INDEX

AADvac1, 371
Abatacept, 117, 120, 216, 217, 296, 298
Abciximab, 19, 149, 216, 217
Abdomen, 74
Absorption, 296
Absorption process, 126
ABX-IL-8, 95
Accuracy, 319
Acellular pertussis (aP), 348
ACR20, 120
ACR dose-response, 176
Active transport, 4
Activin receptor-like kinase 1 (ALK1), 7
Acute lymphocytic leukemia (ALL), 131
Acute myelogenous leukemia (AML), 40, 55, 131, 218
 pediatric, 136
 relapsed, 55
Acute rejection, immunoprophylaxis, 137
Acute stroke, 137
Adalimumab (Humira®), 17, 129, 130, 133, 153, 154, 216–218,
 296–299, 304, 371, 376
Adaptive trial, 309
ADCETRIS™ (brentuximab vedotin), 40, 45, 216–218
Adenovirus type 5 (Ad5)-vected vaccine, 356
Adipose tissue, 73, 136
Adjuvant, 351
Ado-trastuzumab emtansine (T-DM1, KADCYLA™), 40, 42,
 44, 45, 59–62, 128, 217, 401
Advanced epithelial malignancy, 134
Affinity, 416
 capture hydrophobic interaction chromatography, 41
 maturation, 17, 20
Aflibercept, 176
Age, 127
Age-related macular degeneration, 49, 420
Aggregate, 20
AKT, 418
Albumin, 20, 176, 417
 binder, 417
 fusion with, 48
 131I, 73
 serum level, 300
Alefacept, 215–217
Alemtuzumab, 112, 113, 131, 216, 217, 219
Alexa488-dextran, 69
Alexa488-IgG, 69
Alirocumab, 371
Alkylcanaoacylate, 249
Allergen skin prick test, 176, 179, 180, 186, 187, 192
Allograft rejection
Allometric scaling, 95, 100
 law of, 92
 multispecies approach, 95
 single-species, 95, 97, 100, 421
Allometric scaling approach, 3, 7, 297
Allometry, 92
 law of, 96
 α4β1-integrin, 216
 α4-integrin, 131
 α value, 111, 114, 116, 118, 119, 121
 Alpha emitter, 234
 Alteplase, 95, 215
 Alzheimer’s disease, 49, 243, 244, 246, 249, 251, 371, 419

ADME and Translational Pharmacokinetics/Pharmacodynamics of Therapeutic Proteins: Applications in Drug Discovery and Development,
First Edition. Edited by Honghui Zhou and Frank-Peter Theil.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Antigen A33, 127
endothelial, 215
“therapeutic,” 419
“transporter,” 419

Antigen–antibody complex, 31–33, 129
formation, 297
internalization, 96
Antigen–antibody immune complex
monoclonal, 33
polyclonal, 33
Antigen–mAb complex, 197, 215
Antigen‐presenting cell (APC), 349, 350
Antigen shedding, 82
Anti‐HER2 antibody, 30
Anti‐HER3/EGFR, 48
Anti‐idiotype antibody, 151, 314
Anti‐IgE IgG‐type antibody, 176
Anti‐IL12/IL‐23 mAb, 129
Anti‐IL‐6 mAb, 133
Anti‐IL‐2Rα, 137
Anti‐IL‐6R antibody, 29
Anti‐interferon α (IFnαR) antibody, 29
Anti‐MadCAM mAb, 323
Anti‐microbial peptide, 349
Anti‐MUC1 (hCTM01)‐calicheamicin conjugate, 218
Anti‐neuropilin‐1 (nRP‐1) antibody, 29
Anti‐PCSK9 antibody, 30
Anti‐STEAP1, 43
Anti‐TfR/BACE1 (beta‐site amyloid precursor protein cleaving enzyme 1), 419
Anti‐therapeutic antibody response, 78
Anti‐transferrin receptor (TfR) antibody, 49, 244
Anti‐tumor necrosis factor alpha (TnFα) mAb, 153, 299
Apo‐E (apolipoprotein E), 245
Aprotinin, 247
Baseline normalized FcεR1, 179
FcεR1, 178, 180, 186–188, 191, 192
Bacterium Calmette–Guérin (BCG), 348
Bacillus thuringiensis cry11Be gene, 356
Bacterial display, 20
Balthasar model, 162, 165, 167
Basiliximab, 216, 217, 296, 304
Basophil, 137
baseline normalized FcεR1, 179
FcεR1, 178, 180, 186–188, 191, 192
Baxter’s model, 161
BAY2010112, 421
B‐cell (B‐lymphocyte), 130, 147
depletion, 49
effector, 148
epitope, 149–151, 418
plasma, 148
production, 130
receptor (BcR), 149, 150
specific CD19, 47, 49
splenic MZ, 149
B‐cell acute lymphoblastic leukemia (ALL), 413
B‐cell chronic lymphocytic leukemia, 131
B‐cell depletion, 338
B‐cell depletion–repletion profile, 338
B‐cell lymphoma, 136, 348
acyclic, 283
indolent, 272
macrocyclic, 283
Bead‐array cytometric analyzer, 318
Belimumab, 129, 216, 217
Best Pharmaceuticals for Children Act, 376
β‐amyloid cleaving enzyme‐1 (BACE1), 49, 244, 419
β‐particle, 85
Beta 2 microglobulin knockout (β2mKO) mouse, 27
BIAcore assay, 30
Bifunctional antibody, 251
Bifunctional chelator, 271
BIIB4‐5scFv, 417
Binding affinity, 99, 180, 297
Binding equilibrium, 4
“Binding‐site barrier,” 229
hypothesis, 219
model, 416
Bioanalog, 331
Bioavailability (F), 4, 27, 67, 71, 74, 127, 129, 215
absolute, 180
ral, 47
subcutaneous (SC), 71–73, 126
Bio‐better, 332
Biodegradable polymer, 249
Biodistribution, 77, 93, 264, 272, 297, 418
imaging, 272
radioimaging study, 272
study, 288, 416
Avidity, 416
“Avidity hypothesis,” 416
Azathioprine, 156

Atrixstatin, 41
Autoimmune disease, 150
Autoradiograph, 85
Autoradiography, 85
AVE9633, 45, 217

