Index

Note: page numbers in italics refer to figures and tables

actuator performance analysis 154–6
ADC (automatic diameter control) 116
adhesion energy 3, 6, 11
halide/ceramic systems 27
oxide/metal systems 26
vertical Bridgman (VB) technique 360–3
alloys
contact angles 15, 19, 21, 22–4, 22, 24, 25
dewetted vertical Bridgman (VB) technique 380, 381, 382
shaped crystal growth 110
surface tension vs composition 416, 417
thermocapillary convection 224, 459, 459, 460
see also intermetallics and under the names of specific alloys
aluminium components 106
aluminium nitride substrates 23, 24
aluminium oxide
crystal growth 70, 71, 76, 77, 78, 79
surface tension 18
automated control see control systems
automated crystal seeding 320–1
automatic diameter control (ADC) 116
batch disturbance rejection 194, 196–8, 198, 199
Biot numbers 206, 206
Bond number 59, 73, 415
boron nitride substrate 24–5, 25
boron oxide layer 24, 117–18, 138
boron trioxide encapsulant 367, 371–2, 373
borothermic reactions 230
Bridgman method see vertical Bridgman (VB) technique
Burton–Prim–Slichter equation 100–1
cadmium telluride
contact angles 19, 21, 25
surface tension 18
calcium chloride encapsulant 367
capillarity, definitions 1–4
capillary constant 60
capillary crystal tubes 331–2, 332, 333
capillary flow see Marangoni convection
capillary length 3, 135
capillary pressure 3
capillary problem 59–62
mathematical formulation 468–76
TPS 81–92
capillary shaping techniques (CST) 51–3
classification of methods xxviii
schematic representation 62
see also under the names of particular techniques
capillary stability see dynamic stability
carbon-based substrates 21–3, 22, 23, 26, 27, 27
carbothermic reactions 230
Cassie’s equation 12
chemical contamination 397–9, 398, 399
see also oxygen partial pressure
chemocapillary convection 414
classification of methods xxviii
closed-loop simulations 160, 161
composite materials, contact angles 11–12, 12
contact angles 4–27
composite materials 11–12, 12
composite wetting 9–10, 10
dynamics of wetting 12–16
halide/ceramic systems 27
heterogeneous surfaces 11–12, 11, 12
hysteresis 9
measurement 16–17, 17
metastable and stable 6, 7
molten metals on oxides 18–20
oxide/carbon systems 26
oxide/metal systems 18–20, 25–6, 26, 27
roughness effect 8–11, 9, 10
Index

semiconductors
 on carbon-based substrates 21–3
 on nitrides 23–5
 on oxides 17–21, 19
sharp edges effect 8–9, 8
sticking 11
system size effects 6
thermodynamics 5–12
vertical Bridgman (VB) technique 358–60, 360, 361
Young’s and Young–Dupré equations 5–6
contamination see chemical contamination
control systems
 actuator performance analysis 154–6
 components 122–3, 122
 control inputs 124
 Czochralski technique 124–32
 feedforward control 125–6
 FZ technique 264, 266–7
 measurement issues 130–2
 model-based 123–4, 126–7, 127–9
 multiloop control system 127–8
 vs PID control 121–2
 PID control approaches 161–70, 162, 164
 process dynamics analysis 150–4
 shaped crystal growth 319–32
 capillary crystal tubes 331–2
 stability 127
 stability analysis-based 78–80, 79
 Verneuil technique 78–80
convective flow see Marangoni convection
copper
 capillary shaping 95–7
 growth angles 36
core-doped fibres 316–19, 317, 318
corundum see aluminium oxide
crystal diameter measurement 117–18
crystal interface height
 heater power relation 151
 pulling speed relation 151–2, 152
crystal interface radius
 control based on 161–3
 heater power relation 151, 154–6, 155, 156, 157
 pulling speed relation 151–2, 152, 153, 154–6, 154, 156, 157
crystal length
 hydromechanical–geometrical model 134–5
 parametrized control model 171–6
crystal radius
 and differential weight gain 119
 flatness-based controller 175–81, 178, 179
 and growth rate 118, 175–81, 180
 measurement issues 130–1
