Contents

Preface xi

1 Fundamental Concepts 1
1.1 Molecular Interactions in Nature 2
1.2 Potential Energies for Molecular Interactions 4
1.2.1 The Concept of a Molecular Potential Energy 4
1.2.2 Theoretical Classification of Interaction Potentials 6
1.2.2.1 Small Distances 7
1.2.2.2 Intermediate Distances 8
1.2.2.3 Large Distances 8
1.2.2.4 Very Large Distances 8
1.3 Quantal Treatment and Examples of Molecular Interactions 9
1.4 Long-Range Interactions and Electrical Properties of Molecules 21
1.4.1 Electric Dipole of Molecules 21
1.4.2 Electric Polarizabilities of Molecules 22
1.4.3 Interaction Potentials from Multipoles 23
1.5 Thermodynamic Averages and Intermolecular Forces 24
1.5.1 Properties and Free Energies 24
1.5.2 Polarization in Condensed Matter 25
1.5.3 Pair Distributions and Potential of Mean-Force 26
1.6 Molecular Dynamics and Intermolecular Forces 27
1.6.1 Collisional Cross Sections 27
1.6.2 Spectroscopy of van der Waals Complexes 28
and of Condensed Matter 28
1.7 Experimental Determination and Applications of Interaction Potential 29
1.7.1 Thermodynamics Properties 30
1.7.2 Spectroscopy and Diffraction Properties 30
1.7.3 Molecular Beam and Energy Deposition Properties 30
1.7.4 Applications of Intermolecular Forces 31
References 31
2 Molecular Properties 35
2.1 Electric Multipoles of Molecules 35
2.1.1 Potential Energy of a Distribution of Charges 35
2.1.2 Cartesian Multipoles 36
2.1.3 Spherical Multipoles 37
2.1.4 Charge Distributions for an Extended System 38
2.2 Energy of a Molecule in an Electric Field 40
2.2.1 Quantal Perturbation Treatment 40
2.2.2 Static Polarizabilities 41
2.3 Dynamical Polarizabilities 43
2.3.1 General Perturbation 43
2.3.2 Periodic Perturbation Field 47
2.4 Susceptibility of an Extended Molecule 49
2.5 Changes of Reference Frame 52
2.6 Multipoles Integrals from Symmetry 54
2.7 Approximations and Bounds for Polarizabilities 57
2.7.1 Physical Models 57
2.7.2 Closure Approximation and Sum Rules 58
2.7.3 Upper and Lower Bounds 59
References 60

3 Quantitative Treatment of Intermolecular Forces 63
3.1 Long Range Interaction Energies from Perturbation Theory 64
3.1.1 Interactions in the Ground Electronic States 64
3.1.2 Interactions in Excited Electronic States and in Resonance 68
3.2 Long Range Interaction Energies from Permanent and Induced Multipoles 68
3.2.1 Molecular Electrostatic Potentials 68
3.2.2 The Interaction Potential Energy at Large Distances 70
3.2.3 Electrostatic, Induction, and Dispersion Forces 73
3.2.4 Interacting Atoms and Molecules from Spherical Components of Multipoles 75
3.2.5 Interactions from Charge Densities and their Fourier Components 76
3.3 Atom–Atom, Atom–Molecule, and Molecule–Molecule Long-Range Interactions 78
3.3.1 Example of Li⁺+Ne 78
3.3.2 Interaction of Oriented Molecular Multipoles 79
3.3.3 Example of Li⁺+HF 80
3.4 Calculation of Dispersion Energies 81
3.4.1 Dispersion Energies from Molecular Polarizabilities 81
3.4.2 Combination Rules 82
3.4.3 Upper and Lower Bounds 83
3.4.4 Variational Calculation of Perturbation Terms 86
3.5 Electron Exchange and Penetration Effects at Reduced Distances 87
 3.5.1 Quantitative Treatment with Electronic Density Functionals 87
 3.5.2 Electronic Rearrangement and Polarization 93
 3.5.3 Treatments of Electronic Exchange and Charge Transfer 98
3.6 Spin-orbit Couplings and Retardation Effects 102
3.7 Interactions in Three-Body and Many-Body Systems 103
 3.7.1 Three-Body Systems 103
 3.7.2 Many-Body Systems 106
References 107

