typical instructions are ADD, SUBTRACT, and STORE. Individual instructions are coded as unique bit patterns, which are recognized and
executed by the microprocessor. If a microprocessor has 3 bits allocated to the representation of instructions, then the microprocessor will recognize a maximum of 2^3 or eight different instructions. The microprocessor will then have a maximum of eight instructions in its instruction set. It is obvious that some instructions will be more suitable to a particular application than others. For example, if a microprocessor is to be used in a calculating mode, instructions such as ADD, SUBTRACT, MULTIPLY, and DIVIDE would be desirable. In a control application, instructions inputting digitized signals into the processor and outputting digital control variables to external circuits are essential. The number of instructions necessary in an application will directly influence the amount of hardware in the chip set and the number and organization of the interconnecting bus lines.

- A microcomputer requires synchronization among its components, and this is provided by the clock or timing circuits. A clock is analogous to the heartbeats of a human body.

- The chip is an integrated circuit (IC) package containing digital circuits.

- The term gate refers to digital circuits which perform logic operations such as AND, OR, and NOT. In an AND operation, the output of the AND gate is one if all inputs are one; the output is zero if one or more inputs are zero. The OR gate, on the other hand, provides a zero output if all inputs are zero; the output is one if one or more inputs are one. Finally, a NOT gate (also called an inverter) has one input and one output. The NOT gate produces one if the input is zero; the output is zero if the input is one.

- Transistors are basically electronic switching devices. There are two types of transistors. These are bipolar junction transistors (BJTs) and metal-oxide semiconductor (MOS) transistors. The operation of the BJT depends on the flow of two types of carriers: electrons (n-channel) and holes (p-channel), whereas the MOS transistor is unipolar and its operation depends on the flow of only one type of carrier, either electrons (n-channel) or holes (p-channel).

- The speed power product (SPP) is a measure of performance of a logic gate. It is expressed in picojoules (pJ). SPP is obtained by multiplying the speed (in ns) by the power dissipation (in mW) of a gate.

1.2 Design Levels

Three design levels can be defined for digital systems: systems level, logic level, and device level.

- **Systems level** is the type of design in which CPU, memory, and I/O chips are interfaced to build a computer.

- **Logic level**, on the other hand, is the design technique in which chips containing logic gates such as AND, OR, and NOT are used to design a digital component such as the ALU.

- Finally, **device level** utilizes transistors to design logic gates.

1.3 Combinational vs. Sequential Systems

Digital systems at the logic level can be classified into two types. These are combinational and sequential.

Combinational systems contain no memory whereas sequential systems require
memory to remember the present state in order to go to the next state. A binary adder
capable of providing the sum upon application of the numbers to be added is an example of
a combinational system. For example, consider a 4-bit adder. The inputs to this adder will
be two 4-bit numbers; the output will be the 4-bit sum. In this case, the adder will generate
the 4-bit sum output upon application of the two 4-bit inputs.

Sequential systems, on the other hand, require memory. The counter is an example
of a sequential system. For instance, suppose that the counter is required to count in the
sequence 0, 1, 2 and then repeat the sequence. In this case, the counter must have memory
to remember the present count in order to go to the next. The counter must remember that
it is at count 0 in order to go to the next count, 1. In order to count to 2, the counter must
remember that it is counting 1 at the present state. In order to repeat the sequence, the
counter must count back to 0 based on the present count, 2, and the process continues. A
chip containing sequential circuit such as the counter will have a clock input pin.

In general, all computers contain both combinational and sequential circuits.
However, most computers are regarded as clocked sequential systems. In these computers,
almost all activities pertaining to instruction execution are synchronized with clocks.

1.4 Digital Integrated Circuits

The transistor can be considered as an electronic switch. The on and off states of a
transistor are used to represent binary digits. Transistors, therefore, play an important
role in the design of digital systems. This section describes the basic characteristics of
digital devices and logic families. These include diodes, transistors, and a summary of
digital logic families. These topics are covered from a very basic point of view. This will
allow the readers with some background in digital devices to see how they are utilized in
designing digital systems.

1.4.1 Diodes

A diode is an electronic switch. It is a two-terminal device. Figure 1.1 shows the symbolic
representation.

The positive terminal (made with the p-type semiconductor material) is called
the anode; the negative terminal (made with the n-type semiconductor material) is called

FIGURE 1.1 Symbolic representations of a diode

(a) $n\!p\!n$ Transistor symbol

(b) Equivalent circuit

FIGURE 1.2 Symbolic representations of a $n\!p\!n$ transistor
a cathode. When a voltage, $V = 0.6$ volt is applied across the anode and the cathode, the switch closes and a current I flows from anode to the cathode.

1.4.2 Transistors
A bipolar junction transistor (BJT) or commonly called the transistor is also an electronic switch like the diode. Both electrons (n-channel) and holes (p-channel) are used for carrier flow; hence, the name “bipolar” is used. The BJT is used in transistor logic circuits that have several advantages over diode logic circuits. First of all, the transistor acts as a logic device called an inverter. Note that an inverter provides a LOW output for a HIGH input and a HIGH output for a LOW input. Secondly, the transistor is a current amplifier (buffer). Transistors can, therefore, be used to amplify these currents to control external devices such as a light emitting diode (LED) requiring high currents. Finally, transistor logic gates operate faster than diode gates.

There are two types of transistors, namely npn and pnp. The classification depends on the fabrication process. npn transistors are widely used in digital circuits.

Figure 1.2 shows the symbolic representation of an npn transistor. The transistor is a three-terminal device. These are base, emitter, and collector. The transistor is a current-controlled switch, which means that adequate current at the base will close the switch allowing a current to flow from the collector to the emitter. This current direction is identified on the npn transistor symbol in Figure 1.2(a) by a downward arrow on the emitter. Note that a base resistance is normally required to generate the base current.

