Contents

Preface XIII
List of Contributors XV

1 Current Modeling Methods Used in QSAR/QSPR 1
Liew Chin Yee and Yap Chun Wei
1.1 Introduction 1
1.2 Modeling Methods 3
1.2.1 Methods for Regression Problems 3
1.2.1.1 Multiple Linear Regression 3
1.2.1.2 Partial Least Squares 4
1.2.1.3 Feedforward Backpropagation Neural Network 5
1.2.1.4 General Regression Neural Network 7
1.2.1.5 Gaussian Processes 9
1.2.2 Methods for Classification Problems 10
1.2.2.1 Logistic Regression 10
1.2.2.2 Linear Discriminant Analysis 11
1.2.2.3 Decision Tree and Random Forest 12
1.2.2.4 k-Nearest Neighbor 14
1.2.2.5 Probabilistic Neural Network 15
1.2.2.6 Support Vector Machine 16
1.3 Software for QSAR Development 18
1.3.1 Structure Drawing or File Conversion 19
1.3.2 3D Structure Generation 19
1.3.3 Descriptor Calculation 20
1.3.4 Modeling 21
1.3.5 General purpose 23
1.4 Conclusion 24
References 26
Developing Best Practices for Descriptor-Based Property Prediction: Appropriate Matching of Datasets, Descriptors, Methods, and Expectations

Michael Krein, Tao-Wei Huang, Lisa Morkowchuk, Dimitris K. Agrafiotis, and Curt M. Breneman

2.1 Introduction

2.1.1 Posing the Question

2.1.2 Validating the Models

2.1.3 Interpreting the Models

2.2 Leveraging Experimental Data and Understanding their Limitations

2.3 Descriptors: The Lexicon of QSARs

2.3.1 Classical QSAR Descriptors and Uses

2.3.2 Experimentally Derived Descriptors

2.3.2.1 Biodescriptors

2.3.2.2 Descriptors from Spectroscopy/Spectrometry and Microscopy

2.3.3 0D, 1D and 2D Computational Descriptors

2.3.4 3D Descriptors and Beyond

2.3.5 Local Molecular Surface Property Descriptors

2.3.6 Quantum Chemical Descriptors

2.4 Machine Learning Methods: The Grammar of QSARs

2.4.1 Principal Component Analysis

2.4.2 Factor Analysis

2.4.3 Multidimensional Scaling, Stochastic Proximity Embedding, and Other Nonlinear Dimensionality Reduction Methods

2.4.4 Clustering

2.4.5 Partial Least Squares (PLS)

2.4.6 k-Nearest Neighbors (kNN)

2.4.7 Neural Networks

2.4.8 Ensemble Models

2.4.9 Decision Trees and Random Forests

2.4.10 Kernel Methods

2.4.11 Ranking Methods

2.5 Defining Modeling Strategies: Putting It All Together

2.6 Conclusions

References

Mold² Molecular Descriptors for QSAR

Huixiao Hong, Svetoslav Slavov, Weigong Ge, Feng Qian, Zhenqiang Su, Hong Fang, Yiyu Cheng, Roger Perkins, Leming Shi, and Weida Tong

3.1 Background

3.1.1 History of QSAR

3.1.2 Introduction to QSAR

3.1.3 Molecular Descriptors: Bridge for QSAR

3.1.3.1 Molecular Descriptors

3.1.3.2 Role of Molecular Descriptors
3.1.3.3 Types of Molecular Descriptors 71
3.1.3.4 Calculation of Molecular Descriptors (Software Packages) 71
3.2 Mold2 Molecular Descriptors 71
3.2.1 Description of Mold2 Descriptors 73
3.2.1.1 Topological Descriptors 73
3.2.1.2 Constitutional Descriptors 94
3.2.1.3 Information Content-based Descriptors 94
3.2.2 Calculation of Mold2 Descriptors 94
3.2.3 Evaluation of Mold2 Descriptors 96
3.2.3.1 Information Content by Shannon Entropy Analysis 96
3.2.3.2 Correlations between Descriptors 98
3.3 QSAR Using Mold2 Descriptors 99
3.3.1 Classification Models based on Mold2 Descriptors 100
3.3.2 Regression Models based on Mold2 Descriptors 102
3.4 Conclusion Remarks 105

4 Multivariate Analysis of Molecular Descriptors 111
Viviana Consonni and Roberto Todeschini
4.1 Introduction 111
4.2 2D Matrix-Based Descriptors 114
4.3 Graph-Theoretical Matrices 120
4.3.1 Vertex Weighting Schemes 122
4.4 Multivariate Similarity Analysis of Chemical Spaces 122
4.5 Analysis of Chemical Information of Descriptors from Graph-Theoretical Matrices 124
4.5.1 Data Sets 124
4.5.2 Comparison of Graph-Theoretical Matrices 125
4.5.2.1 Comparison of Weighted Graph-Theoretical Matrices 130
4.5.3 Comparison of Matrix Operators 133
4.5.4 Comparison of Single Operators from Different Graph-Theoretical Matrices 137
4.6 Conclusions 143

