Index

absorption coefficient, 69, 244, 246–247, 254, 256–257, 260, 457
acceleration transfer matrix, 415
acoustic (air)
density, 53, 145
particle velocity, 74
stiffness, 61, 117, 122, 129
modal form, 124
acoustic impedance (normal to surface), 53, 151
absorber (porous material), 55, 59, 62–65, 78, 80, 117–118, 147, 151–152, 201, 242–243
average for the nth mode, 59
damping matrix, 148
flexible wall, 55, 61, 117–118, 147
modal matrix, 168, 412
oscillating sphere surface, 78
piston surface, 75
pulsating sphere surface, 76
acoustic intensity, 44, 72, 74, 83, 91–92, 102, 457
acoustic modal
damping ratio, 118
force, 59, 120
mass, pressure, sound source, displacement, 116
phase, 69
acoustic participation factors, 166
energy, 169
mode, 167
boundary panel, 167–168
acoustic reactance, 92–95, 151
acoustic resistance, 92–95, 151
acoustic transfer function, 168 see also vibro-acoustic, transfer function
acoustic velocity potential, 53, 133, 159
acoustic volume
displacing mode, 83
flow (velocity), 75, 168, 409, 411
flow rate (acceleration), 168
acoustic wave equation, 53, 74, 78, 80, 115, 145, 436
active noise control, 68
adjoint operator, 286–287
admittance, 32, 153, 264
airborne noise, 8, 174
aleatory uncertainty, 306
analysis frequency range, 6
anti-optimization method, 308 see also uncertainty quantification
apparent mass matrix, 429
applications
aircraft, 272, 380–381, 461–464, 495–499
automotive, 7, 402–403, 455–461
bells, 273
launch vehicle, 381, 399–400
loudspeakers, 272
marine/naval, 464–470
railway, 272
vehicle interior noise, 161, 167, 170, 175–176, 426–428
attenuation, 252–253
band gap phenomenon, 473, 500
bandwidth, 30
damping decrement modal, 120
half-power, 65
beam
Euler–Bernoulli beam, 14–15, 23, 472, 477, 493, 494
Timoshenko beam, 14–15, 473, 476, 477, 493, 494, 497
bending rigidity, 119, 155
bending waves, 14–21, 39–41
anisotropic plates, 17–20
stiffened plates, 20–21
infinite plates, 39–41
Bernoulli equation, 133
Bernoulli–Euler, 14–15, 23
biharmonic operator, 119, 155
Biot theory, 249, 257, 264 see also poroelastic material
Bloch–Floquet theory, 486 see also wave propagation functions/consts
boundary conditions, 235, 238, 263, 478, 500–501
acoustic, 55, 115, 118, 140, 145, 147, 154
beam exterior sound radiation, 78–85
forced sound pressure response, 59, 147
sound radiation from basic sources and radiators, 75
boundary element method, 3, 257, 268, 277
acoustic transfer vectors, 203
boundary conditions, 180, 189–190, 199–202
boundary maximum principle, 191
boundary method, 183–184
cluster computing, 210–213
commercial packages, 209
condensed acoustic meshes, 213, 221
exterior radiation problems, 202, 220
versus finite elements for fluids, 180
frequency interpolation, 203–205
inputs, 213
interior problems and artificial damping, 195
multipole expansions, 212–213
nonuniqueness/nonexistence difficulties, 191–198
outputs, 213–214
polar coordinate transform, 185
singular integrals, 188
six elements per wavelength rule, 205
solving the equation system, 211
Sommerfeld radiation condition, 80, 183
verification and validation problems, 220–225
Cayley–Hamilton theorem, 484
Champoux–Allard model, 247 see also poroelastic material
characteristic impedance, 93, 242, 245, 249, 253
characteristic lengths, 246–247, 250–251, 253, 254
characteristic size, 250, 253
circular piston, 89–95, 263
coincidence
dip, 108–110
frequency, 99–103, 106–110
collocation method, 316, 323
component mode method, 132–142
structural–acoustic model, 132–133
two coupled cavities, 140–142
two coupled oscillators, 138 see also coupled oscillators
composite, 17–19, 273
compressional waves, 11–12