The transistor has three modes of operation: cutoff, saturation, and active. In digital circuits, a transistor is used as a switch, which is either ON (closed) or OFF (open). When no base current flows, the emitter-collector switch is open and the transistor operates in the cutoff (OFF) mode. On the other hand, when a base current flows such that the voltage across the base and the emitter is at least 0.6 V, the switch closes. If the base current is further increased, there will be a situation in which V_{CE} (voltage across the collector and the emitter) attains a constant value of approximately 0.2 V. This is called the saturation (ON) mode of the transistor. The “active” mode is between the cutoff and saturation modes. In this mode, the base current (I_b) is amplified so that the collector current, $I_c = \beta I_b$, where β is called the gain, and is in the range of 10 to 100 for typical transistors. Note that when the transistor reaches saturation, increasing I_b does not drop V_{CE} below $V_{CE(Sat)}$ of 0.2 V. On the other hand, V_{CE} varies from 0.8 V to 5 V in the active mode. Therefore, the cutoff (OFF) and saturation (ON) modes of the transistor are used in designing digital circuits. The active mode of the transistor in which the transistor acts as a current amplifier (also called buffer) is used in digital output circuits.

FIGURE 1.3 An inverter
TABLE 1.1 Current and Voltage Requirements of LEDs

<table>
<thead>
<tr>
<th>LEDs</th>
<th>Red</th>
<th>Yellow</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 mA</td>
<td>10 mA</td>
<td>20 mA</td>
</tr>
<tr>
<td>Voltage</td>
<td>1.7 V</td>
<td>2.2 V</td>
<td>2.4 V</td>
</tr>
</tbody>
</table>

Operation of the Transistor as an Inverter

Figure 1.3 shows how to use the transistor as an inverter. When $V_{BE} = 0$, the transistor is in cutoff (OFF), and the collector-emitter switch is open. This means that no current flows from $+V_{CC}$ to ground. V_{OUT} is equal to $+V_{CC}$. Thus, V_{OUT} is high.

On the other hand, when V_{BE} is HIGH, the emitter-collector switch is closed. A current flows from $+V_{CC}$ to ground. The transistor operates in saturation, and $V_{OUT} = V_{CE(sat)} = 0.2$ $V = 0$. Thus, V_{OUT} is basically connected to ground.

Therefore, for $V_{IN} =$ LOW, $V_{OUT} =$ HIGH, and for $V_{IN} =$ HIGH, $V_{OUT} =$ LOW. Hence, the nnp transistor in Figure 1.3 acts as an inverter.

Note that V_{CC} is typically $+5$ V DC. The input voltage levels are normally in the range of 0 to 0.8 volts for LOW and 2 volts to 5 volts for HIGH. The output voltage levels, on the other hand, are normally 0.2 volts for LOW and 3.6 volts for HIGH.

Light Emitting Diodes (LEDs) and Seven Segment Displays

LEDs are extensively used as outputs in digital systems as status indicators. An LED is typically driven by low voltage and low current. This makes the LED a very attractive device for use with digital systems. Table 1.1 provides the current and voltage requirements of red, yellow, and green LEDs.

Basically, an LED will be ON, generating light, when its cathode is sufficiently negative with respect to its anode. A digital system such as a microcomputer can therefore

![Microcomputer - LED interface](image1)

FIGURE 1.4 Microcomputer - LED interface

![Microcomputer - LED interface via an inverter](image2)

FIGURE 1.5 Microcomputer - LED interface via an inverter
light an LED either by grounding the cathode (if the anode is tied to +5 V) or by applying +5 V to the anode (if the cathode is grounded) through an appropriate resistor value. A typical hardware interface between a microcomputer and an LED is depicted in Figure 1.4.

A microcomputer normally outputs 400 μA at a minimum voltage, $V_M = 2.4$ volts for a HIGH. The red LED requires 10 mA at 1.7 volts. A buffer such as a transistor is required to turn the LED ON. Since the transistor is an inverter, a HIGH input to the transistor will turn the LED ON. We now design the interface; that is, the values of R_1, R_2, and the gain β for the transistor will be determined.

A HIGH at the microcomputer output will turn the transistor ON into active mode. This will allow a path of current to flow from the +5 V source through R_1 and the LED to the ground. The appropriate value of R_1 needs to be calculated to satisfy the voltage and current requirements of the LED. Also, suppose that $V_{BE} = 0.6$ V when the transistor is in active mode. This means that R_1 needs to be calculated with the specified values of $V_M = 2.4$ V and $I = 400$ μA. The values of R_1, R_2, and β are calculated as follows:

$$R_1 = \frac{V_M - V_{BE}}{400 \mu A} = \frac{2.4 - 0.6}{400 \mu A} = 4.5 \text{ KΩ}$$

Assuming $V_{CE} = 0$,

$$R_2 = \frac{5 - 1.7 - V_{BE}}{10 \text{ mA}} = \frac{5 - 1.7}{10 \text{ mA}} = 330 \Omega$$

$$\beta = \frac{i_C}{i_B} = \frac{10 \text{ mA}}{400 \mu A} = \frac{10 \times 10^3}{400 \times 10^3} = 25$$

Therefore, the interface design is complete, and a transistor with a minimum β of 25, $R_1 = 4.5 \text{ KΩ}$, and $R_2 = 330 \Omega$ are required.