水晶 seeding, automated 320–1
crystal slope angle 29–30, 62–3, 133, 137
crystal surface modelling 261–2, 261, 263
crystal surface orientation
 thermal behaviour modelling 147–8, 147
 thermal-geometry interactions 157–60, 159, 160
crystallization front displacement rate 63
curved interface shape 143–4, 143, 157, 158
FZ technique 222
nonlinear observer design 192–3, 193
cylindrical crystals
 edge-defined film-fed growth (EFG) 493–500, 496, 499
 Verneuil technique 76, 77
Czochralski technique
 advanced techniques 181–98
 analytical-numerical model 449–52, 450, 451, 476–86
 capillary shaping parameters 66, 68
 capillary stability 68–9
 control approaches 124–32
 control issues 116–24
 crystal growth furnace 144
 defect structures 69–70
 dynamic stability 55, 57, 65–8
 gas bubbles 246, 247, 297, 298
 growth striations 191, 193, 195
 heat stability 65
 linear observer design 182–3
 meniscus surface equation 476–86
 model-based control 126
 nonlinear observer design 183–94, 187, 190, 195
 origin xxiii, xxv
 schematic representation 53
 shaped crystal growth 69
 stability analysis 65–9
 temperature distribution 65–8
 thermocapillary convection 448–56, 452
 magnetic field damping 451–6, 453, 454, 455, 456
 vapor pressure controlled 117, 118
 see also liquid encapsulated Cz (LEC) method
Czochralski–Gomperz technique 107
defect structures 54
 Czochralski technique 69–70
 edge-defined film-fed growth (EFG) 285–6, 286
 FZ technique 208, 210, 210
 micro-pulling down technique (µ-PD) 342
 vertical Bridgman (VB) technique 361, 362, 363
edge stabilized/supported ribbon see String Ribbon
edge-defined film-fed growth (EFG) 107, 278, 278, 280, 297, 298
analytical-numerical model 284, 486–500
applicable materials 279
core-doped fibres 318
cylindrical crystals 493–500, 493, 496, 499
defect structures 285–6, 286
gas bubbles 297, 298
meniscus surface equation 486–500
periodically doped structures 312–13, 313
polygonal crystals 282–3
sapphire crystals 293–4
sheets, crystal 486–93, 487, 488, 492
Si crystals 281–6, 283
thermocapillary convection 456–7
electrodynamic forces, RF-induced 218–19, 222, 223, 225
EM field modelling 254
encapsulation see liquid encapsulation
equipment–process model 144–6, 145
external triple point (ETP) modelling 253, 253
feedback controller 121, 122, 123, 172–6
feedforward control 122, 123, 125–6
flatness-based controller 172–5, 175, 179, 180, 181
floating zone (FZ) crystal growth see FZ technique
force acting on the load cell 130–1, 138–9
forces acting on the melt zone 210–11
forward problem (control systems) 125
Froude number 59
FZ technique 203–70
alternative heating methods 242
applicable materials 204, 205
basic process 208–10, 209
configurations 205
control systems 266, 266–7
dopant striations 219, 418, 419, 435, 438
dynamic stability 80–1, 225
experiment and numerical results
compared 216–20, 218
forces acting on the melt zone 210–11
grid processing algorithms 262, 263, 264–5
growth angle 38–9, 211, 212
growth striations 219, 418
heat balance 206
image furnaces 230–40, 237, 238
laboratory reference system (LRS) 249
laser heating 240–1
machine in operation 217
maximum zone height 204–6, 205
melting the feed rod 208, 213–14, 214

Index 527
dendritic web growth 280, 286–8, 287
dewetted vertical Bridgman (VB) technique 373–408, 375
crucible material and wetting properties of melt 388–9
crucible roughness effect 377, 378, 379, 395–7, 395, 396
gallium antimonide 383, 385
germanium 380–2
growth atmosphere and pollution 390–3, 391
growth velocity 392
indium antimonide 383–6
interface shape 392–4, 394
meniscus shape 506, 507, 508, 513, 515, 516, 517
meniscus surface equation 500–17
microgravity conditions 374–8, 397–401
modelling 394–404, 500–17
normal gravity conditions 378–9, 388, 388–94
