Contents

About the Editors
List of Contributors
Preface
Abbreviations

Section I Low-\(k\) Materials

1 **Low-\(k\) Materials: Recent Advances**
Geraud Dubois and Willi Volksen

1.1 Introduction
1.2 Integration Challenges
1.2.1 Process-Induced Damage
1.2.2 Mechanical Properties
1.3 Processing Approaches to Existing Integration Issues
1.3.1 Post-deposition Treatments
1.3.2 Prevention or Repair of Plasma-Induced Processing Damage
1.3.3 Multilayer Structures
1.4 Material Advances to Overcome Current Limitations
1.4.1 Silica Zeolites
1.4.2 Hybrid Organic–Inorganic: Oxycarbosilanes
1.5 Conclusion

References

2 **Ultra-Low-\(k\) by CVD: Deposition and Curing**
Vincent Jousseaume, Aziz Zenasni, Olivier Gourhant, Laurent Favennec and Mikhail R. Baklanov

2.1 Introduction
2.2 Porogen Approach by PECVD
2.2.1 Precursors and Deposition Conditions
2.2.2 Mystery Still Unsolved: From Porogens to Pores
2.3 UV Curing
2.3.1 General Overview of Curing
2.3.2 UV Curing Mechanisms
2.4 Impact of Curing on Structure and Physical Properties: Benefits of UV Curing
2.4.1 Porosity
3 Plasma Processing of Low-\textit{k} Dielectrics

\textit{Hualiang Shi, Denis Shamiryan, Jean-François de Marneffe, Huai Huang, Paul S. Ho and Mikhail R. Baklanov}

3.1 Introduction
3.2 Materials and Equipment
3.3 Process Results Characterization
3.4 Interaction of Low-\textit{k} Dielectrics with Plasma
 3.4.1 Low-\textit{k} Etch Chemistries
 3.4.2 Patterning Strategies and Masking Materials
 3.4.3 Etch Mechanisms
3.5 Mechanisms of Plasma Damage
 3.5.1 Gap Structure Studies
 3.5.2 Effect of Radical Density
 3.5.3 Effect of Ion Energy
 3.5.4 Effect of Photon Energy and Intensity
 3.5.5 Plasma Damage by Oxidative Radicals
 3.5.6 Hydrogen-Based Plasma
 3.5.7 Minimization of Plasma Damage
3.6 Dielectric Recovery
 3.6.1 \textit{CH}_4 Beam Treatment
 3.6.2 Dielectric Recovery by Silylation
 3.6.3 UV Radiation
3.7 Conclusions
References
5 Copper Electroplating for On-Chip Metallization

Valery M. Dubin

5.1 Introduction

5.2 Copper Electroplating Techniques

5.3 Copper Electroplating Superfill
 5.3.1 The Role of Accelerator
 5.3.2 The Role of Suppressor
 5.3.3 The Role of Leveler

5.4 Alternative Cu Plating Methods
 5.4.1 Electroless Plating
 5.4.2 Direct Plating

5.5 Electroplated Cu Properties
 5.5.1 Resistivity
 5.5.2 Impurities
 5.5.3 Electromigration

5.6 Conclusions

References

6 Diffusion Barriers

Michael Hecker and René Hübner

6.1 Introduction
 6.1.1 Cu Metallization, Barrier Requirements and Materials
 6.1.2 Barrier Deposition Techniques
 6.1.3 Characterization of Barrier Performance

6.2 Metal-Based Barriers as Liners for Cu Seed Deposition
 6.2.1 Ta-Based Barriers
 6.2.2 W-Based Barriers
 6.2.3 Ti-Based Barriers
 6.2.4 Further Systems

6.3 Advanced Barrier Approaches
 6.3.1 Barriers for Direct Cu Plating
 6.3.2 Metal Capping Layers
 6.3.3 Self-Forming Diffusion Barriers
Contents