An inverting buffer chip such as 74LS368 can be used in place of a transistor in

\[\text{FIGURE 1.6} \quad \text{A seven-segment display}\]

\[\text{FIGURE 1.7} \quad \text{Seven-segment display configurations}\]
Figure 1.4. A typical interface of an LED to a microcomputer via an inverter is shown in Figure 1.5. Note that the transistor base resistance is inside the inverter. Therefore, R_i is not required to be connected to the output of the microcomputer. The symbol \rightarrow is used to represent an inverter. Inverters will be discussed in more detail later. In Figure 1.5, when the microcomputer outputs a HIGH, the transistor switch inside the inverter closes. A current flows from the +5 V source, through the 330-ohm resistor and the LED, into the ground inside the inverter. The LED is thus turned ON.

A seven-segment display can be used to display, for example, decimal numbers from 0 to 9. The name “seven segment” is based on the fact that there are seven LEDs — one in each segment of the display. Figure 1.6 shows a typical seven-segment display.

In Figure 1.6, each segment contains an LED. All decimal numbers from 0 to 9 can be displayed by turning the appropriate segment “ON” or “OFF”. For example, a zero can be displayed by turning the LED in segment g “OFF” and turning the other six LEDs in segments a through f “ON.” There are two types of seven segment displays. These are common cathode and common anode. Figure 1.7 shows these display configurations.

In a common cathode arrangement, the microcomputer can send a HIGH to light a segment and a LOW to turn it off. In a common anode configuration, on the other hand, the microcomputer sends a LOW to light a segment and a HIGH to turn it off. In both configurations, $R = 330$ ohms can be used.

Transistor Transistor Logic (TTL) and its Variations
The transistor transistor logic (TTL) family of chips evolved from diodes and transistors. This family used to be called DTL (diode transistor logic). The diodes were then replaced by transistors, and thus the name “TTL” evolved. The power supply voltage (V_{cc}) for TTL is +5 V. The two logic levels are approximately 0 and 3.5 V.

There are several variations of the TTL family. These are based on the saturation mode (saturated logic) and active mode (nonsaturated logic) operations of the transistor. In the saturation mode, the transistor takes some time to come out of the saturation to switch to the cutoff mode. On the other hand, some TTL families define the logic levels in the active mode operation of the transistor and are called nonsaturated logic. Since the transistors do not go into saturation, these families do not have any saturation delay time for the switching operation. Therefore, the nonsaturated logic family is faster than saturated logic.

The saturated TTL family includes standard TTL (TTL), high-speed TTL (H-TTL), and low-power TTL (L-TTL). The nonsaturated TTL family includes Schottky TTL (S-TTL), low-power Schottky TTL (LS-TTL), advanced Schottky TTL (AS-TTL), and advanced low-power Schottky TTL (ALS-TTL). The development of LS-TTL made TTL, H-TTL, and L-TTL obsolete. Another technology, called emitter-coupled logic (ECL), utilizes nonsaturated logic. The ECL family provides the highest speed. ECL is used in digital systems requiring ultrahigh speed, such as supercomputers.

The important parameters of the digital logic families are fan-out, power dissipation, propagation delay, and noise margin.

Fan-out is defined as the maximum number of inputs that can be connected to the output of a gate. It is expressed as a number. The output of a gate is normally connected to the inputs of other similar gates. Typical fan-out for TTL is 10. On the other hand, fan-outs for S-TTL, LS-TTL, and ECL are 10, 20, and 25, respectively.

Power dissipation is the power (milliwatts) required to operate the gate. This power must be supplied by the power supply and is consumed by the gate. Typical power
consumed by TTL is 10 mW. On the other hand, S-TTL, LS-TTL, and ECL absorb 22 mW, 2 mW, and 25 mW respectively.

Propagation delay is the time required for a signal to travel from input to output when the binary output changes its value. Typical propagation delay for TTL is 10 nanoseconds (ns). On the other hand, S-TTL, LS-TTL, and ECL have propagation delays of 3 ns, 10 ns, and 2 ns, respectively.

Noise margin is defined as the maximum voltage due to noise that can be added to the input of a digital circuit without causing any undesirable change in the circuit output. Typical noise margin for TTL is 0.4 V. Noise margins for S-TTL, LS-TTL, and ECL are 0.4 V, 0.4 V, and 0.2 V, respectively.

TTL Outputs
There are three types of output configurations for TTL. These are open-collector output, totem-pole output, and tristate (three-state) output.

The open-collector output means that the TTL output is a transistor with nothing connected to the collector. The collector voltage provides the output of the gate. For the open-collector output to work properly, a resistor (called the pullup resistor), with a value of typically 1 KΩ, should be connected between the open collector output and a +5 V power supply.

If the outputs of several open-collector gates are tied together with an external
resistor (typically 1 KΩ) to a +5 V source, a logical AND function is performed at the connecting point. This is called wired-AND logic.

Figure 1.8 shows two open-collector outputs (A and B) are connected together to a common output point C via a 1 KΩ resistor and a +5 V source.

The common-output point C is HIGH only when both transistors are in cutoff (OFF) mode, providing A = HIGH and B = HIGH. If one or both of the two transistors is turned ON, making one (or both open-collector outputs) LOW, this will drive the common output C to LOW. Note that a LOW (Ground for example) signal when connected to a HIGH (+5V for example) signal generates a LOW. Thus, C is obtained by performing a logical AND operation of the open collector outputs A and B.

Let us briefly review the totem-pole output circuit shown in Figure 1.9. The circuit operates as follows:

When transistor Q1 is ON, transistor Q2 is OFF. When Q1 is OFF, Q2 is ON. This is how the totem-pole output is designed. The complete TTL gate connected to the bases of transistors Q1 and Q2 is not shown; only the output circuit is shown.