pressure difference across meniscus 389, 399–402, 400
residual gases 402–3, 404
sample and growth procedure 390
schematic 501
stability analysis 401, 404–7, 405
surface morphology 388, 389, 392
surface ridges 376, 376, 377
diameter control 116–17
diameter measurement 117–18
dislocation defects
direct growth striations
see dopant striations
dopant striations
FZ technique 219, 418, 419, 435, 438
magnetic field effect 445
vibration effect 446, 447
dynamic stability 54–65
Czochralski technique 65–9
FZ technique 80–1, 225
Kyropoulos technique 69–70
TPS 55, 57, 81–93
Verneuil technique 57, 71–80
dopant distribution
core-doped fibres 316–19
periodically doped structures 312–15, 313
time dependency 415
see dopant striations
dynamic stability
Czochralski technique 65–9
FZ technique 80–1, 225
Kyropoulos technique 69–70
TPS 55, 57, 81–93
Verneuil technique 57, 71–80
dewetted vertical Bridgman (VB) technique 373–408, 375
chemical contamination 397–9, 398, 399
configurations 394
dot dopant striations
dot distribution
FZ technique 361, 362, 363
distributed-parameter models 126–7
dot dopant striations
FZ technique 219, 418, 419, 435, 438
time dependency 415
see dopant striations
dynamic stability 54–65
Czochralski technique 65–9
FZ technique 80–1, 225
Kyropoulos technique 69–70
TPS 55, 57, 81–93
Verneuil technique 57, 71–80

metallic melts 220–30, 220, 221
ambient atmosphere effect 228–30
convective flow 222–6, 223
curved interface shape 222
melt composition changes 226, 227, 228
melt refining 229–30
metal–vapour reactions 229–30
temperature distribution 221
travelling solvent method (TSFZ) 226–8
modelling 247–70, 266, 267
molten zone shape 249–57, 256, 257, 258
needle-eye process 208–14, 209, 247–70
numerical analysis 247–70
optical and RF induction heating compared 225–6, 226
origin xxv, xxvii
pedestal method 205, 206, 214–15, 215
quasi-square cross-section crystals 215–16, 216
RF heating 207–30, 209, 250
schematic representation 55
set up 207–8, 220
shape stability 80–1, 211–13, 213
silicon 207–20
solutocapillary convection 460
thermocapillary convection 223–5, 223, 417–48
vertical cross-section 250
gallium antimonide
contact angles 19, 21, 24, 25
dewetted crystal growth experiments 383, 385
growth angles 36
surface tension 18, 416
gallium antimony alloy
contact angles 21
surface tension vs composition 416, 417
gallium arsenide
capillary shaping 99–100
contact angles 19, 25
growth angles 36
surface tension 18, 416
gallium indium antimony alloy 377
gallium indium arsenic alloy, contact angles 22
gas bubbles 297, 298
FZ technique 246, 247
growth from an element of shape (GES) 309
variable shaping technique (VST) 303
Gemini (dual ribbon growth) 289, 289
germanium
capillary shaping 99–100
contact angles
carbon-based substrates 23
nitride substrates 23–4, 24, 25
oxide substrates 19, 20, 20, 21
dewetted crystal growth experiments 380–2
growth angles 36
shaped crystal growth 105, 108
surface tension 18, 416
germanium antimony alloy 380, 381, 382
germanium gallium alloy 380, 381
germanium silicon alloy
composition and surface tension 416
contact angles 15, 19, 22, 23–4, 24, 25, 25
thermocapillary convection 459, 459, 460
GES see growth from an element of shape (GES)
Gomperz’s method xxiii, xxvi
growth angles 28–44
boundary condition 61–2
constant growth angle approximation 39–40
estimation and verification 40–4
FZ technique 38–9, 211, 212
interfacial energies 29–35
mathematical representation 40, 40
measurement 35–8
nonconstant 193–4, 194
relative orientations of the three interfaces 34
in simulations of crystal growth 38–44
values for various materials 36
growth from an element of shape (GES) 307–12
growth striations 309
multicomponent oxide crystal growth 313–14, 313
periodically doped structures 313–15, 315, 316
