Contents

Preface

Part 1 Introduction

1. **Why do a risk analysis?**
 1.1 Moving on from “What If” Scenarios
 1.2 The Risk Analysis Process
 1.3 Risk Management Options
 1.4 Evaluating Risk Management Options
 1.5 Inefficiencies in Transferring Risks to Others
 1.6 Risk Registers

2. **Planning a risk analysis**
 2.1 Questions and Motives
 2.2 Determine the Assumptions that are Acceptable or Required
 2.3 Time and Timing
 2.4 You’ll Need a Good Risk Analyst or Team

3. **The quality of a risk analysis**
 3.1 The Reasons Why a Risk Analysis can be Terrible
 3.2 Communicating the Quality of Data Used in a Risk Analysis
 3.3 Level of Criticality
 3.4 The Biggest Uncertainty in a Risk Analysis
 3.5 Iterate

4. **Choice of model structure**
 4.1 Software Tools and the Models they Build
 4.2 Calculation Methods
 4.3 Uncertainty and Variability
 4.4 How Monte Carlo Simulation Works
 4.5 Simulation Modelling

5. **Understanding and using the results of a risk analysis**
 5.1 Writing a Risk Analysis Report
 5.2 Explaining a Model’s Assumptions
5.3 Graphical Presentation of a Model’s Results 70
5.4 Statistical Methods of Analysing Results 91

Part 2 Introduction 109

6 Probability mathematics and simulation 115
6.1 Probability Distribution Equations 115
6.2 The Definition of “Probability” 118
6.3 Probability Rules 119
6.4 Statistical Measures 137

7 Building and running a model 145
7.1 Model Design and Scope 145
7.2 Building Models that are Easy to Check and Modify 146
7.3 Building Models that are Efficient 147
7.4 Most Common Modelling Errors 159

8 Some basic random processes 167
8.1 Introduction 167
8.2 The Binomial Process 167
8.3 The Poisson Process 176
8.4 The Hypergeometric Process 183
8.5 Central Limit Theorem 188
8.6 Renewal Processes 190
8.7 Mixture Distributions 193
8.8 Martingales 194
8.9 Miscellaneous Examples 194

9 Data and statistics 207
9.1 Classical Statistics 208
9.2 Bayesian Inference 215
9.3 The Bootstrap 246
9.4 Maximum Entropy Principle 254
9.5 Which Technique Should You Use? 255
9.6 Adding uncertainty in Simple Linear Least-Squares Regression Analysis 256

10 Fitting distributions to data 263
10.1 Analysing the Properties of the Observed Data 264
10.2 Fitting a Non-Parametric Distribution to the Observed Data 269
10.3 Fitting a First-Order Parametric Distribution to Observed Data 281
10.4 Fitting a Second-Order Parametric Distribution to Observed Data 297

11 Sums of random variables 301
11.1 The Basic Problem 301
11.2 Aggregate Distributions 305
12 Forecasting with uncertainty
- 12.1 The Properties of a Time Series Forecast
- 12.2 Common Financial Time Series Models
- 12.3 Autoregressive Models
- 12.4 Markov Chain Models
- 12.5 Birth and Death Models
- 12.6 Time Series Projection of Events Occurring Randomly in Time
- 12.7 Time Series Models with Leading Indicators
- 12.8 Comparing Forecasting Fits for Different Models
- 12.9 Long-Term Forecasting

13 Modelling correlation and dependencies
- 13.1 Introduction
- 13.2 Rank Order Correlation
- 13.3 Copulas
- 13.4 The Envelope Method
- 13.5 Multiple Correlation Using a Look-Up Table

14 Eliciting from expert opinion
- 14.1 Introduction
- 14.2 Sources of Error in Subjective Estimation
- 14.3 Modelling Techniques
- 14.4 Calibrating Subject Matter Experts
- 14.5 Conducting a Brainstorming Session
- 14.6 Conducting the Interview

15 Testing and modelling causal relationships
- 15.1 *Campylobacter* Example
- 15.2 Types of Model to Analyse Data
- 15.3 From Risk Factors to Causes
- 15.4 Evaluating Evidence
- 15.5 The Limits of Causal Arguments
- 15.6 An Example of a Qualitative Causal Analysis
- 15.7 Is Causal Analysis Essential?

16 Optimisation in risk analysis
- 16.1 Introduction
- 16.2 Optimisation Methods
- 16.3 Risk Analysis Modelling and Optimisation
- 16.4 Working Example: Optimal Allocation of Mineral Pots

17 Checking and validating a model
- 17.1 Spreadsheet Model Errors
- 17.2 Checking Model Behaviour
- 17.3 Comparing Predictions Against Reality