In the figure, Q1 is turned ON when the logic gate circuit connected to its base sends a HIGH output. The switches in transistor Q1 and diode D close while the switch in Q2 is open. A current flows from the +5 V source through R, Q1, and D to the output. This current is called I_{source} or output high current, I_{OH}. This is typically represented by a negative sign in front of the current value in the TTL data book, a notation indicating that the chip is losing current. For a low output value of the logic gate, the switches in Q1 and D are open and the switch in Q2 closes. A current flows from the output through Q2 to ground. This current is called I_{sink} or Output Low current, I_{OL}. This is represented by a positive sign in front of the current value in the TTL data book, indicating that current is being added to the chip. Either I_{source} or I_{sink} can be used to drive a typical output device such as an LED. I_{source} (I_{OH}) is normally much smaller than I_{sink} (I_{OL}). I_{source} (I_{OH}) is typically -0.4 mA (or -400 µA) at a minimum voltage of 2.7 V at the output. I_{source} is normally used to drive devices that require high currents. A current amplifier (buffer) such as a transistor or an inverting buffer chip such as 74LS368 needs to be connected at the output if I_{source} is used to drive a device such as an LED requiring high current (10 mA to 20 mA). I_{sink} is normally 8 mA.

The totem-pole outputs must not be tied together. When two totem-pole outputs are connected together with the output of one gate HIGH and the output of the second gate LOW, the excessive amount of current drawn can produce enough heat to damage the transistors in the circuit.

Tristate is a special totem-pole output that allows connecting the outputs together like the open-collector outputs. When a totem-pole output TTL gate has this property, it is called a tristate (three state) output. A tristate has three output states:

1. A LOW level state when the lower transistor in the totem-pole is ON and the upper transistor is OFF.
2. A HIGH level state when the upper transistor in the totem-pole is ON and the lower transistor is OFF.
3. A third state when both output transistors in the totem-pole are OFF. This third state provides an open circuit or high-impedance state which allows a direct wire connection of many outputs to a common line called the bus.

A Typical Switch Input Circuit for TTL
Figure 1.10 shows a switch circuit that can be used as a single bit into the input of a TTL gate. When the DIP switch is open, V_{IN} is HIGH. On the other hand, when the switch
FIGURE 1.10 A typical circuit for connecting an input to a TTL gate

FIGURE 1.11 nMOS transistor symbol

FIGURE 1.12 pMOS transistor symbol

FIGURE 1.13 A typical nMOS inverter
is closed, V_{in} is low. V_{in} can be used as an input bit to a TTL logic gate for performing laboratory experiments.

1.4.3 MOS Transistors
Metal-Oxide Semiconductor (MOS) transistors occupy less space in the circuit and consume much less power than bipolar junction transistors. Therefore, MOS transistors are used in highly integrated circuits. The MOS transistor is unipolar. This means that one type of carrier flow, either electrons (n-type) or holes (p-type) are used. The MOS transistor works as a voltage-controlled resistance. In digital circuits, a MOS transistor operates as a switch such that its resistance is either very high (OFF) or very low (ON). The MOS transistor is a three-terminal device: gate, source, and drain. There are two types of MOS transistors, namely, nMOS and pMOS. The power supply (V_{cc}) for pMOS is in the range of 17 V to 24 V, while V_{cc} for nMOS is lower than pMOS and can be from 5 V to 12 V. Figure 1.11 shows the symbolic representation of an nMOS transistor. When $V_{GS} = 0$, the resistance between drain and source (R_{DS}) is in the order of megaohms (Transistor OFF state). On the other hand, as V_{GS} is increased, R_{DS} decreases to a few tens of ohms (Transistor ON state). Note that in a MOS transistor, there is no connection between the gate and the other two terminals (source and drain). The nMOS gate voltage (V_{GS}) increases or decreases the current flow from drain to source by changing R_{DS}. Popular 8-bit microprocessors such as the Intel 8085 and the Motorola 6809 were designed using nMOS.

Figure 1.12 depicts the symbol for a pMOS transistor. The operation of the pMOS transistor is very similar to the nMOS transistor except that V_{GS} is typically zero or negative. The resistance from drain to source (R_{DS}) becomes very high (OFF) for $V_{GS} = 0$. On the other hand, R_{DS} decreases to a very low value (ON) if V_{GS} is increased. pMOS was used in fabricating the first 4-bit microprocessors (Intel 4004/4040) and 8-bit microprocessor (Intel 8008). Basically, in a MOS transistor (nMOS or pMOS), V_{GS} creates an electric field that increases or decreases the current flow between source and drain. From the symbols of the MOS transistors, it can be seen that there is no connection between the gate and the other two terminals (source and drain). This symbolic representation is used in order to indicate that no current flows from the gate to the source, irrespective of the gate voltage.

Operation of the nMOS Transistor as an Inverter

Figure 1.13 shows an nMOS inverter. When $V_{IN} = LOW$, the resistance between the drain and the source (R_{DS}) is very high, and no current flows from V_{CC} to the ground. V_{OUT} is therefore high. On the other hand, when $V_{IN} = high$, R_{DS} is very low, a current flows from V_{CC} to the source, and V_{OUT} is LOW. Therefore, the circuit acts as an inverter.