sapphire 308, 310, 311
growth rate 30, 38
calculation 189
control 117, 128–9, 176–81, 178, 179
and crystal radius 118, 175–81, 180
fluctuations 435, 436, 437
hydromechanical–geometrical model 134, 137
thermal behaviour modelling 142
growth striations
Czochralski technique 191, 193, 195
FZ technique 219, 418, 435–9, 440, 441
GES 309
Marangoni convection 415
vertical Bridgman (VB) technique 393
halide/ceramic systems, contact angles 27
heat transfer modelling 41
Czochralski technique 119–21, 146–7
FZ technique 206, 222–4, 254–5
vertical Bridgman (VB) technique 357–8
heater power
control input 124, 128–9, 151, 154–6, 155, 156, 157, 179
crystal interface radius relation 151–2, 155, 156, 157
Herring equation 28, 33
horizontal ribbon growth (HRG) 292
hydromechanical–geometrical model 133–42
assumptions 133
nonlinear model-based control 171–6
quantities used 134
image furnaces 230–40, 231, 233
control systems 234–6
FZ technique 230–40, 237, 238
light sources 232, 234
mirror focusing properties 234, 235
mirror materials 232, 234
temperature measurements 234–5, 239–40
image processing 130
impurity distribution
Czochralski technique 448
FZ technique 225
time dependency 415
TPS 100–3, 101, 103, 104
see also growth striations
indium antimonide
contact angles 19, 25
dewetted crystal growth experiments 383–6
growth angles 36
surface tension 18
indium phosphide
contact angles 19, 25
growth angles 36
interface shape modelling 143–4, 143
oxide melts 243–5, 243, 244
interfacial attachment 44
interfacial energies 1–3, 4
growth angles 29–35
vertical Bridgman (VB) technique 360–1, 359
intermetallics
FZ technique 220–30, 220, 221
ambient atmosphere effect 228–30
convective flow 222–6, 223
curved interface shape 222
melt composition changes 226, 227, 228
melt refining 229–30
metal–vapour reactions 229–30
temperature distribution 221
travelling solvent method (TSFZ) 226–8
internal triple point (ITP) modelling 253–4, 253, 254
inverse problem (control systems) 125
Kronecker delta 58
Kyropoulos technique 53, 69–70
Laplace capillary equation 3, 3, 60
Laplace constant 135
laser heated pedestal growth (LHPG) 346
laser heating 240–1, 241, 245
lateral photovoltage scanning (LPS) 219–20, 219
lift ratio 171, 173, 175, 176–7
linear observer design 182–3
linear system model analysis 148–50
comparison with nonlinear modelling 148, 149, 155–6
controller choice 154
dynamic characteristics 152–4, 153, 155
full state and second-order 151–2, 151
liquid encapsulated Cz (LEC) method 117
hydromechanical–geometrical model 135, 138–9
nonlinear control design 172, 178, 180, 181
nonlinear observer design 188, 191, 191
weight-based control 165
liquid encapsulation
VB technique 366–73
crystals grown 367
solid–liquid–salt triple point region 370
surface and wetting properties 370
liquid/vapour interface 4, 29
see also meniscus shape
lithium chloride-potassium chloride
encapsulant 367, 368–71, 369
lithium fluoride
growth angles 36
surface tension 18
lithium niobate
growth angles 36
micro-pulling down technique (µ-PD) 344–6, 345, 346
surface tension 18
local shaping technique (LST) 308
Luenberger observer 182–3
lumped-parameter models 125, 126, 128–9
Lyapunov equations 57–8
magnetic fields
thermocapillary convection damping
Czochralski technique 449, 451–6, 453, 454, 455, 456
FZ technique 443–5, 444, 446
Marangoni convection 223–4, 223, 413–60
azimuthal temperature distribution 431–2, 432
centrifugal instability 429
Czochralski technique 448–56, 452
damping 443–8
magnetic fields 443–5, 444, 446
vibration 445–6, 447
diagram 448–50
edge-defined film-fed growth (EFG) 456–7
elliptic instability 429, 430
experimental setup 425, 425, 426, 427, 439
flow and temperature fields 423, 423
flow transitions 426–9, 428
fluid dynamics 422–35
full float zones 435