INDEX 429
Bioequivalence testing, 342
Biological functional characterization, 332
Biological license application (BLA), 375
Biological Price Competition and Innovation Act (BPCI Act), 334
Biologic drug–drug interaction (DDI), 376, 388
decision tree, 390
Biologics, mediated DDI, 376
Biomarker, 175, 334
downstream, 175, 176
inflammatory, 175
pharmacodynamic, 338
systemic inflammatory, 129
Biophase, 77, 81
Biosimilar development, 331, 377
bioanalytical assay, 341
clinical development, 340
clinical program, 335
comparability PK study, 334
comparative PK and/or PD assessment, 344
immunogenicity testing, 333
multiple-dose dose-response study, 334
nonclinical development, 336
nonclinical immunogenicity assay, 337
nonclinical immunogenicity assessment, 335
nonclinical in vivo study, 333, 337
PK and PD similarity studies, 341
repeat-dose toxicology study, 333
single-dose exposure-response study, 334
single-dose PK similarity study, 342
toxicity study, 337
in vivo toxicity study, 336
Biosimilarity, 332
Biosynthesis process, 331
Biotherapeutic biodistribution, 267
Biotherapeutics–ligand complex, 221
Biot number, 228–230, 232
Biotransformation study, 373
Bispecific, 39
distribution, 47
prostate-specific membrane antigen (PSMA), 421
retargeting, 45
trifunctional, 415
Bispecific antibody (BsAb), 17, 20, 233, 246, 370, 413, 414
bivalent, 421
construct, 45
dosing strategy, 419
maximal efficacious dose, 419
minimum efficacious dose, 419
monovalent binding, 421
PK/PD model-informed design, 418
tolerated dose, 419
Bispecific biologic, 413
Bispecific construct
Fcγ fragment based, 415
immunogenicity, 48
tetravalent scFv–Fc–scFv, 49
Bispecific diabody, 46
Bispecificity, 19
Bispecific T-cell engager (BiTE), 46, 49, 132, 371, 415, 417, 421
Blinatumomab, 49, 100, 376, 413, 416–418
B-lineage acute lymphoblastic leukemia (ALL), 47
Philadelphia chromosome-negative relapsed/refractory, 49
directed targeting vector, 248
transcytosing arm, 246
Blood capillary-mediated transport, 67
Blood capillary permeability, 125
Blood factor, 370
Blood flow, 79, 125, 227, 229
Blood vessel breakage, 127
B-lymphocyte stimulator (BLyS), 129
BM06.022, 95
Bococizumab, 371
Body mass index (BMI), 127, 136, 185
adjusted dosing, 375, 377, 394
dependent dosing approach, 107
effect, 121
matric, 112, 118–120
Body surface area (BSA), 107, 108, 111
based (linear) dose-adjustment approach, 304, 377
Body weight (BW), 107, 108, 111, 127, 180, 185, 187
based allometric scaling, 220
based (linear) dose-adjustment, 300
based dosing, 109, 300
fixed weight dosing, 300, 304
tiered-fixed dosing, 300
variable BW-based dosing, 300
Bone metastase, 132, 176
Bovine albumin, 70
Bovine insulin, 70
BRAF inhibitor, 92
B-Raf proto-oncogene, 135
Brain capillary endothelial cell (BCEC), 243
Brain effect-site pharmacokinetics, 241
Breakthrough therapy designation, 49
Breast cancer, 131, 401
Breast cancer-resistance protein (ABCG2), 241
Brentuximab vedotin (ADCETRIS™), 40, 42, 44, 45, 55, 59–62, 128
Brodalumab, 130
Bronchus-associated lymphoid tissue (BALT), 356
BT062, 45, 217
BxPC3 tumor cell, 416
Bystander effect, 58
Calibration curve, 318
Calicheamicin, 41, 58
Canadian Product Monographs, 336
Canakinumab (Ilaris™), 175, 178, 217, 220, 296, 297, 299, 304
Cancer vaccination, 348
Carbohydrate meningococcal vaccine (Menimmune), 362
Carcinogenicity study, 373
Carcinoma-associated fibroblast (CAF), 226
Cardiovascular disease, 371
Cardiovascular risk, 373
Carlumab, 176
Carrier system, 353
Case-control analysis, 396
Cassette dosing, 318
Catabolic product, 4
Catabolic profile, 44
Catabolic salvage, 16
Catabolism, 47, 74, 77, 112, 116, 215, 297, 373, 387, 416
Cationic vesicle, 353
Cationization, 26, 27
Catumaxomab (Removab®), 46, 48, 49, 216, 217, 413, 417
Caveolae, 94, 243
mediated endocytosis, 245
mediated permeation, 243
cBR96-doxorubicin immunoconjugate, 59
CD3, 100, 126, 131, 132, 216, 323, 416, 417, 421
antigen production rate, 136
CD4, 131
CD8, 216
CD11, 130
CD19, 100, 132, 417
CD20, 47, 126, 130, 131, 133, 136, 216, 272
antigen expression, 220
antigen surface threshold level, 136
expressing B-cell, 136
CD22, 130, 131
CD25, 127, 137, 150, 216, 219
expressing leukemia, 127
soluble (soluble T-cell activation antigen (sTAC)), 133
CD30, 216
CD40, 150, 323
CD52, 130, 131, 216
sCD52, 219
CD69, 418
CD86, 216
CD11a, 131, 132, 216
CD64+ accessory cell, 48
CD11b, 137
upregulation, 137
CD19+ B-cell count, 137
CD25+ leukemia, 137
CD16+ natural killer cell, 48
CD33-positive blast cell, 44
CD20-positive cell, 58
CD3 x EpCAM, 417
Cell-based gene therapy, 250
Cell-based therapy, 370, 371
Cell-behavior regulator, 418
Cell-collagen matrix model, 69
Cell line, 331
Cell membrane-bound target, 99
Cell microarray technology, 264
Cell permeability, 58
Cell-signaling blockade, 234
Cell-surface antigen G250, 127
Cell-surface receptor, 126, 137
Cell surface target antigen, 25, 55, 62, 220
Cellular immunity, 347, 349
adaptive, 349
Cellular immunology, 147
Cellular overkill, 234
Cellular update, 42
Center for Biologics Evaluation and Research (CBER), 3
Center for Drug Evaluation and Research (CDER), 3
Central nervous system (CNS), 241
based target, 371
Cerebral ischemia, 251
Certolizumab pegol, 20, 130, 217, 300
Cervarix vaccine, 359
Charge, 116
Charge–charge interaction, 155
Chelating agents, 284
Chelator-based radiopharmaceutical, 275
Chemiluminescence, 271
Chemiluminescence, 271
Chemokine, 133
CH1, 323
Chimeric antigen receptor (CAR) T-cell therapy, 371
Chimerization, 17
Chinese hamster ovary (CHO) cell, 215
Chronic kidney disease (CKD), 376
Chronic lymphocytic leukemia (CLL), 131, 133, 136
Chronic spontaneous urticarial, 176
Circulating B-cell, 136, 219
Circulating leukemic target, 219
Circulating target, 133
Cisplatin, 219
Classical mammillary model, 168
Clathrin-coated pits/vesicles, 243
Clathrin-mediated endocytosis, 245
Clearance mechanism, 374
Clearance modulus, 230–235
Clearance saturation, 171
Clenoliximab, 131
Clinically efficacious drug concentration, 100
Clinical outcome, 176
Clinical pharmacology development, general consideration, 388
Clinical response, 175, 191, 193
Clinical trial globalization, 378
Clotting cascade protease, 127
Cluster of differentiation 2 (CD2), 216, 323
c-Met (hepatocyte growth factor receptor), 131–133
extracellular domain (ECD), 133
soluble form, 133
c-Mpl receptor, 214
CNTO 528, 214
CNTO 530, 214
CNTO 736, 323
Coagulation factor, 371
Collagenase, 127
Colon cancer, 128
Colon mucosa, 128
Colorectal cancer, 131, 135, 348
Colorectal carcinoma, 127
Comorbidity, 125, 127, 138
Comparability assessment, 333
Complement, 349
Complement activation, 152
Complementary determining region (CDR), 6, 20, 26, 151, 401
Complement component C1q, 152
Complement-dependent cellular (CDC) cytotoxicity, 16, 19, 39, 79, 233, 234, 332
Complement-dependent cytotoxicity, 136
Concomitant medication, 342, 343, 376
immune-modulating, 342
Concurrent medication, 125
Confirmatory population PK analysis approach, 307
Conjugated drug, 58
Conjugated mAb, 60
Conjugated meningococcal vaccine (Menectra), 362
Conjugation, 16, 42, 58
site-specific, 43
Conjunctiva-associated lymphoid tissue (CALT), 356
Controlled release, 353
Convective transport, 5, 125
Copper, 272
Copper-64 (64Cu), 272, 275
Cortisone, 150
Covariate, 111, 116, 118, 120, 122, 127, 136, 180
analysis, 127
effect, 184
influential, 111
prominent, 127
CpG, 361
C-reactive protein (CRP), 30, 129, 300
Creatinine clearance, 61
Crenezuma, 371
Crohn’s disease, 136, 296, 305
pediatric, 298, 308
refractory, 156
Cross-selectivity, 373
Cross-species activity, 99, 220
Cross-study comparison, 138
Cryopyrin-associated periodic syndromes (CAPS), 175, 296, 304
CS1, 131
CTLA-4, 216
C-type lectin family, 148
Culture process, 331
“Cut-and-count,” 285
CyaA-E7, 360, 361
Cyclosporine A, 126
Cynomolgus monkey, 8, 48, 95–98, 100, 101
Cytochrome P450 (CYP), 2, 8, 44, 59, 95, 128, 297, 376
3A4, 44, 59
3A4 inducer, 45
3A4 inhibitor, 45
2C8, 92
2C9, 92
mediated drug–drug interaction (DDI), 2, 6, 59
mediated metabolism, 126
non-CYP, 44
Cytogenetics, 218
Cytokine, 6, 133, 370, 371
proinflammatory, 136
release, 46
Cytokine-release syndrome, 49, 372
Cytokinesis, 218
Cytotoxic drug, 40, 41, 44, 402
rate of formation, 44
unconjugated, 44
Cytotoxic T-cell response, 421
Cytotoxic T-lymphocyte antigen (CTLA), 296
Cytotoxin, 58
DA-3803, 338
Dabrafenib, 92
Daclizumab, 127, 133, 216, 217, 219, 296
Damköhler number, 229
Danger hypothesis, 149
Daptomycin, 117
Darbepoetin alfa (Aranesp®), 74, 117, 120, 127, 369, 370, 376
D2E7, 17
Deamidation, 6, 17
Deconjugation, 41, 44, 60–62, 235
Decoy receptor, 244, 421
Decoy receptor-type TNF inhibitor (TNFI), 247
Degarelix, 117
Degradation-susceptible site, 17
Degradation time, 230
Dendrigraft poly-l-lysine (DGL), 245
Dendritic cell (DC), 73, 96, 147, 152, 350, 355
dermal, 147
immature, 156
plasmacytoid, 147, 149
Denosumab, 19, 132, 176, 216, 217, 297
De novo antibody design, 20
De novo protein synthesis, 47
Deoxyribonucleic acid (DNA)
damaging agent, 41
ligase activity, 14
polymerase, 14
preparation, 213
profiling, 259
restriction/modification enzyme, 14
sequencing technology, 13, 14
vaccination, 355, 356
Designed ankyrin repeat protein (DARPin), 93
Detoxification, 235
Developability criteria, 100
Developmental toxicity study, 373
Diabetes, 129
type I, 19
Diabetic comorbidity, 129
Diabetic complication, 245
Diabetic macular edema, 49
Diabetic nephropathy, 129
Diabody, 47, 48
 bispecific, 47, 48
 single-chain, 46, 47
tandem, 46, 47, 415
Dickkopf-1, 176
Diethylenetriamine pentaacetic acid (111In-DTPA), 81, 275
 coefficient, 69
Digestion method
 in-gel, 318
 in-solution, 318
 on-pellet, 318
Digoxin-Fab, 95
Diphtheria toxoid, 348
Disease, 125, 127, 130
 burden, 62, 125, 138
 influence, 171
 population, 343
 progression, 126, 127
 state, 125, 127, 342
 state dependent, 6
type, 138
Disease activity score (DAS), 129
Disease–drug interaction, 376
Display-based method, 20
Display technology, 15
Dissociation rate, 231, 416
Dissociation rate constant (koff), 161
Distribution, 125, 297, 386
 space, 162
 study, 373
Disulfide bond, 16
Disulfide-linked variable fragment (dsFv), 19
DM1 (mertansine), 44, 58, 128, 403
DNA see Deoxyribonucleic acid (DNA)
DNA-based product, 264, 265
Dose-dependent α-phase, 169
Dose-finding study, 376
Dosing-through, 156
Drug–ADA immune complex (IC), 151
Drug–ADA ratio, 151
Drug–antibody ratio (DAR), 41, 43, 55,
 59–62, 324, 402
 species, 62
Drug conjugation, 59
Drug delivery system, 29
Drug-dependent parameter, 165
Drug development strategies, 369
Drug–drug interaction (DDI), 42, 58–61, 373, 379
 PK-based, 100
Drug-linker-amino acid complex, 402
Drug-linker stability, 59
Drug load distribution, 324
Drug metabolism and pharmacokinetics (DMPK), 1, 8