![A CMOS inverter](image-url)
TABLE 1.2 Comparison of output characteristics of LS-TTL, nMOS, HC, and HCT

<table>
<thead>
<tr>
<th></th>
<th>V_{on}</th>
<th>I_{on}</th>
<th>V_{ol}</th>
<th>I_{ol}</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS-TTL</td>
<td>2.7 V</td>
<td>-400 μA</td>
<td>0.5 V</td>
<td>8 mA</td>
</tr>
<tr>
<td>nMOS</td>
<td>2.4 V</td>
<td>-400 μA</td>
<td>0.4 V</td>
<td>2 mA</td>
</tr>
<tr>
<td>HC</td>
<td>3.7 V</td>
<td>-4 mA</td>
<td>0.4 V</td>
<td>4 mA</td>
</tr>
<tr>
<td>HCT</td>
<td>3.7 V</td>
<td>-4 mA</td>
<td>0.4 V</td>
<td>4 mA</td>
</tr>
</tbody>
</table>

Note that in the table, HC and HCT have the same source (I_{on}) and sink (I_{ol}) currents. This is because in a typical CMOS gate, the ON resistances of the pMOS and nMOS transistors are approximately the same.

Complementary MOS (CMOS)

CMOS dissipates low power and offers high circuit density compared to TTL. CMOS is fabricated by combining nMOS and pMOS transistors together. The nMOS transistor transfers logic 0 well and logic 1 inefficiently. The pMOS transistor, on the other hand, outputs logic 1 efficiently and logic 0 poorly. Therefore, connecting one pMOS and one nMOS transistor in parallel provides a single switch called a transmission gate that offers efficient output drive capability for CMOS logic gates. The transmission gate is controlled by an input logic level.

Figure 1.14 shows a typical CMOS inverter. The CMOS inverter is very similar to the TTL totem-pole output circuit. That is, when Q_1 is ON (low resistance), Q_2 is OFF (high resistance), and vice versa. When $V_{input} = $ LOW, Q_1 is ON and Q_2 is OFF. This makes V_{output} HIGH. On the other hand, when $V_{input} = $ HIGH, Q_1 is OFF (high resistance) and Q_2 is ON (low resistance). This provides a low V_{output}. Thus, the circuit works as an inverter.

Digital circuits using CMOS consume less power than do MOS and bipolar transistor circuits. In addition, CMOS provides high circuit density. That is, more circuits can be placed in a chip using CMOS. Finally, CMOS offers high noise immunity. In CMOS, unused inputs should not be left open. Because of the very high input resistance, a floating input may change back and forth between a LOW and a HIGH, creating system problems. All unused CMOS inputs should be tied to V_{cc} ground, or another high or low signal source appropriate to the device’s function. CMOS can operate over a large range of power supply voltages (3 V to 15 V). Two CMOS families, namely CD4000 and 54C/74C, were first introduced. CD 4000A is in the declining stage.

There are four members in the CMOS family which are very popular these days: the high-speed CMOS (HC), high-speed CMOS/TTL-input compatible (HCT), advanced CMOS (AC), and advanced CMOS/TTL-input compatible (ACT). The HCT chips have a specifically designed input circuit that is compatible with LS-TTL logic levels (2V for HIGH input and 0.8V for LOW input). LS-TTL outputs can directly drive HCT inputs.

TABLE 1.3 Comparison of input characteristics of HC and HCT

<table>
<thead>
<tr>
<th></th>
<th>V_{in}</th>
<th>I_{in}</th>
<th>V_{il}</th>
<th>I_{il}</th>
<th>Fanout</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC</td>
<td>3.15 V</td>
<td>1 μA</td>
<td>0.9 V</td>
<td>1 μA</td>
<td>10</td>
</tr>
<tr>
<td>HCT</td>
<td>2.0 V</td>
<td>1 μA</td>
<td>0.8 V</td>
<td>1 μA</td>
<td>10</td>
</tr>
</tbody>
</table>
while HCT outputs can directly drive HC inputs. Therefore, HCT buffers can be placed between LS-TTL and HC chips to make the LS-TTL outputs compatible with the HC inputs.

Several characteristics of 74HC and 74HCT are compared with 74LS-TTL and nMOS technologies in Table 1.2. The input characteristics of HC and HCT are shown in Table 1.3. The tables show that LS-TTL is not guaranteed to drive an HC input. The LS-TTL output HIGH is greater than or equal to 2.7V while an HC input needs at least 3.15V. Therefore, the HCT input requiring V_{ih} of 2.0V can be driven by the LS-TTL output, providing at least 2.7V; 74HCT244 (unidirectional) and 74HCT245 (bidirectional) buffers can be used.

MOS Outputs

Like TTL, the MOS logic offers three types of outputs. These are push-pull (totem-pole in TTL), open drain (open collector in TTL), and tristate outputs. For example, the 74HC00 contains four independent 2-input NAND gates and includes push-pull output. The 74HC03 also contains four independent 2-input NAND gates, but has open drain outputs. The 74HC03 requires a pull-up resistor for each gate. The 74HC125 contains four independent tri-state buffers in a single chip.

A Typical Switch Input Circuit for MOS Chips

Figure 1.15 shows a switch circuit that can be used as a single bit into the input of a MOS gate. When the DIP switch is open, V_{in} is HIGH. On the other hand, when the switch is closed, V_{in} is LOW. V_{in} can be used as an input bit for performing laboratory experiments. Note that unlike TTL, a 1K resistor is connected between the switch and the input of the MOS gate. This provides for protection against static discharge. This 1-Kohm resistor is not required if the MOS chip contains internal circuitry providing protection against damage to inputs due to static discharge.

1.5 Integrated Circuits (ICs)

Device level design utilizes transistors to design circuits called gates, such as AND gates and OR gates. One or more gates are fabricated on a single silicon chip by an integrated circuit (IC) manufacturer in an IC package.

An IC chip is packaged typically in a ceramic or plastic package. The commercially available ICs can be classified as small-scale integration (SSI), medium-scale integration (MSI), large-scale integration (LSI), and very large-scale integration (VLSI).