5 Partial-Order Ranking and Linear Modeling: Their Use in Predictive QSAR/QSPR Studies 149
Andrew G. Mercader and Eduardo A. Castro
5.1 Introduction 149
5.2 Linear QSAR Methodology, ERM, RM and GA 150
5.2.1 Replacement Method 153
5.2.2 Enhanced Replacement Method 154
5.2.3 Genetic Algorithm 154
5.2.4 Main Differences between MRM and RM 156
5.3 Principles of Ranking Methods 159
5.4 Selection of the Molecular Descriptors for Ranking 163
5.5 QSAR Based on Hasse Diagrams 165
5.6 Discussion 165
5.7 Conclusions 169
References 170

6 Graph-Theoretical Descriptors for Branched Polymers 175
Koh-Hei Nitta
6.1 Introduction 175
6.2 Algebraic Graph Theory 176
6.3 Ideal Chain Models 180
6.4 Graph-Theoretical Approach to Chain Dynamics and Statistics 182
6.4.1 Radius of Gyration 182
6.4.2 Rouse Dynamics 185
6.4.3 Intrinsic Viscosity 188
6.4.4 Scattering Function 190
6.4.5 High Moments of Relaxation Time and Radius of Gyration 191
6.5 Applications 193
6.6 Final Remarks 194
References 196

7 Structural-Similarity-Based Approaches for the Development of Clustering and QSAR/QSAR Models in Chemical Databases 201
Irene Luque Ruiz, Gonzalo Cerruela García, and Miguel Ángel Gómez-Nieto
7.1 Chemical Structural Similarity 201
7.1.1 Molecular Graph and Structural Similarity 203
7.1.2 Descriptor-Based Structural Similarity 203
7.1.3 Combining Structural Similarity Approaches 204
7.1.4 Approximate Structural Similarity 205
7.2 Clustering Models Based on Structural Similarity 207
7.2.1 Clustering of Chemical Databases 211
7.2.1.1 Pattern Representation of Chemicals Structures 211
7.2.1.2 Clustering of Chemical Databases 212
7.3 QSAR/QSAR Models Based on Structural Similarity 217
7.3.1 Dataset Selection 219
7.3.2 Dataset Representation 220
7.3.3 Fitting of the Dataset Representation 221
7.3.4 Building and Validation of the QSAR Model 221
References 223

8 Statistical Methods for Predicting Compound Recovery Rates for Ligand-Based Virtual Screening and Assessing the Probability of Activity 229
Martin Vogt and Jürgen Bajorath
8.1 Introduction 229
8.2 Theory 231
8.2.1 Bayesian Approach to Virtual Screening 231
8.2.2 Predicting the Performance of Bayesian Screening 235
8.2.3 Practical Prediction of Compound Recall 236
8.2.4 Exemplary Results 238
8.3 Alternative Approaches to the Prediction of Compound Recall 238
8.4 Conclusions 240
References 241

9 Molecular Descriptors and the Electronic Structure 245
Bögel Horst
9.1 Introduction 245
9.2 The Structure of Molecules 246
9.2.1 General Remarks 246
9.2.2 Structure Coding 247
9.2.3 Structural Features 248
9.2.4 Structure and Energy 250
9.3 The Electronic Structure 251
9.4 Dividing Molecules in Atoms and Bonds 254
9.4.1 Bonding in Molecules 254
9.4.2 Energy Partitioning 255
9.4.3 Energy and the Hückel Approach 255
9.4.4 Energy Components of Atoms and Bonds 256
9.4.5 Perturbation Treatment of the Electronic Structure 257
9.4.6 Thermodynamic Equilibrium 258
9.4.7 Model of “Atom in Molecules” 258
9.5 Structure and Dynamics 259
9.5.1 Molecular Flexibility 259
9.5.2 Molecular Dynamics Simulation 259
9.5.3 Conformational Space 260
9.6 Structure and Properties 262
9.6.1 Structure Property Relationships 262
9.6.2 Type of Molecular Properties 262
9.6.3 Molecular Commonality and Similarity 263
9.6.4 Multilinear Regression 263
9.6.5 Selection of Molecular Descriptors 265
9.7 Modeling of Physicochemical Properties of the Isomers of Hexane 265
9.8 Modeling of the Proton Affinity 275
9.8.1 Proton Affinity of Pyridines 275
9.8.1.1 Data and Mechanism 275
9.8.1.2 Model I 277
9.8.1.3 Model II 278
9.8.1.4 Model III 280
9.8.1.5 Model IV 281
9.8.1.6 Model V 281
9.8.1.7 Model VI 282
10 New Types of Descriptors and Models in QSAR/QSPR 293
Christian Kramer and Timothy Clark
10.1 Introduction 293
10.2 Local Properties 294
10.2.1 Molecular Electrostatic Potential 294
10.2.2 Electron Density 295
10.2.3 Local Polarizability 295
10.2.4 Local Ionization Energy and Local Electron Affinity 296
10.3 Descriptors Derived from Local Properties 297
10.3.1 PEST Methodology 297
10.4 MEP as Descriptor for Hydrogen-Bonding Strengths 298
10.5 ParaSurf (Politzer–Murray) Descriptors 298
10.6 4D: Conformational-Ensemble-based Descriptors 299
10.7 Proper Validation/Generation of QSA(P)R Models 300
10.8 Conclusions 302
References 303