4 Model Potential Functions 111
 4.1 Many-Atom Structures 111
 4.2 Atom–Atom Potentials 114
 4.2.1 Standard Models and Their Relations 114
 4.2.2 Combination Rules 116
 4.2.3 Very Short-Range Potentials 117
 4.3 Atom–Molecule and Molecule–Molecule Potentials 119
 4.3.1 Dependences on Orientation Angles 119
 4.3.2 Potentials as Functionals of Variable Parameters 124
 4.3.3 Hydrogen Bonding 124
 4.3.4 Systems with Additive Anisotropic Pair-Interactions 125
 4.3.5 Bond Rearrangements 125
 4.4 Interactions in Extended (Many-Atom) Systems 127
 4.4.1 Interaction Energies in Crystals 127
 4.4.2 Interaction Energies in Liquids 131
 4.5 Interaction Energies in a Liquid Solution and in Physisorption 135
 4.5.1 Potential Energy of a Solute in a Liquid Solution 135
 4.5.2 Potential Energies of Atoms and Molecules Adsorbed at Solid Surfaces 139
 4.6 Interaction Energies in Large Molecules and in Chemisorption 143
 4.6.1 Interaction Energies Among Molecular Fragments 143
 4.6.2 Potential Energy Surfaces and Force Fields in Large Molecules 145
 4.6.3 Potential Energy Functions of Global Variables Parametrized with Machine Learning Procedures 148
References 152

5 Intermolecular States 157
 5.1 Molecular Energies for Fixed Nuclear Positions 158
 5.1.1 Reference Frames 158
6.3.2 Symmetry-Adapted Perturbation Theory 225
6.4 The Density Functional Approach to Intermolecular Forces 228
6.4.1 Functionals for Interacting Closed- and Open-Shell Molecules 228
6.4.2 Electronic Exchange and Correlation from the Adiabatic-Connection Relation 232
6.4.3 Issues with DFT, and the Alternative Optimized Effective Potential Approach 238
6.5 Spin-Orbit Couplings and Relativistic Effects in Molecular Interactions 243
6.5.1 Spin-Orbit Couplings 243
6.5.2 Spin-Orbit Effects on Interaction Energies 245
References 247

7 Interactions Between Two Many-Atom Systems 255
7.1 Long-range Interactions of Large Molecules 255
7.1.1 Interactions from Charge Density Operators 255
7.1.2 Electrostatic, Induction, and Dispersion Interactions 258
7.1.3 Population Analyses of Charge and Polarization Densities 260
7.1.4 Long-range Interactions from Dynamical Susceptibilities 262
7.2 Energetics of a Large Molecule in a Medium 265
7.2.1 Solute–Solvent Interactions 265
7.2.2 Solvation Energetics for Short Solute–Solvent Distances 268
7.2.3 Embedding of a Molecular Fragment and the QM/MM Treatment 270
7.3 Energies from Partitioned Charge Densities 272
7.3.1 Partitioning of Electronic Densities 272
7.3.2 Expansions of Electronic Density Operators 274
7.3.3 Expansion in a Basis Set of Localized Functions 277
7.3.4 Expansion in a Basis Set of Plane Waves 279
7.4 Models of Hydrocarbon Chains and of Excited Dielectrics 281
7.4.1 Two Interacting Saturated Hydrocarbon Compounds: Chains and Cyclic Structures 281
7.4.2 Two Interacting Conjugated Hydrocarbon Chains 284
7.4.3 Electronic Excitations in Condensed Matter 289
7.5 Density Functional Treatments for All Ranges 291
7.5.1 Dispersion-Corrected Density Functional Treatments 291
7.5.2 Long-range Interactions from Nonlocal Functionals 294
7.5.3 Embedding of Atomic Groups with DFT 297
7.6 Artificial Intelligence Learning Methods for Many-Atom Interaction Energies 300
References 303