conductance, 44
coupled acoustic resonance frequency response with closely spaced modes, 123–125
with all structural modes, 127
with structural rigid body mode, 128
coupled-mode modal coefficient, 138
coupled oscillators, 42–48, 138, 324–328
coupled structural–acoustic problem, 180–183
acoustic coupling matrix, 181
acoustic coupling matrix in modal space, 183
added mass approximation, 182, 202–203, 210
conversion from surface pressures to nodal forces, 181
eigenvalues computed using the singular value decomposition, 205
finite element/boundary element, 180–183
mode amplitude vector, 182
radiation damping, 181, 205, 220
state-space eigenvalue solution, 205
uncoupled approximation, 181
using in-vacuo modes as basis functions, 182–183
coupled structural resonance frequency, response with all cavity modes, 127
with closely spaced modes, 123–125
with Helmholtz mode, 126
coupling loss factor, 45, 352, 370 see also Statistical Energy Analysis (SEA)
critical frequency, 106, 112, 237, 262
cylindrical pore (porous material with), 246–247
cylindrical shell, 495–496
dace sheet, 19–20
damped modal frequency, 68
added, 231, 238, 264
cavity (acoustic) modal damping coefficient, 120
constrained layer damping, 37, 231, 235–238
critical damping ratio, 36, 37, 63
design, 235–237
extensional (free) layer, 231, 235–236
layer, 262
damping (cont'd)
 loss factor, 35–39, 231–234, 236, 238–240, 257, 263
 materials, 180–183, 231
 mechanisms, 231, 232, 236
 modal damping constant (decrement), 59, 118–120
 proportional viscous damping, 119
 structural modal damping coefficient, 119
 viscoelastic, 232, 238
 viscous, 249
decoupling, partial, 249
density see effective density
design of experiments (DoE), 308
diffuse acoustic field, 106–107, 237, 258–260, 272, 348
direct field, 344–345
direction cosine matrix, 147
dispersion, 11
curves, 486, 491, 493, 494
relation, 476, 491
dispersive waves, 11, 16
double porosity, 243
double wall, 231, 260, 262
dynamical mechanical analysis (DMA), 234
dynamic stiffness matrix, 473–474, 483, 485, 487, 493, 500
effective bulk modulus, 154, 245–246
effective density, 154, 245–246
effective sound pressure, 154
elastic frame, Biot theory, 249
elastic modulus, 11–13, 240
elastomer testing system, 413
enclosures (rooms)
 acoustic modal response, 60
 flexible and absorbent wall effects, 60–64
 forced sound pressure response, 60–64
 natural frequencies and modes, 56–58
 normal mode method, 59
 random sound pressure response, 67–68
 response at resonances, 64–65
 steady-state sound pressure response, 60–64
 transient sound pressure response, 68–72
energy, 230–232, 236, 238–240
density, 437–438, 440–441
intensity, 437–438, 440–441
flow, 351–352
energy finite element analysis (EFEA), 4, 433, 472
 absorbing materials, 457–459
 damping materials, 455–457
 energy formulation, 436–441
 finite element equations, 447–448
 joint matrix, 448–450
 plate-acoustic system, 447–455
 power input, 450–451
 power transmission coefficients, 441–447
ensemble average response, 392
environmental effects, 48
epistemic uncertainty, 305, 309
equation of motion, 482, 500
 plate, 119, 155, 157
 rod, 475
Timoshenko beam, 478
equivalent fluid model, 138, 152–156, 245–249, 424, 463
equivalent radiated power (ERP), 322, 333, 334
Fast Fourier Transform (FFT), 171
fibrous material, 230–231, 241, 243, 246, 249, 257–258, 264
finite-difference, 284–286
 acoustic element interpolation (shape) function, 145
 acoustic element type, 146
 acoustic finite element equations, 146–148
 cavity modal analysis, 148
 cavity with absorbent walls, 152
cavity with flexible wall excitation, 150