Drug–target binding, 175, 191
Drug–target complex, 8, 99, 100, 126, 130, 193
Drug target dependent, 6
Drug targeting parameter, 231, 232
Drug–target interaction, 169
Dual affinity retargeting technology (Fc DART), 415
Dual targeting (DT), 413
Dual-variable domain-immunoglobulin (DVD-Ig), 46, 47, 415
Dulaglutide, 214
Duocarmycin, 41
Eculizumab, 19, 132, 217, 296
Edema, 128
Effect site, 176
Efficiency of expression, 20
8C2, 168
Electric charge, 69
Electrochemiluminescence-based assay, 417
Electroporation, 356
Electrostatic
 interaction, 243
 property, 79
 repulsion, 26
Elotuzumab, 131
Elspar, 215
Emerging market, 377
Emfilermin, 117, 118
Emission energy, 85
Endocytosis, 94, 96, 148, 216, 243
 clathrin-mediated, 94
 drug-receptor complex, 220
 mediated elimination, 128
 rate constant, 130
Endogenous protein, 4
Endogenous retrovirus envelop-coated baculovirus vector, 353
Endosomal compartment, 166
Endosomal protease, 60
Endosomal recycling, 153
Endosomal sorting, 160
Endosomal space, 162, 165
Endosomal trafficking, 160
Endosomal volume, 162
Endosome, 73
 early, 94
 early sorting, 153
 late, 94
 uptake rate of IgG, 162
Endothelial cell, 226
End-stage renal disease, 128, 129
Enfuvirtide, 117
Enthesitis-related arthritis, 304
Enzyme-linked immunosorbent assay (ELISA), 41, 47, 261, 307, 313, 323, 403, 417
 capture reagent, 417
 competitive method, 319
 detection reagent, 417
 sandwich method, 313, 319
two-site, 417
Enzyme replacement therapy, 156
EpCAM-positive carcinoma, 48, 416
Epidermal growth factor (EGF) conjugate, 243
Epidermal growth factor receptor (EGFR), 29, 47, 126, 130–132, 169, 176, 200, 204, 216, 416
expression, 130
occupancy, 134
overexpression, 375
tumor expression, 135
Epidermal Langerhans cell, 148
Epoetin, 333
Equilibrium dissociation constant, 161
Equilibrium extravascular distribution, 169
ErbB3, 418
ErbB2/ErbB3, 48
ERK, 418
Erythrocyte binding, 151
Erythroid progenitor cell, 137, 218
Erythropoietin (EPO), 28, 218, 244, 251, 371, 403
hyperglycosylated analog, 369
mimetic peptide 1 (EMP1), 214
receptor, 28, 214
Erythropoietin-alpha (EPO-alpha), 117
Erythropoietin-beta (EPO-beta), 95, 117
Erythropoietin receptor (EpoR), 138
Etanercept (Enbrel), 16, 117, 120, 215, 217, 247, 296, 298, 371, 377
Ethnicity
ethnic difference, 220
Japanese, 187
Ethylendiaminetetraacetic acid (EDTA), 81
European Medicine Agency (EMA), 48, 209, 331, 336, 341, 374, 377
guideline, 487
European Public Assessment Report (EPAR), 336
European Union (EU), 193, 333, 377
Euthanasia technique, 85
Evolucumab, 371
Exaggerated pharmacology, 372
5' exonuclease, 14
Exposure–response data, 377
Exposure–response model, 307
Exposure–toxicity relationship, 375
Extended Michaelis–Menten approximation, 200–202, 206, 208
with target turnover, 201
Extracellular marker, 81
Extracellular matrix (ECM), 25, 81
binding, 28
Extrapolation strategy
full extrapolation approach, 299
no extrapolation approach, 298
partial extrapolation approach, 298
Extravasation, 5, 112, 160, 162, 166, 200, 215, 227, 229
mechanism, 165
rate-limited distribution model, 206, 207
Extrinsic factor, 375
F(ab'), 47, 48
F(ab')2, 50, 415, 420
anti-FcRn, 73
Fab-Fv, 415
Factor IX, 95
Factor VIII, 95, 156
inhibitor, 156
“Fast-on/slow-off,” 231
FcεR expressing cell, 180
FcγR binding, 214
Fcγ interaction, 43
Fcγ-mediated uptake, 59
Fcγ receptor (FcγR), 48, 79, 96, 148, 216, 297
genotype, 135, 136
idiosyncrasy, 97
mediated clearance, 153, 206
mediated process, 98
polymorphism, 136
positive cell, 48
FcγRI, 152
mediated uptake, 152
FcγRIII, 33
enhanced sweeping antibody, 33
sweeping antibody, 34
FcγRIIA, 135, 152
FcγRIIB, 148
sweeping antibody, 31, 33
FcγRIII, 33, 97
enhanced sweeping antibody, 33
FcγRIIIA, 135
FcγRIIIB, 152
Fc receptor of the neonatal (FcRn, Brambell receptor), 5, 16, 19, 20, 25, 26, 31, 48, 58, 73, 74, 78, 96, 112, 126, 148, 151, 153, 159, 216, 217, 297
antibody binding, 161
binding affinity, 43, 96, 129, 166
binding/dissociation assay, 5
dependent clearance, 339
expression, 297
function, 27
IgG binding, 29
IgG binding assay, 96
IgG interaction, 7, 96
large subunit p51 (FCGRT), 98
mediated half-life prolongation, 417
mediated internalization, 32
mediated protection, 72, 74, 78
mediated recycling, 43, 49, 116, 370, 421
mediated salvage, 153
mediated salvage mechanism (recycling), 417
mediated sweeping, 31
mediated transcytosis, 74
mediated transport, 72, 74
mediated uptake, 59
pH-dependent binding, 171
rat, 337
receptor expression, 376
recycling, 213
recycling system, 29, 230
salvage, 168
mechanism, 126
pathway, 5, 48, 50
process, 153
sweeping antibody, 32, 34
tissue expression, 162
FcRn-deficient mouse, 72–74, 243
FcRn-Ig complex, 73
FcRn-knockout mouse, 100, 153, 161, 165
Ferl's model, 161, 165
Fermentation process, 331
F(ab') fragment, 46
Fibrinogen, 4, 220
Fibrinolytic enzyme, 127
Filgrastim, 130, 132, 333, 335, 371
Filgrastim biosimilar (Zarzio®), 341
Filgrastim-sndz (Zarxio), 335
Filling procedure, 331
Fingerprint-like similarity, 377
First-in-human (FIH) dose, 171, 209, 421
selection, 374, 387
starting dose, 374
First-in-human (FIH) study, 61, 91, 101, 107, 122, 373
design, 387
First-pass metabolism, 4
FITC-dextran, 69, 73
5T4, 132
Fixed dosing, 100, 107, 112, 114, 116, 118–120, 394
Fixed-dosing approach, 111, 122
Fixed-dosing regimen, 108, 110
Fixed-dosing strategy, 122
Fixed mg/kg dosing, 300
“Flip-flop phenomenon,” 417, 421
Flow cytometry, 271
Fluid balance, 225
Fluid-based pinocytosis, 5
Fluid-phase endocytosis, 95, 115
Fluid-phase micropinocytosis, 25
Fluorescein, 276
Fluorescence, 271
correlation spectroscopy, 69
detector, 319
Fluorescence-activated cell sorting (FACS), 261, 418
Fluorescence in situ hybridization (FISH), 135
Fluorescent imaging probe, 276
Fluorescent multiplexed bead-based immunoassay
(FMIA), 323
Fluorophore, 272, 276
biological, 276
Focused ultrasound sonication (FUS), 251
Follicular lymphoma, 136
Follitropin, 333
Follow-on biologic, 331
The US Food and Drug Administration (FDA), 107, 331, 335,
369, 374, 377
guidance, 387
Foreign sequence, 418
Formulation choice, 331
Fragment antigen binding (Fab), 15, 19, 20
arm exchange, 17, 19, 415
dual action Fab (DAF), 416
fragment, 20, 95
Fragment crystallizable (Fc), 16
domain, 19
effector function, 19
engineered protein, 98
engineering, 20, 25, 33
FcγR interaction, 33
FcRn binding affinity, 96
FcRn interaction, 78
fragment, 95
fusion protein, 126
mediated effector function, 48, 130, 136
mediated function, 421
mediated salvage, 16
receptor (FcR), 16, 243
receptor interaction, 78
receptor-mediated elimination, 216
receptor-mediated side effect, 46
Fragment fusion, 14
Fully human recombinant DNA-derived hyaluronidase enzyme
(rHuPH20), 69
Fusion protein, 116, 121, 176, 213, 215, 370
Gadolinium-153, 81
β-Galactosidase, 244, 246
Gallium-67 (67Ga), 275
Gallium-68 (68Ga), 275, 276
Gamma counting, 85, 86
Gamma-energy range, 276
Gammaglobulin, 156
γ-photon, 85
Gantenerumab, 246, 371
Gardasil, 359
Gastric cancer, 131
Gastric degradation, 4
Gastric protein leakage, 135
Gaussian distribution, 180
Gemtuzumab ozogamicin (Mylotarg™), 17, 40, 44, 45, 55, 128,
131, 216–219
Gene copy number, 135
gene-expression-based predictive model, 362
gene expression pattern, 362
gene expression signature, 362
gene (DNA) microarray microchip analysis, 259
gene synthesis, 14
gene therapy, 370
genetic engineering, 13
genotoxicity study, 373
geriatrics, 393
germin, 17
gibson assembly technique, 14
glioblastoma, 128
glomerular filtration, 48, 93, 128
glomerular filtration rate, 25
glucagon-like peptide-1 (GLP-1), 214
agonist, 370
fusion protein, 214
Glucotransferase, 43
β-Glucuronidase, 244
Glycation, 129
Glycoengineering, 16, 19, 39, 370, 379
Glycoprotein-IIa–IIIa, 216
Glycosaminoglycan, 25, 79, 81
Glycosylation
N-glycosylation, 48
N-linked site, 18
site, 18
Gold-199 (199Au), 275
Golimumab, 74, 112, 113, 115, 216, 217, 297, 299, 300, 304
GP2013, 338
Graft-versus-host disease (GvHD), 137
Granulocyte-colony stimulating factor (G‐CSF), 28, 29, 176
receptor density, 132
receptor-mediated endocytosis, 132
receptor (G‐CSFR)‐mediated internalization, 29
receptor on neutrophil, 132
Growth hormone, 94, 333, 370, 371
Gut, 217
Hairy cell leukemia, 131
Half-life extension strategies, 416
Healthy subject, 341
Heat-shock protein receptor, 148
Hematide, 116, 117
Hematopoietic cell, 152
FcRn-containing, 153
Hemizygous transgenics, 98
Hemoglobin level, 120
Hemophilia, 48, 130
Hemophilus influenza type B (Hib), 348
Heparin, 376
low molecular-weight, 333
Hepatic blood flow, 69
Hepatic impairment, 61, 128, 376, 393
Hepatic metastase, 127
Hepatitis B, 348, 357
Heptamer, 151
hERG channel, 373
HER2/neu, 416
Herpes zoster LAV, 356
High dose drug tolerance, 149, 150
induction, 156
High dose intravenous IgG (IVIG), 161
High performance liquid chromatography, 2
HIP-DOTA system, 288
HIRMAb-EPO, 247
Hirudin, 95
Histidine, 29
Histidine mutagenesis approach, 30
Histocompatibility complex class I-related receptor, 78
HIV, 348, 371
Hodgkin’s lymphoma, 40, 48
Homology model, 20
Homozygous transgenics, 98
“Hook” effect (prozone), 318, 417
Hormone, 370
Hormone-releasing hormone (LHRH) antagonist, 359
Host immune status, 342
huC242-DM1, 45, 218
Human antichimeric antibody (HACA), 17
Human brain-derived neurotrophic factor (BDNF), 244
Human cytomegalovirus (CMV), 266
Human epidermal growth factor receptor 2 (HER 2), 30, 130, 131, 216, 323
amplification, 135
extracellular domain (HER2 ECD), 219
HER2-expressing invasive breast cancer, 135
HER2 FISH-positive metastatic breast cancer, 135
HER2+ metastatic breast cancer, 40, 401
HER2-positive breast cancer, 136, 375
receptor, 401
Shed HER2 ectodomain (ECDHER2), 133
Human FcRn (hFcRn)-transgenic mouse, 28, 33, 34, 96, 98
Human growth hormone (hGH), 72–74, 128
Human IL-10 (hIL-10)
antibody-bound, 155
free, 155
Human insulin receptor, 246
Human insulin receptor mAb (HIRMAb), 244
Humanization, 18
Human leukocyte antigen (HLA)
class II genotype, 150
Tregitope complex, 149
Human papillomavirus (HPV), 348, 359
16 E7 peptide, 359
16L 1-encoding gene, 359
vaccination, 359
vaccine, 359
Human pharmacokinetic prediction, 91
Human respiratory syncytial virus (RSV), 216, 295, 296, 371
Human tetanus immunoglobulin (P-HTIG) vaccine, 359
Humoral immune response, 355
Humoral immunity, 349
Hyaluronan, 69
Hyaluronidase, 69
“Hybrid calibration” method, 319
Hybrid dose-adjustment approach, 304, 377
Hybrid-hybridoma, 413
Hybridoma, 17
Hydrodynamic volume, 417
Hydrodynamic water shell, 20
Hyrophilicity, 4, 5, 42, 79
Hyrophobicity, 43
Hypercholesterolemia, 371
Hypodermis, 67
Ibalizumab, 371
Ibritumomab tiuxetan (Zevalin®), 216, 217, 220, 272
ICH-14 guidance, 389
ICH S6(R1), 403
Idurionate 2-sulfatase, 244
α-1-Iduronidase (IDUA), 244, 245
IFN-1α, 218