- A single SSI IC contains a maximum of approximately 10 gates. Typical logic
functions such as AND, OR, and NOT are implemented in SSI IC chips. The MSI IC, on the other hand, includes from 11 to up to 100 gates in a single chip. The MSI chips normally perform specific functions such as add.

- The LSI IC contains more than 100 to approximately 1000 gates. Digital systems such as 8-bit microprocessors and memory chips are typical examples of LSI ICs.
- The VLSI IC includes more than 1000 gates. More commonly, the VLSI ICs are identified by the number of transistors (containing over 500,000 transistors) rather than the gate count in a single chip. Typical examples of VLSI IC chips include 32-bit microprocessors and one megabit memories. For example, the Intel Pentium is a VLSI IC containing 3.1 million transistors in a single chip.

An IC chip is usually inserted in a printed-circuit board (PCB) that is connected to other IC chips on the board via pins or electrical terminals. In laboratory experiments or prototype systems, the IC chips are typically placed on breadboards or wire-wrap boards and connected by wires. The breadboards normally have noise problems for frequencies over 4 MHz. Wire-wrap boards are used above 4 MHz. The number of pins in an IC chip varies from ten to several hundred, depending on the package type. Each IC chip must be powered and grounded via its power and ground pins. The VLSI chips such as the Pentium have several power and ground pins. This is done in order to reduce noise by distributing power in the circuitry inside the chip.

The SSI and MSI chips normally use an IC package called dual in-line package (DIP). The LSI and VLSI chips, on the other hand, are typically fabricated in surface-mount or pin grid array (PGA) packages. The DIP is widely used because of its low price and ease of installation into the circuit board.

SSI chips are identified as 5400-series (these are for military applications with stringent requirements on voltage and temperature and are expensive) or 7400 series (for commercial applications). Both series have identical pin assignments on chips with the same part numbers, although the first two numeric digits of the part name are different. Typical commercial SSI ICs can be identified as follows:

- 74S: Schottky TTL
- 74LS: Low-power Schottky TTL
- 74AS: Advanced Schottky TTL
- 74F: Fast TTL (Similar to 74AS; manufactured by Fairchild)
- 74ALS: Advanced low-power Schottky TTL

Note that two digits appended at the end of each of these IC identifications define the type of logic operation performed, the number of pins, and the total number of gates on the chip. For example, 74S00, 74LS00, 74AS00, 74F00, and 74ALS00 perform NAND operation. All of them have 14 pins and contain four independent NAND gates in a single chip.

The gates in the ECL family are identified by the part numbers 10XXX and 100XXX, where XXX indicates three digits. The 100XXX family is faster, requires low power supply, but it consumes more power than the 10XXX. Note that 10XXX and 100XXX are also known as 10K and 100K families.

The commercially available CMOS family is identified in the same manner as the TTL SSI ICs. For example, 74LS00 and 74HC00 (High-speed CMOS) are identical, with 14 pins and containing four independent NAND gates in a single chip. Note that 74HCXX gates have operating speeds similar to 74LS-TTL gates. For example, the 74HC00 contains four independent two-input NAND gates. Each NAND gate has a typical propagation delay of 10 ns and a fanout of 10 LS-TTL.
Unlike TTL inputs, CMOS inputs should never be held floating. The unused input pins must be connected to \(V_{cc} \) ground, or an output. The TTL input contains an internal resistor that makes it HIGH when unused or floating. The CMOS input does not have any such resistor and therefore possesses high resistance. The unused CMOS inputs must be tied to \(V_{cc} \) ground, or other gate outputs. In some CMOS chips, inputs have internal pull-up or pull-down resistors. These inputs, when unused, should be connected to \(V_{cc} \) or ground to make the inputs high or low.

The CMOS family has become popular compared to TTL due to better performance. Some major IC manufacturers such as National Semiconductor do not make 7400 series TTL anymore. Although some others, including Fairchild and Texas Instruments still offer the 7400 TTL series, the use of the SSI TTL family (74S, 74LS, 74AS, 74F, and 74ALS) is in the declining stage, and will be obsolete in the future. On the other hand, the use of CMOS-based chips such as 74HC and 74HCT has increased significantly because of their high performance. These chips will dominate the future market.

1.6 Evolution of Computers

The first electronic computer, called ENIAC, was invented in 1946 at the Moore School of Engineering, University of Pennsylvania. ENIAC was designed using vacuum tubes and relays. This computer performed addition, subtraction, and other operations via special wiring rather than programming. The concept of executing operations by the computer via storing programs in memory became feasible later.

John Von Neumann, a student at the Moore School, designed the first conceptual architecture of a stored program computer, called the EDVAC. Soon afterward, M. V. Wilkes of Cambridge University implemented the first operational stored memory computer called the EDSAC. The Von Neumann architecture was the first computer that allowed storing of instructions and data in the same memory. This resulted in the introduction of other computers such as ILLIAC at the University of Illinois and JOHNIAC at the RAND Corporation.

The computers discussed so far were used for scientific computations. With the invention of transistors in the 1950s, the computer industry grew more rapidly. The entry of IBM (International Business Machines) into the computer industry happened in 1953 with the development of a desk calculator called the IBM 701. In 1954, IBM announced its first magnetic drum-based computer called the IBM 650. This computer allowed the use of system-oriented programs such as compilers feasible. Note that compilers are programs capable of translating high-level language programs into binary numbers that all computers understand.

With the advent of integrated circuits, IBM introduced the 360 in 1965 and the 370 in 1970. Other computer manufacturers such as Digital Equipment Corporation (DEC), RCA, NCR, and Honeywell followed IBM. For example, DEC introduced its popular real-time computer PDP 11 in the late 1960s. Note that real-time computers are loosely defined as the computers that provide fast responses to process requests. Typical real-time applications include process control such as temperature control and aircraft simulation.