 commercial packages, 209
 coupled air and absorber volume, 154
 coupled modal equations of motion, 163
 coupled modes and resonance frequencies, 160
 coupled structural–acoustic system, 407
 isoparametric interpolation function, 158
 mass matrix, 181–183
 material damping, 180–183, 209
 modal augmentation truncation vectors, 182
 nodal displacement vector, 181–183
 plate element type, 158
 plate finite element equations, 157–158
 residual vectors, 182
 stiffness matrix, 181–183
 structural–acoustic frequency response function, 164
 structural shape function, 157
 structural system finite element equations, 159, 416
 flexural waves, 13–16, 20, 99–100
 flow resistance, flow resistivity, 230, 245, 247–250, 254–256, 262
 fluid loading, 92–98
 fluids, layer equivalent to a porous layer, 244–245, 248–249, 264
 fluid–structure interaction, 277
 frequency
 critical, 237, 262
decoupling, 249
decreased, 233–234
temperature-frequency equivalence, 232–233, 235
transition, 231, 247
 frequency response function, 306
 structural–acoustic system, 164, 407
Galerkin projection, 315, 316, 324–326, 335
Galerkin’s method, 145, 447
Gaussian distribution, 307, 311, 320
Generalized Polynomial chaos (gPC) expansion, 305, 309, 313, 314, 320–322, 325–327, 330, 331, 334 see also uncertainty quantification
Green’s function, 80, 179, 187, 265
Green’s theorem, 116
group velocity, 3, 58, 441, 476
Hamiltonian matrix, 484
Helmholtz equation, 53
Helmholtz integral equation, 80 see also Kirchhoff–Helmholtz integral equation
Helmholtz mode, 56, 116–117, 121, 123
Helmholtz number, 385
Helmholtz resonator frequency, 122
sun‐roof buffetting with spring stiffness effect, 123
tube‐mass system, 129
Helmholtz resonator, 61, 121–122
high‐frequency range, 8, 385
honeycomb, 19–20
hysteresis, 35
hydromatic and statistical coupling, 389
direct and reverberant fields, 388
direct field dynamic stiffness, 392
ensemble average reverberant loading, 388
hybrid coupling loss factors, 394
statistical subsystem, 387
Hybrid Transfer Path Analysis (HTPA), 4, 408 see also vibro‐acoustic, transfer function, powertrain
Hybrid Transfer Path Analysis (HTPA), 4, 408
impedance, 30, 34, 106, 242–244, 248, 254–256, 259, 263, 265
characteristic impedance, 93, 245, 248, 253
radiation impedance, 247, 259, 262
surface impedance, 246–247, 253, 264
impedance boundary conditions, 180, 189–190, 199–202 see also acoustic impedance
complex wavenumber, 199–200
damping materials, 189–190, 199–202
Delany and Bazley model, 190, 199
flow resistivity, 199
porosity, 201
porous material with rigid backing, 200
propagation constant, 199–200
relaxational model, 199–201
thin plates with perforations, 201
impedance matrix, 264–265 see also transfer matrix method (TMM)
indirect solutions for acoustic boundary value problems, 185–186, 195
dipole source formulation, 189
enforcing boundary conditions, 190
simple source formulation, 189, 194, 195, 208
triple source formulation, 193–195, 219
infinite element, 290
infinite plate, 39–41
influence coefficients, 278, 288
insertion loss (noise reduction), 163–164, 263–265
integration by parts, 145
intensity, 91–92, 102, 437–438, 440–441
interior road noise sources, 8
intrusive method, 305, 322
in‐vacuo modes, 119
inverse Fourier transform, 171
Johnson et al. model, 245–246 see also equivalent fluid model
Johnson–Lafarge model, 255 see also equivalent fluid model
junctions/connections see also Statistical Energy Analysis (SEA)
area, 374, 396
line, 373, 395
point, 371
Karhune–Loève (KL) expansion, 305, 309, 313, 396–397 see also uncertainty quantification
kinetic energy, 46