IgE, 132, 133, 137, 178, 181, 216, 218, 296
 baseline level, 180, 187
 drug-IgE complex, 186, 192
 free level, 112, 137, 177, 192
 free level suppression, 181
 omalizumab-IgE complex, 177
 production rate, 180
 receptor (FcεRI), 137
 surface (sIgE), 178, 180, 186–188, 191
 synthesis, 133
 total, 191, 192

IgG antibody, 16
 antibody–drug conjugate (ADC), 45
 FcRn binding affinity, 165
 heavy chain, 16
 hybrid of IgG2 and IgG4, 19
 IgG1, 19, 97
 IgG2, 19, 97
 IgG3, 97
 IgG4, 17, 19, 26
 IgG2a, 46
 IgG2b, 46
 light chain, 16
 recycling, 161
 transcytosis, 161

Imaging-mass spectrometry, 59
Imaging technique, 271
Imatinib mesylate (Gleevec®), 375
IMGN242, 218
IMGN901, 45, 218

Immune-based bioanalytical method, 313
Immune cell, 147
 peripheral, 219
Immune complex (IC), 79, 147, 151
 cross-linked, 152
 IgG1-containing, 152
 IgG3-containing, 152
 monomeric, 153
 multimeric, 152, 153
 size-dependent FcRn-mediated sorting, 153
 transport, 152
Immune effector function, 79

Immune-mediated disorder, 295
Immune-mediated inflammatory disease, 125, 129
Immune Mobilizing mTCR against cancer (ImmTAC), 415
Immune response, 17, 130, 341, 349, 362, 363, 371
Immune status, 150, 342
Immune tolerance, 130

Immunization, 17
 intramuscular (IM), 356
 subcutaneous (SC), 356
Immunooassay, 4, 372
Immunocapture, 4, 6, 324
Immunocompromised lymphoma, 150
Immunocytochemistry (ICC), 263
Immunocytokine, 415
Immunodepletion, 324

Immunogenic, 18, 98
Immunogenicity, 17, 20, 39, 40, 46, 49, 78, 95, 98, 125, 130, 138,
 147, 171, 213, 266, 267, 295, 298, 300, 332, 334, 356, 369, 371, 373, 374, 376, 377
 assay, 372
 assessment, 390
 long-term, 357
 potential, 372
 related adverse event, 150
 risk, 26, 150
 risk mitigation, 390
 sampling scheme, 307
 strategy, 418
 study, 373
 threshold, 150