Intel Corporation is generally acknowledged as the company that introduced the microprocessor successfully into the marketplace. Its first processor, the 4004, was introduced in 1971 and evolved from a development effort while making a calculator chip set. The 4004 microprocessor was the central component in the chip set, which was called the MCS-4. The other components in the set were a 4001 ROM, a 4002 RAM, and a 4003
Shift Register.

Shortly after the 4004 appeared in the commercial marketplace, three other general-purpose microprocessors were introduced. These devices were the Rockwell International 4-bit PPS-4, the Intel 8-bit 8008, and the National Semiconductor 16-bit IMP-16. Other companies such as General Electric, RCA, and Viatron also made contributions to the development of the microprocessor prior to 1971.

The microprocessors introduced between 1971 and 1972 were the first-generation systems designed using PMOS technology. In 1973, second-generation microprocessors such as the Motorola 6800 and the Intel 8080 (8-bit microprocessors) were introduced. The second-generation microprocessors were designed using the NMOS technology. This technology resulted in a significant increase in instruction execution speed and higher chip densities compared to PMOS. Since then, microprocessors have been fabricated using a variety of technologies and designs. NMOS microprocessors such as the Intel 8085, the Zilog Z80, and the Motorola 6800/6809 were introduced based on the second-generation microprocessors. The third generation HMOS microprocessors, introduced in 1978, is typically represented by the Intel 8086 and the Motorola 68000, which are 16-bit microprocessors.

In 1980, fourth-generation HCMOS and BICMOS (combination of BIPOLAR and HCMOS) 32-bit microprocessors evolved. Intel introduced the first commercial 32-bit microprocessor, the problematic Intel 432. This processor was eventually discontinued by Intel. Since 1985, more 32-bit microprocessors have been introduced. These include Motorola's MC 68020/68030/68040/PowerPC, Intel's 80386/80486 and the Intel Pentium microprocessors.

The performance offered by the 32-bit microprocessor is more comparable to that of superminicomputers such as Digital Equipment Corporation's VAX11/750 and VAX11/780. Intel and Motorola introduced RISC (Reduced Instruction Set Computer) microprocessors, namely the Intel 80960 and Motorola MC68010/PowerPC, with simplified instruction sets. Note that the purpose of RISC microprocessors is to maximize speed by reducing clock cycles per instruction. Almost all computations can be obtained from a simple instruction set. Some manufacturers are speeding up the processors for data crunching types of applications. Compaq / Digital Equipment Corporation Alpha family includes 64-bit RISC microprocessors. These processors run at speeds in excess of 300 MHz.

The 32-bit Pentium II microprocessor is Intel's addition to the Pentium line of microprocessors, which originated from the 80X86 line. The Pentium II can run at speeds of 333 MHz, 300 MHz, 266 MHz, and 233 MHz. Intel implemented its MMX (Matrix Math eXtensions) technology to enhance multimedia and communications operations. To achieve this, Intel added 57 new instructions to manipulate video, audio, and graphical data more efficiently. Pentium III and Pentium 4 (Present speed up to 1.70GHz) are also added to the Pentium family. Chapter 11 provides an overview of these processors. Intel released a new 64-bit processor called "Merced" (also called "Itanium") in 2001. The new processor is a joint effort by Intel and Hewlett-Packard. Motorola's PowerPC microprocessor is a product of an alliance with IBM and Apple Computer. PowerPC is a RISC microprocessor, and includes both 32-bit and 64-bit microprocessors. The newest versions of the PowerPC include: PowerPC 603e (300 MHz maximum), PowerPC 750/740 (266 MHz maximum), and PowerPC 604e (350 MHz maximum). The PowerPC 604e is intended for high-end Macintosh and Mac-compatible systems. Motorola's 64-bit microprocessor G5 is implemented in Apple's Mac G5 computer.

An overview of the latest microprocessors is provided in this section. Unfortu-
nately, this may be old news within a year. One can see, however, that both Intel and Motorola offer (and will continue to offer) quality microprocessors to satisfy demanding applications.

1.7 A Typical Microcomputer-Based Application

In order to put the microprocessor into perspective, it is important to explore a typical application. For example, consider a microprocessor-based dedicated controller in Figure 1.16. Suppose that it is necessary to maintain the temperature of the furnace to a desired level to maintain the quality of a product. Assume that the designer has decided to control this temperature by adjusting the fuel. This can be accomplished using a microcomputer along with the interfacing components as follows.

Temperature is an analog (continuous) signal. It can be measured by a temperature sensing (measuring) device such as a thermocouple. The thermocouple provides the measurement in millivolts (mV) equivalent to the temperature. Since microcomputers only understand binary numbers (0's and 1's), each analog mV signal must be converted to a binary number using an analog to digital (A/D) converter chip.

First, the millivolt signal is amplified by a mV/V amplifier to make the signal compatible for A/D conversion. A microcomputer can be programmed to solve an equation with the furnace temperature as an input. This equation compares the temperature measured with the desired temperature which can be entered into the microcomputer via the keyboard. The output of this equation will provide the appropriate opening and closing of the fuel valve to maintain the appropriate temperature. Since this output is computed by the microcomputer, it is a binary number. This binary output must be converted into an analog current or voltage signal.

The D/A (digital to analog) converter chip inputs this binary number and converts it into an analog current (I). This signal is then input into the current/pneumatic (I/P) transducer for opening or closing the fuel input valve by air pressure to adjust the fuel to the furnace. The desired temperature of the furnace can thus be achieved. Note that a transducer converts one form of energy (analog electrical current in this case) to another form (air pressure in this example).