Kirchhoff–Helmholtz integral equation, 186–188 see also Helmholtz integral equation
normal derivative form, 187–188
weighting functions, 187
Lafarge model, 246–247 see also equivalent fluid model
Legendre function, 84
lump frame model, 246, 254–255, 260 see also equivalent fluid model
linear variable displacement transformer device (LVDT), 413
locally reacting model, 264–265
longitudinal waves, 11–12, 16, 22, 41
loss factor, 35–39, 231–234, 236, 238–240, 257, 263
low‐frequency range, 6–7, 385
mass law, 110
matrix inversion
non‐square matrix, 416
unsymmetric, 160
mean‐squared
averaged sound pressure, 129, 275
surface averaged velocity, 73, 428
metamaterials, 500
mid‐frequency problem, 386
mid‐frequency range, 8, 385
midpoint method, 313
Mindlin, 15
mixed displacement–pressure formulation, 264
mobility, 30–41, 95, 103–104
modal density, 30, 48, 349, 358, 363, 447
cavity, 367–368
modal energy, 358–359
modal mass, 30, 32–34
modal overlap, 351, 393
modal resonator frequency, 124
modal stiffness, 32
modal strain energy (MSE), 239
Monte Carlo (MC) method, 308, 397
multiple
fluids, 243–244
materials, 230, 242, 257–261, 264
natural frequencies and modes, 56 see also resonances;
resonant frequencies
enclosure, 57–58
passenger cavity, 148
powertrain, 418
natural modal wave number, 116
modal (anti-modal) surface, 150
noise transfer function, 292, 296
non-dimensionalized wave number, 6
non-Gaussian variable, 327
non-intrusive method, 305, 322, 323
nonuniqueness/nonexistence difficulties, 191–199
see also boundary element method
Burton and Miller solution, 192–193
CHIEF method, 193
lower frequency for nonexistence/nonuniqueness
problems, 208
singular value decomposition, 193–197
normal mode expansion, 59, 116, 119, 162, 412
normal modes (rigid wall modes), 56, 115–116
passenger compartment cavity, 149
optimization objective function, 274, 279–281,
284, 293
panel, 231, 260
critical frequency, 237, 262
curved, 238, 264–265
flat, 258, 262
microperforated, 247
orthotropic, 259
perforated, 242, 247–248
radiation, 263
sandwich, 17–20, 235, 237, 265
panel participation, acoustic transfer function, 168
particle velocity, 88, 91–92
PDF identification, 329, 330 see also uncertainty
quantification
Pearson system, 329–330
perforated materials, 242, 247–248
periodic structure, 473–474, 483, 500
general periodic structure, 489, 495
periodic structure theory, 473–474, 486
permeability see also porosity
thermal, 247, 254
viscous, 245, 255
phase angle
Fourier transfer coefficient, 407
between input and output, 407
modal, 69
phononic crystals, 500
piston, 89–95, 263
point source
above rigid framed materials, 259–260, 262
poisson ratio, 12, 257–258
polar amplitude-phase diagram, 151
poroelastic material, 231, 241, 245, 257, 260,
262, 265
porosity, 230, 243, 245, 247, 249–250, 253–254, 262
porous layer, 241, 243–250, 252–256, 258, 264
porous materials, 190, 199, 213
possibilistic method, 308, 309 see also uncertainty
quantification
power balance equation, 44–46, 263, 352–353, 356,
435, 438
power dissipation, 44, 377–378, 439
power flow, 45, 429
power input, 42, 44, 377–378, 450–451
power reflection coefficient, 447
power spectral density (PSD)
auto and cross, 66
input and output, 165
road response, 167
powertrain see also Hybrid Transfer Path Analysis
(HTPA)
finite element model, 417
harmonic loads, 416
mount acceleration, 419
mount dynamic stiffness, 414
mount layout and description, 414, 425
mount operating forces, 420, 425
power transfer coefficient, 352
between acoustic space and plate, 447
between plate and an acoustic space, 444–446
between plates, 441–444
Pride et al. model, 245, 246 see also equivalent