Immunogenic stimuli, 349
Immunohistochemical analysis (IHC), 73, 135, 263–267
Immunomodulator, 130, 298, 300
Immunomodulator regimen, 156
Immunoprecipitation, 324
Immunoprecipitation enrichment, 320
Immunoreactive, 4
Immunoreactivity, 276
Immunosuppressive drug, 150
Immunotherapy, 371
Imunotoxin (IT), 233
Inactivated polio virus (IPV), 348
Indirect red blood cell labeling method, 79
Indirect response model, 120, 176
 modified, 120
Indium, 272
Indium-111 (111In), 81, 272, 275
Individual performance, 111, 118, 122
Inducible regulatory T-cell (iTreg), 149
Infant, 308
Infantile Pompe disease, 156
Infectious disease, 371
Inflammation, 127, 129
 site, 130
Inflammatory bowel disease (IBD), 129, 130, 295
 pediatric patients, 300
Inflammatory cascade, 137
Inflammatory cell, 226
Inflammatory disease, 6
Inflammatory disorder, 245
Inflammatory environment, 226, 234
Inflammatory signal, 127, 130
Infliximab (Remicade), 17, 98, 113, 115, 129, 130, 133, 136, 149,
 153, 154, 216, 217, 296–299, 305, 307, 308, 333, 335
 ACCEnT 1 study, 305
 *mTc, 154
 pediatric UC study, 305
 REACH study, 305
 younger children with UC, 308
Influenza, 348
 vaccine, 356
 virosome, 353
Infusion-related reaction (IRR), 156
Injection site, 74
Injection–site reaction, 356
Injection–site toxicity, 56
Innate immune response, 349
Innovator product, 331
Inotuzumab ozogamicin, 18, 131
In silico method, 316
In silico prediction, 17, 20
In situ hybridization (ISH), 262, 266
Insulin, 73, 333, 369, 371, 403
Insulin analog, 370
Insulin-like growth factor I receptor (IGFIR), 243, 416, 418
Insulin-like growth factor II receptor (IGFIIR), 243, 244
Insulin–like growth factor receptor, 323
Insulin receptor (IR), 219, 246
antibody fusion protein, 246
Intact protein calibrator, 319
Integrated PK/TE/PD modeling, 8
Interdigital space, 74
Interferon (IFn), 371
Interferon alpha/leukocyte IFn (IFn-α), 133, 218, 333, 371
Interferon-β, 28
Interferon beta, fibroblast IFn (IFn-β), 156, 333
Interferon gamma, immune IFn (InF-γ), 218
Interleukin-1 (IL-1) receptor, 215
Interleukin-2 receptor α (IL-2Rα, T activation antigen (TAC)), 153, 296
Interleukin-5 (IL-5), 218
Interleukin-10 (IL-10), 149
Interleukin-12/Inerleukin-23 (IL-12/IL-23), 216
Interleukin-13 (IL-13), 176
Interleukin-17 (IL-17), 133
Interleukin-23 (IL-23), 133
Interleukin-1β, 175, 296
Interleukine-6 (IL-6), 6, 133, 296, 376
degradation rate, 120
free level, 8
level, 120
receptor (IL-6R), 29, 131, 216
total level, 8
Intermediate pharmacological mechanism, 175
Internalization, 416
Internalization rate, 58, 231
Internal standard (IS), 319
SIL–peptide/extended-peptide, 319
stable isotope–labeled (SIL), 319
International Conference for Harmonization (ICH), 403
Interspecies allometric scaling, 92, 98, 101, 107, 108
fixed-exponent, 374
single-species approach with a fixed exponent, 95
Interspecies allometry, 92, 93
Interspecies scaling, 220
Interstitial concentration, 87
Interstitial fluid, 166
pressure, 128
space, 27
Interstitial pressure, 81, 226
Interstitial space, 74, 77, 86, 93, 162, 167
rate of convection to, 93
Interstitial target, 169
Interstitial target occupancy, 167
Interstitial transport, 68, 69
Interstitial volume, 79, 81
Interstitium, 77, 81, 162
Intersubject variability, 111, 114, 118, 120
Intracellualr catabolism, 115
Intracellular space, 86
Intracellular target, 371
Intracellular uptake, 48
Intracellular uptake rate, 31
Intradermal influenza vaccination, 357
Intraperitoneal space
Intravitreal injection, 296, 420
Intravascular space
In vitro affinity maturation, 20
In vitro display, 20
In vitro–in vivo extrapolation, 6, 159
In vitro potency characterization, 332
Iodine-124 (124I), 273
Iodine-125 (125I), 81, 273
Iodine-131 (131I), 272, 273
Iontophoresis, 356
Ipilimumab, 216, 217
Iron oxide magnetic nanoparticle (MNP), 271
Ischemic stroke, 246
Isoelectric point (pI), 20, 25, 26, 48, 79, 167
Isoform heterogeneity, 213
Isomerization, 6
Isotype control antibody, 87
Itch and hives symptoms, 176
Japanese Pharmaceutical and Medical Devices Agency (PMDA), 378
Juvenile idiopathic arthritis (JIA), 296, 298, 299
Kadcyla® (ado–transtuzumab emtansine), 40
Kawasaki disease, 308
Keratan sulfate, 215
Ketoconazole, 45, 61
Kidney, 217
Kirsten rat sarcoma viral oncogene homolog (KRAS), 135
mutation status, 135
“Knobs into holes,” 19, 415, 419
Krogh cylinder model, 230, 235
Kunitz protease inhibitor (KPI), 247
Kupffer cell, 147, 152
Label choice, 272
Labeling strategies, 277
Labeling technique, 271
Lactide/glycolide copolymer, 249
Lanreotide autogel, 117
Lantus®, 369
Larynx–associated lymphoid tissue, 356
Laser capture microdissection, 262
Laser scanning cytometry, 262
LAV YF-17D, 362
LC/SRM-MS, 313, 316, 318
conventional-flow, 319
multiplexed, 318
nano-flow strategy, 319
Leaky tumor vasculature, 128
Lenrecpt, 95, 98, 130, 154
Leptin receptor (OBR), 243, 245
Leukemia, 150
Leukocyte, 135
Leukopenia, 46
Levy, 169, 176
Licensed biotherapeutic product, 331
Ligand-binding assay (LBA), 4, 313, 315, 319, 324, 341, 372, 417
generic assay, 314
Gyrolab-based method, 323
specific assay, 314
Ligand-receptor activation and trafficking model, 204
Ligand-receptor interaction, 20
Ligelizumab (QGE031), 176, 178, 180, 186, 188, 192
Linearity range, 318
Linker, 40, 55, 402
acid labile, 40
auristatin T (AT)-based, 44
choice, 402
cleavable, 40, 60
dipeptide linker, 59
disulfide, 41, 60
ex vivo stability, 404
MC-MMAF, 44
MC-vc-MMAF, 44
noncleavable, 40, 59, 60
plasma stable linker chemistry, 59
protease-cleavable, 41, 59
SMCC, 402
thioether-based, 59, 60, 402
Lipophilicity, 116
Lipopolysaccharides, 349
Liquid chromatography—mass spectrometry (LC–MS), 2, 8, 262,
313, 315, 324
affinity capture capillary, 41
highly sensitive, 42
high resolution, 316, 324
Liquid chromatography—tandem mass spectrometry (LC–MS/MS), 266, 324, 404
based technology, 319
Liquid chromatography with high resolution mass spectrometry
(LC-HRMS), 6
Local charge patch, 79
Local clearance, 230
Local metabolism, 234
Logistic regression model, 120
Low density lipoprotein binding receptor (LDLR), 244, 245
Low density lipoprotein (LDL) receptor, 243
LRP1/CD91/α2-macroglobulin receptor, 245
related protein 1 (LRP1), 243
related protein 2 (LRP2, megalin), 243, 245
Lower limit of quantification (LLOQ), 318
Lucatumumab, 176
Luciferase, 244, 248
Lung, 217
Lutetium-177 (177Lu), 81, 275
Lymph, 68, 71
Lymphatic-cannulated sheep model, 70
Lymphatic capillary-mediated absorption, 71
Lymphatic capillary-mediated transport, 62
Lymphatic distribution, 162
Lymphatic drainage, 42, 47, 71, 128
rate, 93
Lymphatic flow, 125
rate, 7, 127, 296
thoracic, 69
Lymphatic node, 73–75
Lymphatic system, 68
Lymphatic transport, 70, 73
Lymphatic transport rate constant, 72
Lymph flow, 160, 162, 165
Lymph node (LN), 350
Lymph node compartment, 162
Lymph node lesion, 136
Lymphocyte function-associated antigen-1 (LFA-1), 169
Lymphocyte function-associated antigen-3 (LFA-3), 215
Lymph system, 226
Lyophilized formulation, 17
lys-MCC-DM1, 59
Lysosomal acid α-glucosidase (GAA), 156
Lysosomal degradation, 19, 48, 78, 153, 168
Lysosomal protease, 60
Lysosomal proteolytic degradation, 82
Lysosomal storage disease mucopolysaccharidosis (MPS) type I
(Hurler’s syndrome), 244
Lysosome, 73, 94
Lys16[PEG2000]32, 71
MabThera® (rituximab), 338
Macrophage, 73, 78, 96, 152
Macular degeneration, 371
“Magic bullet,” 55, 418
Magnetic resonance imaging (MRI), 85, 271, 276
Major histocompatibility complex (MHC), 148
class II, 350
Malaria I/II, 7, 348
Maleimide chemistry, 60
Maleimidocaproyl-valine-citrulline-p-aminobenzoxycarbonyl
(MC-vc-PAB), 43
Malignant ascite, 48
Mammalian cell display, 20
Mammillary model, 100
Manufacturing change, 333
Manufacturing process, 331
Market exclusivity period, 331
Mass balance, 162, 166
Mass balance study, 373
Mass spectrometry (MS), 2
Mass transfer, 228
Mast cell, 137