6.3.4 Self-Assembled Molecular Nanolayers and Polymer-Based Barriers 218
6.4 Conclusions 221
References 221

Section III Integration and Reliability 235

7 Process Integration of Interconnects 237
Sridhar Balakrishnan, Ruth Brain and Larry Zhao

7.1 Introduction 237
7.2 On-Die Interconnects in the Submicrometer Era 237
7.3 On-Die Interconnects at Sub-100 nm Nodes 240
7.4 Integration of Low-\(k\) Dielectrics in Sub-65 nm Nodes 241
 7.4.1 Degradation of Dielectric Constant during Integration 243
 7.4.2 Integration Issues in ELK Dielectrics Due to Degraded Mechanical Properties 246
7.5 Patterning Integration at Sub-65 nm Nodes 248
 7.5.1 Patterning Challenges 249
7.6 Integration of Conductors in Sub-65 nm Nodes 252
 7.6.1 Narrow Line Copper Resistivity 253
 7.6.2 Integrating Novel Barrier/Liner Materials and Deposition Techniques for Cu Interconnects 254
 7.6.3 Self-Forming Barriers and Their Integration 256
 7.6.4 Integration to Enable Reliable Copper Interconnects 257
7.7 Novel Air-Gap Interconnects 258
 7.7.1 Unlanded Via Integration with Air-Gap Interconnects 258
 7.7.2 Air-Gap Formation Using Nonconformal Dielectric Deposition 259
 7.7.3 Air-Gap Formation Using a Sacrificial Material 260
References 261

8 Chemical Mechanical Planarization for Cu–Low-\(k\) Integration 267
Gautam Banerjee

8.1 Introduction 267
8.2 Back to Basics 268
8.3 Mechanism of the CMP Process 268
8.4 CMP Consumables 271
 8.4.1 Slurry 271
 8.4.2 Pad 273
 8.4.3 Pad Conditioner 274
8.5 CMP Interactions 276
8.6 Post-CMP Cleaning 281
 8.6.1 Other Defects 286
 8.6.2 Surface Finish 286
 8.6.3 E-Test 287
8.7 Future Direction 287
References 288
9 Scaling and Microstructure Effects on Electromigration Reliability for Cu Interconnects 291
Chao-Kun Hu, René Hübner, Lijuan Zhang, Meike Hauschildt and Paul S. Ho

9.1 Introduction 291
9.2 Electromigration Fundamentals 293
 9.2.1 EM Mass Flow 293
 9.2.2 EM Lifetime and Scaling Rule 294
 9.2.3 Statistical Test Method 296
 9.2.4 Effect of Current Density on EM Lifetime 297
9.3 Cu Microstructure 299
 9.3.1 X-ray Diffraction (XRD) 299
 9.3.2 Electron Backscatter Diffraction in the Scanning Electron Microscope 301
 9.3.3 Orientation Imaging Microscopy in the Transmission Electron Microscope 304
9.4 Lifetime Enhancement 306
 9.4.1 Effect of a Ta Liner 306
 9.4.2 Upper-Level Dummy Vias 308
 9.4.3 Plasma Pre-clean and SiH₄ Soak 310
 9.4.4 CVD and ECD Cu and the Effect of Nonmetallic Impurities 311
 9.4.5 Cu Alloys 314
 9.4.6 CoWP Cap Near-Bamboo and Polycrystalline Cu Lines 319
9.5 Effect of Grain Size on EM Lifetime and Statistics 321
9.6 Massive-Scale Statistical Study of EM 326
9.7 Summary 329
Acknowledgments 331
References 331