fluid model
probabilistic method, 308, 309 see also uncertainty
quantification
pulsating sphere, 191–193
quality factor, 35
quasi-static mechanical test, 257

[74x642]510
radiation efficiency, 73, 93, 98, 101–104, 263, 376–377
non-volume-displacing mode of vibrating plate, 82–83, 101–104
oscillating sphere, 78
pulsating sphere, 77
volume-displacing mode of vibrating plate, 82–83, 101–104
radiation impedance, 73, 247, 259, 262
plane wave, 75
spherical wave, 76
radiation loss factor, 98, 263, 446
radiation of sound
small rigid bodies, 74–78
oscillating small rigid bodies (monopole sound source), 77
by piston in infinite tube, 74
pulsating small rigid bodies (dipole sound sources), 75
radiated sound power and sound pressure, 76
sound power, 91–95, 98, 104, 261, 262, 265, 271, 276, 289
vibrating crown surface, 84–85
radiation reactance, 92–95, 247
radiation resistance, 93–96, 98
random equivalent radiated power, 333
random parameter, 305, 308, 312, 320, 335
random response of sound pressure
in enclosure (room), 67–68
structural-acoustic system, 164–166
energy participation, 169–170
vehicle coarse road noise, 167, 170, 175–176
vehicle smooth road noise, 175
random road spectral densities, 165
Rayleigh integral, 81, 184–186, 262, 277
reciprocity, 348–349
reciprocity theorem, principle, 410
reduction, 3, 9, 150, 240, 241, 289, 460, 500, 501
reflection coefficient, 240, 244, 252–253, 256
residual vector method, 163
resistivity and reactivity of radiated sound pressure, 73
resonance, 23, 26, 28, 239–241
reverberant energy density, 352
reverberant field, 345–346
reverberant power balance, 393
reverberation time, 69
ribbed panel, 28–30, 41
rod, 475–477, 481–483, 485, 487–488, 491–496, 498
Ross, Kerwin, and Ungar (RKU), 238, 455
sandwich panel, 17–20, 235, 237, 265, 271
screens, 230, 241, 257, 264
Semi-Analytical Finite Element (SAFE), 474 see also
Wave Finite Element (WFE)
sensitivity analysis, 284–286 see also finite difference shear
deformation, 236, 238
modulus, 233, 234, 238, 240–241, 257
wave, 13, 20, 22, 240, 255–256
wavelength, 237
simple harmonic oscillator, 30–36, 95, 98
singly curved shell, 363–364
sound (acoustic) intensity, 72, 91–92, 102
baffled vibrating plate, 84
infinite tube, 74
sound transmission loss, 105–113
spatial averaging, 313
specific acoustic admittance-absorption materials, 153
specific acoustic impedance-plane wave, 75
spectral analysis, 475–476
spectral element
condensed spectral matrix, 488
higher-order spectral element model, 489, 500
numerical spectral (element) matrix, 488–489, 491
rod, 476, 487
spectral element matrix, 482–483
spectral element method (SEM), 238, 481–482, 492, 495–498, 500–502
spectral method, 313, 318, 319
Square Root of the Sum of the Squares (SRSS), 306, 307
state vector formulation, 484, 486
static preloading, 48–49
Statistical Energy Analysis (SEA), 3, 45–47, 263, 339, 433, 472
coupling loss factor at junctions, 369–377
hybrid FE-SEA, 385
matrix equation-of-motion, 355
mode count, density, 369–370
power dissipation, 377
power input, 378
steady-state sound pressure response
coupled structural-acoustic system, 162, 411–412
acoustic modal participation, 167
boundary panel participation, 168
structural modal participation, 167, 170
enclosure(room), 60–64
by dominant structural mode, 126
operating engine (powertrain) induced vehicle interior noise, 176, 422–423, 426
at resonances, 64–66
stiffened panel, 20–21, 28
Stochastic Finite Element Method (SFEM), 305, 312, 314, 317–324 see also uncertainty
coupled oscillators, 324–328 see also coupled oscillators
orthotropic plate, 329–333
strain energy, 35, 44–45