1.8 Trends and Perspectives in Digital Technology

This section provides a summary of technological forecasts. Topics include advancements
in ICs, microprocessors, ASIC and DVD as follows:

1.) With the advent of IC technology, it is expected that it would be possible to place 750 million transistors on one chip by the year 2012. Furthermore, the replacement of aluminum wire (high resistance) on ICs by copper wire (low resistance) will reduce power consumption and improve reliability.

2.) Microprocessor designers have traditionally refined architectures by raising clock speeds and adding ALUs that can process instructions simultaneously. Many modern microprocessors can execute instructions out of order, so that one instruction waiting for data does not stall the entire processor. These microprocessors can predict in advance where a branch will be taken. The drawbacks of incorporating these types of capabilities in the modern microprocessors are that the chip's circuitry is devoted to overheads.

A new microprocessor architecture called EPIC (Explicitly Parallel Instruction Computing), developed jointly by Intel and Hewlett-Packard, minimizes these overheads. EPIC is introduced in 2001 with a new Intel chip called “Merced” (also called “Itanium”). Motorola, on the other hand, announced its Altivex technology (discussed in Chapter 11) which is used as the foundation for Apple's next generation computers such as Power Mac G5.

3.) Programmable Logic Devices (PLDs) are IC chips capable of being programmed by the user after they are manufactured. These chips are programmable via electronic switches. These programmable switches permit the designer to connect the circuitry inside the PLDs in several ways. The users can thus program these chips and implement various functions.

PLDs are extensively used these days in designing microcomputers and other digital applications. The basics of PLDs are covered in Chapter 4. Computer-aided design (CAD) software tools are used to program and simulate applications implemented in PLDs. This allows the users to verify whether the desired requirements of the applications are satisfied. Once the simulation is successfully completed, PLDs are interfaced to the prototype for the application being implemented. Therefore, the designer must have appropriate hardware background to test the prototype in order to ensure that the design specifications are satisfied before going into production. Products can be developed using PLDs from conceptual design via prototype to production in a very short time. However, the electronic switches occupy valuable chip area and slow down the operation of the internal circuits. Therefore, PLDs may not satisfy the desired specifications in some applications. Also, utilization of PLDs in these applications may not be cost effective. In these situations, custom or semi-custom design of chips is necessary. These chips are called ASICs (Application-Specific ICs). Typical applications of ASIC include microprocessors, PC (Personal Computer) bus interface and memory chips.

ASICs are chips designed for a specific application. The designer has complete control over deciding on the chip design, including transistor count, physical size, and chip layout. ASICs can be custom or semi-custom chips. Custom ASIC chips are designed from scratch. Therefore, manufacturing of these chips normally takes a lot of time and may be expensive due to the initial design cost. These chips are used when high sales volume is expected. In order to reduce design efforts and cost, semi-custom ASIC chips can be designed using Standard Cell technology or Gate Array technology.

Using the Standard cell technology, the IC manufacturers provide a library of standard cells. Typical standard cells include frequently-used MSI functions, such as decoders and counters, or LSI functions, such as microprocessors and memories. CAD tools can be utilized to design the ASIC chip using these cells. With the standard cell
technology, the designer interconnects logic functions in the same manner as in typical logic circuit design using MSI/LSI chips. It is possible to provide efficient chip layout since technology is available now to include metal wires in the ICs in multiple layers; two wires can cross without creating any short circuit, which reduces the size of the chip.

To speed up the design process and reduce cost, semi-custom ASIC chips can also be designed using Gate Array technology for rapid and low cost development of applications. The gate array is a chip containing transistors and connections (called structures) that are pre-designed. The semi-custom ASIC chip is then fabricated using these structures and the connection information provided by the customers. This means that portions of the semi-custom ASIC chips are predefined while some other parts are custom fabricated based on the application.

ASIC chips designed using standard cell technology are normally smaller than those manufactured using the Gate array technology. ASIC chips using gate arrays can be manufactured faster at lower initial design cost than can ASIC chips that use standard cells.

4.) DVD (normally stands for “Digital Video Disc” or “Digital Versatile Disc”) is the next generation of optical disc technology. It is basically a larger, fast CD (Compact Disc) that can hold video as well as audio and computer information. The DVD-ROM like the CD-ROM uses a laser to read data from a disc. However, the data in DVD-ROM is stored in more compact form in more than one layer of the disc. Thus, DVD disc provides a higher capacity of storage compared to CD.

DVD aims to encompass home entertainment, computers, and business information with a single digital format. It will eventually replace audio CD, videotape, laser disc, CD-ROM, and video game cartridges. There are basically three types of DVD. These are DVD-Video, DVD-ROM and DVD-RAM. DVD-Video (simply called DVD) holds information that can be played in a DVD player connected to a TV set, while DVD-ROM holds computer programs and can be read by DVD-ROM drive interfaced to a computer. The difference is similar to that between audio CD and CD-ROM. DVD drives can also read CD-ROMs. Therefore, DVD drives rather than CD-ROM drives are included in some Personal Computers (PCs). Most computers with DVD-ROM drives can also play DVD-Videos.

DVD-RAM can be read from and written into many times. CD-RW (CD-Rewritable) and DVD-RAM are the read/write equivalents of CD-ROM and DVD-ROM respectively. CD-RW uses infrared laser like the CD-ROM. Both DVD-ROM and DVD-RAM, on the other hand, use a red laser, which has a shorter wavelength than infrared laser. The shorter wavelength of the red laser provides DVD with a larger storage capacity than that of a CD.