FZ technique 417–48
growth rate fluctuations 435, 437, 438
growth striations 415
half-zone model 417, 418, 422–35, 422, 424
instability mechanisms 429–31, 430, 431
magnetic field damping 443–5, 444, 446
mode appearance coefficient (MAC) 432–3, 433
numerical simulations 439–41
oscillatory flow 415, 426, 428, 429, 431, 434
frequency 433–5, 434
oxide melts 244–5, 244
oxygen partial pressure effect 419–22, 421
partially confined half-zone (PCHZ)
configuration 429–31, 430
schematic representation 414, 418
solutocapillary convection 457–60, 459
supercritical Marangoni numbers 431–5
temperature oscillations 431–2, 432, 435, 436
three-dimensional numerical simulations 439–41, 442
vertical Bridgman (VB) technique 362–3, 364, 457
vibration damping 445–6, 447
Marangoni number 414–15
critical 415, 435–41
vs the Prandtl number 441, 442
flow transitions 426
supercritical 431–5
materials
edge-defined film-fed growth (EFG) 279
FZ technique 204, 205
micro-pulling down technique (μ-PD) 334–5
mathematical models 123–4, 132–50, 465–517
capillary problem 468–76
Czochralski technique 476–86
dewetted vertical Bridgman (VB)
technique 395–405, 500–17
dewetted vertical Bridgman (VB) technique 200–201
edge-defined film-fed growth (EFG) 284, 285, 486–500
meniscus problem 38–44, 472–6
melt volume 259, 260
melting temperatures 206
meniscus mass 135–6
meniscus profile curves 43, 330, 331
meniscus shape 59–60, 465–7, 466
Czochralski technique 476–86, 479, 480, 481, 485
and heat balance 121
mathematical models 38–44, 133–5, 472–6
meniscus surface equation 60–1
Czochralski technique 476–86
dewetted vertical Bridgman (VB) technique 500–17
dewetted vertical Bridgman (VB) technique 237
Mesa Crucible 289–90, 290
metal substrates 25–6, 26, 27, 27
metallic melts
contact angles 17–18
FZ technique 220–30, 220, 221
ambient atmosphere effect 228–30
convective flow 222–6, 223
curved interface shape 222
melt composition changes 226, 227, 228
melt refining 229–30
metal–vapour reactions 229–30
temperature distribution 221
travelling solvent method (TSFZ) 226–8
oxidation 18–19, 20
wetting behaviour 13–14, 19
metals 105, 106, 110
microgravity conditions 205–6
dewetted vertical Bridgman (VB) technique 374–8, 398–400
FZ technique 237, 237, 238
TPS 95–100, 96, 97, 98, 99, 100
micro-pulling down technique (μ-PD) 333–46, 337
applicable materials 334–5
BGO fibre crystals 343, 343, 344
incrust–melt relation 339–40
LN fibres 344–6, 345, 346
meniscus representation 340
YAG garnet crystals 340–3, 341, 342
mirror furnaces see image furnaces
model-based control 123–4, 126–7, 127–30
vs PID control 121–2
modelling see mathematical models
molten zone shape, FZ technique 249–57, 256, 257, 258
multiloop control system 127–8
nitride substrates 23–5, 24, 25
noncapillary shaping (NCS) 299–307, 299, 300
core-doped fibres 318–19, 319
sapphire 301, 302
domes 305–7, 305, 306
variable cross-section 303–7, 303, 304
nonlinear dynamics 157–60, 159, 160, 161
nonlinear model-based control 170–81
nonlinear modelling, comparison with linear modelling 148, 149, 155–6
nonlinear observer design 183–94, 187, 190, 195
numerical analysis 476–517
see also mathematical models
‘observability’ 132
‘observer’ 131–2, 131
open melting front 252
optical heating 230–47
optical imaging 130
optical material parameters 237–9, 238, 239
oscillatory flow 225, 426, 429, 431–4, 435
see also Marangoni convection
oxide melts 242–7
ambient atmosphere effect 245–7, 246, 247
contact angles
carbon-based substrates 26, 27
metal substrates 25–6, 26, 27
convective flow 244
wetting behaviour 14, 14, 15
oxide substrates 17–21, 19, 20
oxygen partial pressure
contact angle effect 18–19, 20, 21, 26, 392, 399
FZ technique 245–7
surface tension relation 416, 421
thermocapillary convection 419–22