Matrix metalloproteinase (MMP), 127, 226, 235
Matuzumab, 113, 131
Mavrilimumab, 176
Maximal tumor diameter, 136
Maximum recommended starting dose (MRSD), 374, 387
Maytansine, 40, 58
Maytansoid, 41, 59
Measles, 348
Mechanism of action, 19, 100, 371
Mechanistic IL-1β binding model, 175
Mechanistic PK/PD model, 371
MEDI4736, 132
MEHD7945A, 48, 416
Melanoma, 348
Membrane-bound antigen, 25, 29, 33, 132
Membrane-bound receptor, 16, 97, 126
with no shedding, 198
with shedding, 198
Membrane-bound target, 133, 203, 208
Memory cell, 350
Memory T-cell response, 360
Mercaptopurine, 156
Meta-analysis, 130
utility, 395
Metabolic disorder, 371
Metabolism, 297
Metal chelate, 272
Metal nanoparticles (Au-nP), 355
Metastatic breast cancer, 129, 135, 348
Metastatic colorectal cancer, 134, 135
Metastatic gastric cancer (mGC), 129, 135
Method development, 324
Method development time, 314
Methotrexate (MTX), 130, 150, 156, 376
MET proto-oncogene, 135
Michaelis–Menten approximation, 197, 200, 203, 209
with target turnover, 202
Michaelis–Menten saturable mechanism, 218
Microbial protease, 136
Microbiol protease, 136
Microbubble (MB), 251
Microemulsion, 356
Microglial cell, 147
Microneedle, 356
Microtubule inhibitor, 41
Minimal residual disease (MRD), 49
Minimal seroprotective level, 359
Minimum anticipated biological effect level (MABEL), 107, 209, 374
Minipig, 27
extracellular portion, 16
MLN2704, 45, 217
MM-111, 48
MM-141, 418
Model-based drug development (MBDD), 393
Model-based meta-analysis, 375
Modeling and simulation, 375, 377
Model reduction, 200
Molecular biology, 1
Molecular imaging, 85, 285, 288
Molecular marker, 288
Molecular mass, 42
Molecular modeling technique, 13
Molecular pathology, 257
Molecular pathology-based assay, 265
Molecular pathology-based technique, 267
Molecular signature, 362
Molecular size, 4, 69, 74, 116, 168
Molecular Trojan horse (MTH), 219
Molecular weight (MW), 95, 128, 232
Monoclonal antibody (mAb), 1, 55, 72, 107, 110, 112, 122, 125, 126, 159, 213, 215, 230, 272, 313, 333, 342, 370, 403
anti-CD4, 219
anti-CD4 (TRX1), 7
anti-FGFR4 (fibroblast growth factor receptor 4), 3, 220
anti-IL-6 (siltuximab), 8
anti-RSV (respiratory syncytial virus), 220
canonical, 416
chimeric, 120
distribution, 386
human, 39, 120
humanized, 39, 120
ligand-mAb complex, 267
murine 8C2, 129
noncanonical, 413
nondepleting, 150
target-mAb binding, 216
target-mAb complex, 216
therapeutic, 39
unconjugated, 44
Monocyte, 73, 96, 152
Monomethyl auristatin E (MMAE), 43, 58–60, 128
Monte Carlo simulation, 111, 187, 189
Morphology, 243
Moxetumomab pasudotox, 131
MPDL3208A, 136
MRMaid, 316
Mucosa-associated lymphoid tissue (MALT) (Peyer’s patches), 354, 356
Mucosal epithelia
gastrointestinal, 156
nasal, 156
Multimodal contrast agent, 271
Multiple myeloma, 131
Multiple sclerosis, 156
Multiplexed capacity, 318
Multispecific antibody, 418
Multispecific molecule, 418
Muromonab-CD3, 216, 217
Muscle, 73
Mutagenesis, 26
Mutation status, 135
Mycobacteria Ag, 349
Myocardial toxicity, 374
Naked DNA plasmid, 356
Nanobody, 39
Nanoparticle, 249, 276
poly(butylcyanoacrylate) (PBCA), 249
superparamagnetic iron oxide, 276
Nanosystem, 356
Naptumomab estafenatox, 132
Nasal-associated lymphoid tissue (NALT), 354
Natalizumab, 19, 131, 216, 217, 297
Native gel separation, 324
Natriuretic peptide receptor-A, 214
Ofatumumab, 131
Oncogene, 219
Oncology, 125
“One-pore” formalism, 161, 165, 167
“One-pore” formalism model, 162
Onartuzumab, 131, 132
Omalizumab (Xolair™), 176
free, 177
omalizumab-IgE binding model, 176
total, 177
Onatuzumab, 131, 132
Oncogene, 219
Oncology, 125
“One-pore” formalism, 161, 165, 167
“One-pore” formalism model, 162
Oncept, 116, 117
On-target, 372
On-the-fly orthogonal array optimization (OAO), 316
Ophthalmic disease, 420
Ophthalmology, 371
Opsonized microbe, 96
Optical imaging (OI), 271, 272, 276, 288, 289
Ovarian cancer, 218
Oxidation, 6
Overall intersubject variability, 111, 112, 114, 119
Overall survival, 135
Overarching biosimilar guidance, 333
Ovidrel®, 338
Oxidation, 6
Packaging choice, 331
Palifermin, 376
Omalizumab (Xolair™), 176
free, 177
omalizumab-IgE binding model, 176
total, 177
Onatuzumab, 131, 132
Oncogene, 219
Oncology, 125
“One-pore” formalism, 161, 165, 167
“One-pore” formalism model, 162
Oncept, 116, 117
On-target, 372
On-the-fly orthogonal array optimization (OAO), 316
Ophthalmic disease, 420
Ophthalmology, 371
Opsonized microbe, 96
Optical imaging (OI), 271, 272, 276, 288, 289
Ovarian cancer, 218
Oxidation, 6
Overall intersubject variability, 111, 112, 114, 119
Overall survival, 135
Overarching biosimilar guidance, 333
Ovidrel®, 338
Oxidation, 6
Packaging choice, 331
Palifermin, 376
Palivizumab, 216, 217, 295, 296, 371
Pancarditis, 247
Panitumumab, 48, 131, 134, 135, 216, 217, 297
Panning method, 20
Paracellular transport, 42
Parallel clearance model, 99
Parallel group design, 341
Parameter identifiability, 200
Parkinsonian syndrome, 249
Paroxysmal nocturnal hemoglobinuria, 132
Partial steady-state approximation, 201
Particle mediated epidermal delivery (PMED), 357
Particle size, 353
Passive diffusion, 4
Patch formulated in hydrogels, 355
Patent, 331
Pathogen-associated molecular patterns (PAMPs), 349
Pathogen–host interaction, 362
Pathology, 266, 267
Patient-centric FIH trial, 375
Patient genetic heterogeneity, 135
Patient Protection and Affordable Care Act, 335
Pattern-recognition receptor, 148
Paul Ehrlich, 55
“Peak-trough” variation, 185
Pediatric, 180, 391
Pediatric dose strategies, 300
Pediatric drug development, 295, 298, 309
modeling and simulation, 305
modeling and simulation framework, 305
Pediatric investigation plan (PIP), 376
Pediatric Research Equity Act, 376
Pediatric study, 376
pharmacokinetic study, 300
registry study, 300
sample size determination, 304, 309
Pediatric study decision tree, 298
Pediatric study of certolizumab pegol (PASCAL) study, 300
PEG-conjugated erythropoietin (EPO), 127
PEG-conjugated interferon alpha, 127
PEG30-EPO, 70, 71, 73
PEG40-EPO, 73
Pegfilgrastim, 128
PEG-interferon alfa-2a, 93
PEG-interferon alfa-2b, 117
PEG interleukin 2 (PEG IL2), 95
PEG-stabilized liposome, 249
PEGylated immunoliposome, 248
PEGylated protein, 121
PEGylation, 20, 48, 248, 370, 379
Pembrolizumab, 136
Pentamer, 151
Peptide, 370, 371
Peptide–antibody genetic fusion, 417
PeptideAtlas, 314
Peptide-based vaccine, 359
Peptide-Fc fusion protein (peptibody), 214
Peptide mimetic of thrombopoietin (TPO), 214, 218
Perforin-mediated immunotherapy, 49
Pericyte, 226
Peripheral neuropathy, 45
Personalized vaccination, 362
Pertuzumab, 30, 95, 112, 113, 115, 135
PF-03446962, 7
PF-05280014, 338–340, 342
P-glycoprotein (P-gp), ABCB1, 44, 58, 136, 241, 246
Phage display, 15, 16, 20
Phagocyte, 152
Phagocytic cell, 349
Phagocytosis, 94, 96, 98
Pharmacodynamic(s) (PDs), 2, 167, 192
interpatient variability, 108, 110
marker, 334
translation, 374
variability, 112, 122
Pharmacogenomic information, 375
Pharmacokinetic(s) (PKs)
assay strategy, 417, 418
formation rate-limited, 44
interpatient variability, 108
similarity assessment, 342
variability, 107, 110, 112, 122
Pharmacokinetic(s)/pharmacodynamic(s) (PK/PD), 1, 45, 309, 332, 401
direct drug–target binding model, 176
general drug–target binding model, 176
ligand-binding model, 176
mechanism-based, 8, 133, 137, 394, 420
model-based analysis, 175
modeling, 415
receptor-binding based, 8
relationship, 377, 421
translation, 374
Pharmacologically relevant targeted system, 197
pH-dependent antigen binding, 28, 30
pH-dependent binding, 25, 26, 165
pH-dependent interaction, 19
pH-dependent target binding, 171
Phlebotomy (blood removal from circulation), 138
PHOENIX 1, 129
PHOENIX 2, 129
PhRMA, 3, 95
Physical activity, 127
Physical half-life, 276
Physicochemical property, 127
Physiological-based PK (PBPK) modeling, 7, 81, 92, 100, 101, 159, 200, 309, 373, 376, 387, 394, 418