10 Mechanical Reliability of Low-k Dielectrics 339
Kris Vanstreels, Han Li and Joost J. Vlassak

10.1 Introduction 339
10.2 Mechanical Properties of Porous Low-k Materials 340
 10.2.1 Techniques to Measure Mechanical Properties of Thin Films 340
 10.2.2 Effect of Porosity on the Stiffness of Organosilicate Glass Films 342
 10.2.3 Hybrid Dielectrics Containing Organic/Inorganic Bridging Units 344
 10.2.4 Effect of UV Wavelength and Porogen Content on the Hardening Process of PECVD Low-k Dielectrics 349
10.3 Fracture Properties of Porous Low-k Materials 352
 10.3.1 Adhesion Measurement Methods 352
 10.3.2 Fracture Toughness Measurement Techniques 354
 10.3.3 Effect of Porosity and Network Structure on the Fracture Toughness of Organosilicate Glass Films 355
Section IV New Approaches

12 3D Interconnect Technology

John U. Knickerbocker, Lay Wai Kong, Sven Niese, Alain Diebold and Ehrenfried Zschech

12.1 Introduction 437

12.2 Dimensional Interconnected Circuits (3DICs)
for System Applications 438

John U. Knickerbocker

12.2.1 Introduction 438

12.2.2 System Needs 441

12.2.3 3D Interconnect Design and Architecture 444

12.2.4 3D Fabrication and Interconnect Technology 446

12.2.5 Trade-offs in Application Design and Product Applications 464

12.2.6 Summary 466

Acknowledgments 467

12.3 Advanced Microscopy Techniques for 3D Interconnect Characterization 467

Lay Wai Kong, Sven Niese, Alain Diebold and Ehrenfried Zschech

12.3.1 Scanning Acoustic Microscopy 467

12.3.2 IR Microscopy 473

12.3.3 Transmission X-ray Microscopy and Tomography 474

12.3.4 Microstructure Analysis 480

12.4 Summary 486

References 486
13 Carbon Nanotubes for Interconnects 491
Mizuhisa Nihei, Motonobu Sato, Akio Kawabata, Shintaro Sato and Yuji Awano

13.1 Introduction 491
13.2 Advantage of CNT Vias 492
13.3 Fabrication Processes of CNT Vias 493
13.4 Electrical Properties of CNT Vias 496
13.5 Current Reliability of CNT Vias 498
13.6 Conclusion 501
Acknowledgments 501
References 501

14 Optical Interconnects 503
Wim Bogaerts

14.1 Introduction 503
14.2 Optical Links 505
 14.2.1 Waveguides 507
 14.2.2 Waveguide Filters and (De)multiplexers 510
 14.2.3 Transmitter: Light Source 513
 14.2.4 Transmitter: Modulators 514
 14.2.5 Receiver: Photodetector 517
 14.2.6 Power Consumption and Heat Dissipation 517
 14.2.7 Different Materials 518
 14.2.8 Conclusion 519
14.3 The Case for Silicon Photonics 519
 14.3.1 Waveguides and WDM Components 519
 14.3.2 Modulators, Tuners and Switches 523
 14.3.3 Photodetectors 526
 14.3.4 Light Sources 526
 14.3.5 Conclusion 527
14.4 Optical Networks on a Chip 528
 14.4.1 WDM Point-to-Point Links 529
 14.4.2 Bus Architecture 529
 14.4.3 (Reconfigurable) Networks 530
14.5 Integration Strategies 532
 14.5.1 Front-End-of-Line Integration 533
 14.5.2 Backside Integration 535
 14.5.3 Back-End-of-Line Integration 535
 14.5.4 3D Integration 536
 14.5.5 Flip-Chip Integration 537
 14.5.6 Conclusion 537
14.6 Conclusion 538
References 538
Contents

15 Wireless Interchip Interconnects 543
Takamaro Kikkawa

15.1 Introduction 543
15.2 Wireless Interconnect Technologies 547
 15.2.1 Figure of Merit for Wireless Interconnects 547
 15.2.2 Capacitively Coupled Wireless Interconnects 549
 15.2.3 Inductively Coupled Wireless Interconnects 550
 15.2.4 Antennas and Propagation 553
15.3 Conclusion 561
References 561

Index 565