Péclét–Marangoni number 414
periodically doped structures 312–15, 313
phase boundaries 251–4
photovoltaics (PV) 280, 283, 287
PID control
based on crystal radius estimation 161–3, 162, 164
based on weight measurement 164–70, 165, 166
FZ technique 266, 266–7, 267
optimization 169–70
shaped crystal growth 331–2
vs model-based control 121–2
plate-shaped crystals
automated growth 325–8
micro-pulling down technique (μ-PD) 337, 338
Verneuil technique 78
Prandtl number 222
Marangoni convection dependence 414, 423–4, 423, 441, 442, 443
process dynamics analysis 150–4
pulling speed
control input 124, 129, 134, 154–6, 177, 179
crystal interface height relation 151–2, 152
crystal interface radius relation 151–2, 152, 154–6, 156, 157
PID-based control 162, 162, 163, 164
vs melt surface temperature 197
PV (photovoltaics) 280, 283, 287
radiation heating 230–41
radiofrequency heating see RF heating
rare earth (RE)–transition metal compounds 204, 230
reactive spreading 14–16, 15, 16
semiconductors on carbon-based substrates 22, 23
semiconductors on nitrides 23–5
reference trajectory calculation 122
crystal length parametized control model 173, 174
nonlinear observer design 187, 187
PID control 163, 165, 166
Reynolds–Marangoni number 414
RF heating
FZ technique 207–30, 249–50
induced electrodynamic forces 218–19, 222, 223, 225
micro-pulling down technique (μ-PD) 334–5, 338
RGS (ribbon growth on substrate) 290–2, 291
RHP (right-half-plane) characteristic 151
ribbon growth 60–1, 280
classification of technologies 280–1, 281
dendritic web growth 286–8, 287
diagonal–defined film-fed growth (EFG) 281–2
FZ technique 80–1
residual stresses 282
ribbon edge instability 282
Si crystals 280–2
TPS 93, 99–100, 100
ribbon growth on substrate (RGS) 290–2, 291
ribbon-to ribbon (RTR) technique 80–1
right-half-plane (RHP) characteristic 151
rotation rate
Czochralski technique 124
FZ technique 224–5, 244
roughness see surface roughness
RTR (ribbon-to-ribbon) technique 80–1
ruby 240, 316
Runge–Kutta Methods 518–22
semiconductors
core-doped fibres 317, 317, 318
edge-defined film-fed growth (EFG) 293–4, 318, 329
growth angles 35–6, 36, 94, 94
growth from an element of shape (GES) 307–12, 308, 310, 311
noncapillary shaping (NCS) 299–307, 301, 302
domes 305–7, 305, 306
variable cross-section 303–7, 303, 304
optical-grade fibre 294
periodically doped structures 313
shaped crystal growth 292–332, 329
TPS 103, 104
variable shaping technique (VST) 295–7
Verneuil technique 70
secondary radiation 240
semiconductors
adhesion energy 11
anomalous behaviour 166–9
contact angles
on carbon-based substrates 21–3, 22
nitrides substrates 23–5, 24, 25
oxide substrates 17–21, 19, 20
growth angles 31–2
surface tension 18
wetting behaviour 13–14
see also under the names of specific materials
sessile drop technique 16–17, 17
shape stability see dynamic stability
sheets, crystal, EFG technique 486–93, 487, 488, 492
Siemens process 207
silica, surface tension 18
silica substrates 19–21
contact angles 17–18, 19
silicon
closed shapes 282–6
contact angles
carbon-based substrates 22, 23
nitrides substrates 23, 24, 25, 25
oxide substrates 19, 20–1
dendritic web growth 286–8
edge-defined film-fed growth (EFG) 281–6, 283
FZ technique 207–20
growth angles 36
Marangoni convection 419–22, 420, 421
ribbon growth 280–2, 285
shaped crystal growth 109–10, 109, 279–92
String Ribbon™ 288–90, 288, 289
surface tension 18, 416, 420–2, 421
thermocapillary convection 448
TPS 102–3, 103, 104
Silicon Film™ 290–1
silicon nitride substrates 23, 24
silicon on cloth (SOC) 109
Smith equation 6
SOC (silicon on cloth) 109
solid/liquid interface energy 2, 2, 4, 29, 31–2
solid/liquid interface shape 38–44, 140–1
see also meniscus shape
solid/liquid/vapour triple phase line
(TPL) 5–6, 5, 28