mechanism-based, 161, 165
catenary model, 161, 165
full model for mAh, 100
minimal model (mPBPK), 100, 166–169, 171
“second-generation” mPBPK model, 100, 166, 168
simplified model, 197, 206
simplified model with a target, 208
whole-body model, 166, 168, 204
Physiological compartment, 86
Physiologically based interspecies extrapolation, 161
Physiologically based SC absorption model, 127
PI3K/AKT/mTOR cascade activation, 418
Phagocytosis, 27, 77, 94
Placebo/disease natural history, 178
Placebo model, 178
Plaque psoriasis, 129–131, 176, 295
Plasma cell, 148
Plasmalemal vesicle, 243
Plasma-tissue fluid lymph circulation, 68
Plasmid encoding, 244
Plasmid pDNAx (pVAX-Hsp60TM814) vaccine, 356
Plasmid preparation, 14
Plasminogen, 127
Plate-based proteome array, 318
Platelet, 152
Platelet-derived growth factor receptor-beta (PDGFRβ), 50
Plitidepsin, 117
PMDA see Japanese Pharmaceutical and Medical Devices Agency (PMDA)
Pneumococcal vaccine, 356
Point mutation, 19
Polarity, 42
Poly(ε-caprolactone) (PCL), 353
Polyaminopolycarboxylate chelator, 82
Polyarticular juvenile idiopathic arthritis, 296
Polyethylene glycol (PEG), 16, 248
Polyglycolide (PLG), 353
Polylactide (PLA), 249, 353
Polymerase chain reaction (PCR), 14
Polymorphism, 135
Population performance, 111, 118, 122
based simulation, 300
DDI assessment, 376
semi-mechanistic, 61
Population PK and PD analysis, 122, 377
Population PK meta-analysis, 127
Population PK model, 134, 374
Population PK/PD model, 107, 110, 116
Population PK/PD study, 111
Population PK TP-DI Working Group, 376
Positron emission tomography (PET), 85, 265, 271–273, 275, 286, 289
Positron emitter, 85
Posology, 175, 176, 181, 185, 193
omalizumab, 184
Posttranslational modification, 17, 332
Potential variants, 332
Power model function, 109
Preclinical development, 372
Precursor molecule, 20
Presystematic catabolism, 67, 72–75, 126, 127
Pre-targeting approach, 234
Primary immunodeficiency, 215
Probability of flare, 175
Professional antigen-presenting cell, 217
Programmed death-ligand 1 (PD-L1), 132, 136
Programmed death receptor-1 (PD-1), 136
Progression-free survival (PFS), 134, 135
Quasi-steady-state (QSS) approximation, 200, 201
assumption, 209
target binding, 169
Rabies virus glycoprotein (RVG29), 250
Race, 393
Radiocatalotide, 81
residualization, 82
trapping of, 82
Radiohalogen, 271–273
Radiohalogenation, 277
Radioimmunoimaging performance, 272
Radioimmunotherapy (RIT), 233–235, 272
Radioiodination, 273
using enzyme, 279
using iodine, 279
using iodine monochloride, 279
using oxidizing reagent, 279
using prelabeled small molecules, 279
Radioiodine, 271, 272
Radioisotope, 234, 271
Radioisotope-based system, 271
Radiometal, 275
Radiometallic nuclide, 271, 272
Radiometal-polyaminopolycarboxylate complex, 81
Radionuclide, 272
beta-emitting, 85
clinical development, 276
Reference product, 331
Reflection coefficient, 160
Regional blood flow (Q), 79
Relapsing multiple sclerosis, 131
Relaxin, 94
Renal cell carcinoma, 127, 132
Renal clearance, 128, 129, 153
Renal elimination, 25, 95
Renal excretion, 93, 116
Renal filtration, 126
Renal impairment, 61, 128, 129, 376, 392
Renal transplantation, 137, 296, 304
Reperfusion-induced brain injury, 251
Reproducibility, 321
Reproductive performance, 373
Residual error, 111
Residual error model, 180
Reticulocyte, 420
Reticuloendothelial system (RES), 78, 129
cell, 47
clearance, 44
mediated mechanism, 129
Rhenium-186 (186Re), 275
rhEPO, 74
Rheumatoid arthritis (RA), 129–131, 136, 150, 176, 295, 298, 371
juvenile RA (JRA), 298, 300, 308, 377
rhGH, 117
rhuEPO, 128
125I, 138
receptor-mediated endocytosis, 138
rHuPH20 see Fully human recombinant DNA-derived hyaluronidase enzyme (rHuPH20)
Rifampin, 45
Rilonacept, 133, 215, 296
Rilotumumab, 133
Rilotumumab, 133
Ring dimmer, 151
Ring hexamer, 151
Ring octomer, 151
Risk-based stepwise similarity evaluation, 333
Risk–benefit ratio, 50, 108
131I-labeled, 215
RNA-based product, 264, 265
RNA profiling, 259
Romiplostim, 214
Rotavirus, 348
Safety pharmacology study, 373
SAR3419, 45
Saruplase, 95
Satumomab pendetide (Oncoscint™), 272
Saturation time, 230
Scavenger receptor (SR), 243, 246
Scintillation counting, 85, 86
SCORPIOn, 415
SDS-polyacrylamide gel electrophoresis, 73
“Selected and targeted” approach, 377
Selected reaction monitoring (SRM), 313, 318
Sensitivity
 clinical PK/PD study, 319
 preclinical PK/PD study, 319
Sensitivity analysis, 165
Seroconversion rate, 347
7E3, 73, 168
Sex (gender), 393
SGN-30, 59
Shah’s model, 162
Shed antigen, 133, 218
 antibody complex, 234
Shed ECD (extracellular domain), 219
Shed soluble target, 133
Sheep, 4, 70, 72, 73, 74, 138
Shoulder, 74
Sialic acid, 25
SIB-DOTA prosthetic group, 288
Sibrotuzumab, 112, 113
Silenced mεγR binding, 33
Siltuximab, 6, 133
IL-6 complex, 8
Similar medicinal biological product, 331, 332
Simulation study, 118, 120
Single-chain variable fragment (scFv), 15, 19, 20,
 46, 415, 416
tandem, 46–49
Single-energy gamma density, 276
Single-nucleotide polymorphism (SNP), 135
Single-photon emission computed tomography (SPECT), 85,
 271–273, 275, 286, 289
Singular perturbation theory, 200
siRNA, 245
cholesterol-conjugated 21/23-mer, 245
Site-directed mutagenesis, 14, 17
Site of action, 47, 62, 128, 162, 225, 343, 419
Site-specific mutation, 60
Site-specific tissue
 elimination, 162
 uptake, 162
Skin, 73
Skin allergen tolerance, 189
Skyline, 316
Small molecule cytotoxin, 79
Solanezumab, 371
Solid tumor, 127, 131
Soluble antigen, 25, 220, 297
Soluble ligand, 133, 220
Soluble target, 97, 198, 203, 372
Species selection, 337, 372
Specific DNA sequence, 349
Specificity, 314
S-PLUS, 110, 111
Spondyloarthritis, 130
Squamous cell carcinoma, 131
Stable isotope standards and capture by antipeptide antibodies
 (SISCAPA) technique, 320
Stem cell-mediated drug delivery, 250
Stoke radius (hydrodynamic radius), 69
Streptozotocin (STZ)-induced diabetic nephropathy
 mouse model, 129
Structure
 primary (amino acid sequence), 332
 quaternary, 332
 secondary, 332
 tertiary, 332
Structure-based method, 20
Structure-based rational design, 20
Subcompartment concentration, 171
Subcutaneous (SC) absorption, 67, 72, 127
Subcutaneous (SC) administration, 42
 site of, 74
Subcutaneous tissue, 73, 74
 peptidase, 127
 physiology, 67
 protease, 127
Subsequent-entry biological, 331
N-succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-
 carboxylate (SMCC), 402
Surface receptor, 150
Surface target antigen-dependent redirected lysis, 421
Surgery, 125
Sweeping antibody, 31, 32
Sweeping antibody technology, 31
Switzerland, 193
Symmetric bispecific with fused antibody fragment, 415
System biology, 362
System biology model, 197, 203
System-dependent parameter, 165
Systemic inflammation, 129, 135
Systemic juvenile idiopathic arthritis (SJIA), 220, 296, 300
Systemic lupus erythematosus (SLE), 129
Systemic malignancy, 130
System pharmacology model, 203, 374
System vaccinology, 362, 363
Target affinity, 219
Target antigen
 distribution, 297
 expression, 42
 level, 300
 mediated clearance, 29, 31
 mediated internalization, 28
Target-binding, 134, 332
 affinity, 100, 126
 assay, 372
 site, 421
Target biology, 257, 267
Target cell depletion, 132
Target cell repletion, 132
Target cross-reactivity, 101
Target-dependent elimination, 25, 28
Target-dependent pharmacokinetics (PK), 131
Target detection, 259
Target-driven pharmacokinetics, 197, 198, 209, 213
dose-dependent, 209
 profiles, 199
Target dynamics, 209
Target engagement, 125, 132, 175
whole-body, 176
Target-expressing cell, 58, 61, 62
Target-expressing tissue, 79
Target expression, 82, 218, 219, 257, 266, 267, 374
density, 99
interpatient variability, 219
intrapatient variability, 219
level, 7, 135
profiling, 259
Target heterogeneity, 218
Target-independent pharmacokinetics, 206
Targeting, 353
Target internalization rate, 218, 221, 234