stress–strain relations, 232
structural-acoustic
 coupled cavity-tailgate mode and frequency, 161
 coupled resonance frequencies (modal, mass controlled, stiffness controlled), 123–124
 coupled response (structural excitation, acoustic source excitation), 125
 modal coupling, modal amplitudes, 120
 modal response, tube-mass-spring system, 129–132
structural-acoustic optimization
 adjoint operators, 286
 applications, 271
 approximation techniques, 280
 constraints, 273
 multi-objective, 280
 objective functions, 274
 optimization algorithms, 282–284
 parameters, 272
 reanalysis, 288
 sensitivity analysis, 272, 284, 287
 topology, 272
 structural modal response matrix, 412
 structure-borne noise, 8, 174
 subsonic waves, 99–101
 substructuring, 288, 473, 483–484, 486–487, 491, 493, 498
 supersonic waves, 99, 101
 surface method, 318
 symmetry transformation, 486
Taylor series, 281, 285
 temperature effects, 48–49
 thick beams (Timoshenko), 14–15, 473, 476, 477, 493, 494, 497
 thick plates (Mindlin), 15–16, 26–27
 thin beams (Euler–Bernoulli), 14–15, 472, 477, 493, 494
 extension, 359–360
 flexure, 359–360
 torsion, 359–360
 thin plates, 16, 27, 439
 throw-off element, 482–483
time-temperature superposition, 39
 tortuosity, 245–248, 250–254, 262
 Transfer Matrix Method (TMM), 258–267
 element transfer matrix, 484–487, 490
 Transfer Path Analysis (TPA), 407, 426 see also Hybrid Transfer Path Analysis
transient load, 474, 497
transient response, 68–72, 171–174
 direct response, 172
 modal response, 172–173
 sound pressure decay in enclosure, 71
 vehicle interior noise over tar-strip bump, 174
 transmission coefficient, 107, 250–253, 259, 263
turbulent boundary layer (TBL), 272, 462
uncertainty quantification, 305, 308, 309, 324, 335, 342–343, 347–348 see also Stochastic Finite Element (SFEM)
 covariance, 312
 expected value, 310
 Karhunen–Loève Expansion, 305, 309, 313, 396–397
 mean value, 310
 polynomial chaos expansion, 314–317
 probability density function (PDF), 310
 standard deviation, 311
variation
 orthotropic plate vibration, 306
 vehicle interior noise, 176
 vehicle vibration, 343
velocity/speed
 group velocity/speed, 358, 441, 476
 phase velocity/speed, 476
vibrating beam technique, 234–235
vibration power flow, 429–430
vibro-acoustic see also Hybrid Transfer Path Analysis
 measurement set-up, 420
 reciprocity, 409–410, 421
 transfer function, 407, 409, 422, 425
viscoelastic, 37–38, 232, 238
viscoelastic material, 231–239, 265
viscosity, 232, 245, 247, 249, 251, 255
viscous, 36
walls
 absorbent-wall effect on sound pressure response, 60–64
 flexible-wall effect on sound pressure response, 60–64
Wave Finite Element (WFE), 5, 474
waveguide, 472–473, 476, 487, 491, 493
 classical waveguides, 491, 493
 finite waveguide, 480
 periodic waveguide, 484
 waveguide element, 476
wavenumber, 21–22, 90, 436
 acoustic, 237, 241, 243, 245, 250, 259
 bending, 236
 compression, 249
 elastic solid, 245
 poroelastic, 245, 249
 rod, 485, 487
 shear, 237, 249, 255, 256
 Timoshenko beam, 479, 488
wave propagation functions/constants
 general periodic structure, 485–486
 rod, 477, 485
 Timoshenko beam, 479
wave propagation modes
 general periodic structure, 485–486, 489–491
 rod, 475
 Timoshenko beam, 479
wave propagation solution
 explicit wave propagation approach, 480
 implicit wave propagation approach, 481
 Wave Spectral Finite Element Method (WSFEM), 473–474, 491, 493–503
 weighted residual, 145
 Williams–Landel–Ferry (WLF) model, 233–234
 see also damping, viscoelastic
 Young’s modulus, 13, 233, 235, 256–258
 Zhong’s formulation, 487 see also wave propagation modes