solid/vapour interface energy 4, 29–31, 31–2
solid/vapour interface shape 38–44, 44
solutocapillary convection 414–15, 457–60
spoke patterns 448–9
stability analysis see dynamic stability
Stefan condition 41
Stepanov techniques 107, 277–8, 298
sticking behaviour 11
see also adhesion energy
striations see growth striations
String Ribbon™ 288–90, 288, 289
surface energy 1–2, 4
surface roughness
contact angles 8–11, 9, 10
dewetted vertical Bridgman (VB) technique 377, 378, 379, 395–7, 395, 397
surface tension
composition dependence 416, 417
and impurities 416, 416, 420–2, 421
measurement 16–17, 17
temperature dependence 416, 420–2, 421
values for various compounds 18
vs surface energy 4
technique of pulling from shaper see TPS
temperature field 41, 63
Czochralski technique 65–8, 143–4
FZ technique 219, 220, 221, 250–1, 255, 258, 262
image furnaces 235, 240
Marangoni convection 423, 432, 432, 441, 452, 454, 455
temperature measurements 234
thermal behaviour modelling 142–8, 197–8
thermal interface curvature 356–8, 357, 358
thermal-geometry interactions 157–60, 159, 160, 196
thermocapillary convection see Marangoni convection
Tiller’s criterion 225
TPL see solid/liquid/vapour triple phase line (TPL)
TPS capillary shaping theory 81–92
boundary conditions 83, 86, 87, 89, 92
capillary coefficients 93
experimental tests 94–100
definition 104
dynamic stability 55, 57, 92–3
history 104–8
peculiarities 110–11
schematic representation 56
shaped metal profiles 106
tracking observer 187
travelling solvent FZ method (TSFZ) 226–8
triple phase line see solid/liquid/vapour/triple phase line (TPL)
TSFZ (travelling solvent FZ method) 226–8
tubular crystals 105, 106
automated growth 321–5, 329, 331–2,
331
defect structures 285–6, 286
degree-defined film-fed growth (EFG) 282–4,
283, 285
growth from an element of shape (GES) 308
Verneuil technique 77–8, 78
two shaping elements technique
(TSET) 109–10
two-loop control 176–81, 179, 180, 181
vapor pressure controlled Czochralski (VCz) method 117, 118
variable shaping technique (VST)
gas bubbles 303
sapphire 295–7, 296, 303
VB technique see vertical Bridgman (VB) technique
VCz (vapor pressure controlled Czochralski) method 117, 118
Verneuil technique 70–1
capillary shaping parameters 72, 73, 75
cylindrical crystals 76, 77
dynamic stability 57, 71–80
origin xxiv, xxv
plate-shaped crystals 78
schematic representation 54
shaped crystal growth 76–80
stability analysis-based automation 78–80, 79
tubular crystals 77–8, 78
vertical Bridgman (VB) technique 355–73
contact angles 358–9, 360, 361
crystal–crucible adhesion 359–63
defect structures 361, 362, 363
dewetting process see dewetted vertical Bridgman (VB) technique
dislocation defects 363
growth striations 392
interfacial energies 359–60, 359
liquid encapsulation 366–73, 369
crystals grown 367
solid–liquid–salt triple point region 370
surface and wetting properties 370
origin xvi
set up 356
spurious nucleation on crucible walls 363,
365–6, 365, 366
thermal interface curvature 356–8, 357, 358
thermocapillary convection 362–3, 364, 457
thermomechanical detachment 362–3, 364
view factor 146–7, 148
VST see variable shaping technique (VST)
Weber number 59
weight measurement 118, 119
evaluation 130–1
hydromechanical–geometrical model 138–42
right-half-plane zero characteristics 126
weight-based control 164–70, 165, 166
crystal seeding 320–1
plate enlargement 325–6, 326, 328
in situ correction 326–7
steady state growth 328–31
tube enlargement 322–5, 322, 324, 325
Wenzel Equation 8
wetting behaviour 5
heterogeneous surfaces 11–12
nonreactive spreading 13–14
reactive spreading 14–16, 15, 16
see also contact angles
work of adhesion 3
work of cohesion 2
Young–Dupré equation 6
Young–Laplace equation 38, 40, 135, 466, 468–86
Young’s equation 5–6