11 Consensus Models of Activity Landscapes 307
José L. Medina-Franco, Austin B. Yongye, and Fabian López-Vallejo
11.1 Introduction 307
11.2 Characterization of the Activity Landscape 309
11.3 Consensus Models of Activity Landscape 312
11.3.1 Chemical Space and Molecular Representation 312
11.3.2 Activity Landscape with Multiple Representations 316
11.4 Conclusions and Future Perspectives 322
References 323

12 Reverse Engineering Chemical Reaction Networks from Time Series Data 327
Dominic P. Searson, Mark J. Willis, and Allen Wright
12.1 Introduction 327
12.2 Problem Definition 329
12.3 Reconstruction of Elementary Reaction Networks from Data by Network Search 331
12.3.1 Network Search as a Nonlinear Integer Programming Problem 332
12.3.2 Estimation of the Rate Coefficients for Trial Reaction Networks 333
12.4 Formulation of the Objective Function for Network Search 335
12.4.1 Physical/Chemical Information Available 336
12.4.2 No physical/Chemical Information Available 336
Contents

12.5 Differential Evolution for Searching the Space of Reaction Networks 337

12.5.1 Basic DE Optimization Method 338

12.5.2 Self-Adaptive DE with Integer Variables 339

12.6 Network Identification Case Studies 340

12.6.1 Estimation of Time Derivatives 342

12.6.2 DE Settings 343

12.6.3 Model Selection Methodology 343

12.6.4 Results 344

12.7 Conclusions 346

References 347

13 Reduction of Dimensionality, Order, and Classification in Spaces of Theoretical Descriptions of Molecules: An Approach Based on Metrics, Pattern Recognition Techniques, and Graph Theoretic Considerations 349

George Maroulis

13.1 Introduction 349

13.2 Theory 351

13.3 Methods and Computational Strategy 354

13.4 Results and Discussion 358

13.5 Conclusions 363

References 363

14 The Analysis of Organic Reaction Pathways by Brownian Processing 365

Daniel J. Graham

14.1 Introduction 365

14.2 Electronic Messages, Information, and Energy 366

14.3 Molecular Messages, Conversions, and State Space Representations 374

14.4 Closing 389

References 390

15 Generation of Chemical Transformations: Reaction Pathways Prediction and Synthesis Design 393

Grażyna Nowak and Grzegorz Fic

15.1 Introduction 393

15.2 The Graph Transformation Rules for Generation of Chemical Reactions 396

15.2.1 The Graph-Theoretic Reaction Rules and Formal-Logical Approach for Reaction Generation 397

15.2.1.1 The Chemical Reaction Graph 399

15.2.1.2 Ugi and Dugundji Formal Theory for Reactions and Reaction Mechanisms 400
15.2.2 The Empirical Reaction Rules and Knowledge-Based Approach for Reaction Generation. Automated Creation of Rules by Learning and Reaction Database Mining 404
15.2.2.1 Automatically Derived Reaction Rules 404
15.2.2.2 Functional Group Transformations 406
15.2.2.3 Substructure-Based Transformations 406
15.3 Combinatorial Complexity Problem: Strategies for the Directed Reaction Generation 409
15.3.1 Retrosynthetic Generation of Chemical Transformations: Computer-Assisted Synthesis Design 410
15.3.1.1 Recognition of Guiding Patterns, Molecular Symmetry, or Isomorphic Substructures 411
15.3.1.2 Complexity-Based Disconnective Strategies 412
15.3.1.3 Concept of the Strategic Bond Tree for Disconnections 413
15.3.2 Forward Generation of Chemical Transformations: Computer-Assisted Reaction Prediction 414
15.3.2.1 Quantitative Models for Reactivity Prediction 416
15.3.2.2 Formal-Logical Approach to the Search Space of Possible Chemical Transformations 418
15.4 Conclusion 419
References 420

Index 427