Target lesion, number of, 136
Target localization, 218
Target-mediated cellular uptake, 40
Target-mediated clearance, 20, 47, 78, 87, 88, 112, 126, 132, 137, 213, 220, 416
antibody, 25
Target-mediated drug disposition (TMDD), 6, 7, 45, 47, 61, 62, 78, 79, 99, 101, 125, 126, 129, 130, 153, 169, 176, 197, 208, 209, 216, 217, 219–221, 304, 342, 374, 387, 420
cell-level model, 197, 198, 203, 204, 206, 208
cell-level model with normal and tumor cells, 204
intracellular trafficking, 218
reduced model, 200, 201
tissue model, 171
tumor model, 171
whole-body model, 197, 198, 200, 201, 203, 206
Target-mediated drug distribution, 232
Target-mediated elimination, 297
Target-mediated nonlinear clearance, 170
Target-mediated nonlinear disposition, 176
Target-mediated nonlinear PK, 7, 99
Target-mediated tissue elimination, 162
Target-mediated tissue uptake, 162
Target physiology, 125, 126, 130, 134, 138
Target production rate, 62, 221
Target receptor–ligand interaction, 371
Target recognition, 374
Target-saturable binding, 160
Target saturation, 171
Target sink, 133
Target specificity, 369, 417
Target specificity of expression, 218
Target synthesis, 133
Target turnover, 219
Target turnover rate, 62, 99, 125
Tau, 371
T-cell (T-lymphocyte), 147
activation, 132
epitope, 17, 149, 150, 418
mediated activity, 100
receptor (TcR), 150
receptor complex, 421
redirecting oncology therapy, 100
specific CD3, 47, 49
stimulation assay, 17
Tc-99m, 271
T-DM1, 40, 44, 45
catabolism, 406
distribution, 406
elimination, 406
nonclinical PK/PD, 408
pharmacokinetics, 405
tissue distribution study, 406
Technecium-99m (99mTc), 272, 275
TeGenero (TGn1412), 101, 372, 374
Teorell, 159
Teplizumab, 19
Tetanus toxoid (TT), 348
3,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), 82
TgCRND8 mouse model, 251
Th1 (T helper 1), 350
Th2 (T helper 2), 350
Therapeutically targeted system, 203
Therapeutic biologic, 125
Therapeutic index, 44, 109
Therapeutic peptide, 107, 110, 114, 122, 213
Therapeutic protein, 114, 122
Therapeutic protein–drug interaction (TP–DI), 373
Therapeutic window, 45, 107–109, 122, 218, 420
Thiele modulus, 230–234
Thigh, 74
Thiopurine, 130
Thoracic duct-cannulated rat, 70–72
Thorough QT (TQT) study, 389
Thrombin, 127
Thrombocytopenia, 45, 46
Thrombopoietin, 28
Tiered-fixed dose-adjustment approach, 304, 377
Tissue cross-reactivity study, 263
Tissue deposition, 155
Tissue distribution, 26, 100
Tissue gene-expressing profiling, 267
Tissue penetration, 47
Tissue pharmacodynamics response, 192
Tissue physiology, 225
Tissue-plasminogen activator, 94
Tissue target engagement, 171
target expression, 58
Tissue-to-blood transcytosis, 73
Tissue-type plasminogen activator, 245
Tissue vasculature, 162
TNF receptor (TNFR), 244
TNF receptor-Fc fusion protein, 154
TNF receptor fusion protein, 130
Tobacco use, 376
Tocilizumab, 29, 30, 131, 216, 217, 296–298
Tolerogenic administration mode, 156
Tolerogenic regulatory T-cell population, 156
Toll-like receptor (TLR), 148, 349
endotoxin-binding TLR-4, 148
Tositumomab (Bexxar®), 131, 216, 217, 272
“Totality-of-data” approach, 332
Total QSS approximation, 200, 201
Toxicokinetic, 101
Toxic payload, 234
Transcapillary escape rate, 167
Transcellular transport, 42
Transcytose, 419, 420
Transcytosis, 5, 166, 215, 243
reverse, 243
Transcytotic trafficking, 94
Transferrin receptor (TfR), 49, 219, 243, 246–248, 416, 419
binding, 420
cTIRMAB-TNFR fusion protein, 247
mediated clearance, 419
mediated transcytosis, 49, 246
Transfersome, 356
Transforming growth factor alpha, 134
Transglutaminase, 43
Transit compartment, 61
Transporter
efflux, 58
uptake, 58
Trastuzumab (Herceptin®), 19, 219, 243, 246–248, 416, 419
Trastuzumab emtansine (T-DM1), 30, 131
Trastuzumab-US, 339, 340, 342
Treatment-dependent pharmacokinetics (PK), 131
Treatment intervention, 125
Trebananib, 214
Tregitope (regulatory T‐cell epitope), 149
Trichophyton mentagrophytes, 356
Trimer, 151
Triomab® (catumaxomab), 48, 415, 417
Triple-modality imaging (PET/OI and MRI), 276
Trivalent cation radiometal, 272
Trivalent inactivated influenza vaccine (TIV), 362
“Trojan horse” approach, 246, 248, 251
“Trojan horse” approach, 246, 248, 251
TRX1, 176
Ts2Ab, 415
Tuberculosis, 348
Tubular proteolytic digestion, 93
Tumor, 150, 225, 226
antigen, 416
bulk, 136
burden, 62, 127, 132, 137
cell, 226
cell killing, 132, 232s
distribution, 219
effect-site pharmacokinetics, 225
growth, 245
heterogeneity, 128
intracellular payload concentration-driven cell kill, 62
load, 130
microenvironment, 226, 234
penetration, 47, 416
pharmacokinetics, 226, 232
physiology, 235
shrinkage, 62
size baseline, 136
targeting, 235
transport mechanism, 227
uptake, 128
vascular volume, 7
volume, 130
Tumor-associated macrophage (TAM), 226, 234
Tumor-associated protease, 136, 235
Tumor necrosis factor (TNF), 136
soluble, 215
Tumor necrosis factor alpha (TNFα), 129, 133, 134, 216, 218,
246, 247, 296, 323
membrane-anchored (mTNFα), 134
TvAb, 415
Two-compartment model with parallel Michaelis–Menten
nonlinear elimination, 99
“Two-pore” extravasation process, 161
“Two-pore” formalism, 160, 165
“Two-pore” formalism extravasation model, 160
“Two-pore” formalism model, 162
“Two-pore” theory, 160
Tyr30Glu mutation, 48
UBITH-LHRH (synthetic luteinizing hormone-releasing hormone
peptide-based immunotherapeutic vaccine), 359
u-hFSH, 117
Ulcerative colitis (UC), 129, 296, 300, 307
Ultraprformance liquid chromatography, 3
Ultrasound, 356
Ultraviolet (UV) detector, 319
Unconjugated drug, 59, 60
Unconjugated mAb, 60
Unconjugated small molecule, 58
United States, 193
“Universal surrogate peptide,” 316
Upper arm, 74
Upper limit of quantification (ULOQ), 318
pediatric UC, 298–300, 307, 308
Uptake ratio of target to nontarget
(T/N ratio), 272, 276
Urinary albumin excretion (UAE) rate, 129
Urticaria, 184, 193
Urticaria itch and hives, 177, 192
scores, 181
Urticarial activity score (UAS7), 185, 192
U.S. Summary Basis of Approval, 336
Ustekinumab, 129, 130, 216, 217, 220, 297
Vaccination efficacy, 357
Vaccination optimization, 347
Vaccine, 213, 347, 370, 371
administration
intranasal, 354
ophthalmic, 357
development, 347
dosing schedule, 357
formulation, 351, 363
mechanism of action, 363
Vaccine (cont’d)
 optimization
 agent-based modeling (ABM), 360
 differential equations based models, 360
 mathematical modeling, 360
 semimechanistic model, 360
 types
 dendritic cell (DC), 348, 356, 360
 DNA, 348, 357, 359
 killed antigen, 348
 live-attenuated (LAV), 348
 live-attenuated influenza (LAIV), 362
 subunit (purified antigen), 348
 toxoid (inactivated toxin), 348
Vaccinology biopharmaceutics, 363
Variable mg/kg dosing, 300
Vascular endothelial growth factor (VEGF), 50, 95, 128,
 133, 176, 216, 218, 226, 233, 235
Vascular endothelial structure
 leaky, 166
 tight, 166
Vascular endothelium, 217
Vascular permeability, 81, 235
Vascular space, 162
Vascular volume, 79
Vasoactive intestinal peptide (VIP), 246
Vessel depletion number, 229
Viral inactivation, 17
Vitamin K 2,3-epoxide reductase, 176

Weibull model, 62
Well-stirred hepatic clearance model, 170

Western blot, 260, 266
Wet age-related macular degeneration, 296
Wheal and flare signals, 187
Whole-body autoradiographic imaging, 85
Whole-body autoradiography (WBA), 264
 quantitative (QWBA), 271
Whole-body sagittal section, 264
Whole-body sectioning, 85
Whole-cell pertussis (wP), 348
WinNonlin, 111
World Health Organization (WHO), 331, 336

Xenograft-bearing mouse, 87
Xenograft-bearing SCID mouse, 7
Xenograft experiment, 232
Xenograft mouse model, 338
Xenograft tumor, 132
X-ray crystallography, 13, 16
 high resolution, 16, 20
X-ray CT, 85

Yeast display, 20
Yellow fever, 348, 362
Yttrium-86 (^{86}Y), 275
Yttrium-90 (^{90}Y), 272

Zalutumumab, 132, 169
Zeta potential, 353
Zirconium, 272
Zirconium-89 (^{89}Zr), 275, 276
Zostavax, 356